next up previous contents
Next: Global process variations Up: Parameter variations Previous: Element matching

Local process variations

Any process parameter displays local variationsgif. The variations are randomly distributed over the entire die, and their placement can not be predicted. For example, the capacitor oxide thickness varies over the die. Also, etching displays a random variation at the edge. Both of these factors result in a capacitor value with a random distribution. Such effects are found for resistors, capacitors, and transistors. Additionally, resistors and transistors also depend on doping implants and diffusions. In general, better matching be achieved for capacitors than for either resistors or transistors (with the same area), because less mechanisms influence the capacitor matching.

The only effective way of reducing the influence of local process errors is to ensure that any precision element is sufficiently large, that the local process variations only play a minor role in the achievable matching. A survey on capacitor matching in a specific process concluded, that local oxide thickness variations were negligible, if the capacitors were larger than tex2html_wrap_inline3618[McC81].

For resistors, the following rules of thumb can be usedgif. Precision poly-silicon resistors and diffusion resistors should never be laid out with line widths less than tex2html_wrap_inline3622. For well resistors, a minimum line width of tex2html_wrap_inline3624 should be used. The later results from the fact that the well junction is deeper than normal diffusion junctions, making the device more susceptible to three dimensional errors. This the reason for requiring wider well resistors. Current sources requiring precision matching should never use minimum geometries.



Flemming Stassen (Lektor)
Wed Jan 21 13:35:14 MET 1998