High accuracy interface characterization of three phase material systems in three |
|
Abstract | Quantification of interface properties such as two phase boundary area and triple phase boundary length
is important in the characterization ofmanymaterial microstructures, in particular for solid oxide fuel cell
electrodes. Three-dimensional images of these microstructures can be obtained by tomography schemes
such as focused ion beam serial sectioning or micro-computed tomography. We present a high accuracy
method of calculating two phase surface areas and triple phase length of triple phase systems from subvoxel
accuracy segmentations of constituent phases. The method performs a three phase polygonization
of the interface boundaries which results in a non-manifold mesh of connected faces. We show how the
triple phase boundaries can be extracted as connected curve loops without branches. The accuracy of the
method is analyzed by calculations on geometrical primitives. |
Keywords | Interface characterization, Triple phase boundary, Surface area, Solid oxide fuel cells |
Type | Journal paper [With referee] |
Journal | Journal of Power Sources |
Year | 2010 Vol. 195 pp. 8168-8176 |
Publisher | Elsevier |
Electronic version(s) | [pdf] |
BibTeX data | [bibtex] |
IMM Group(s) | Image Analysis & Computer Graphics |