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a b s t r a c t

Quantification of interface properties such as two phase boundary area and triple phase boundary length
is important in the characterization of many material microstructures, in particular for solid oxide fuel cell
electrodes. Three-dimensional images of these microstructures can be obtained by tomography schemes
such as focused ion beam serial sectioning or micro-computed tomography. We present a high accuracy
method of calculating two phase surface areas and triple phase length of triple phase systems from sub-
voxel accuracy segmentations of constituent phases. The method performs a three phase polygonization
of the interface boundaries which results in a non-manifold mesh of connected faces. We show how the
triple phase boundaries can be extracted as connected curve loops without branches. The accuracy of the
method is analyzed by calculations on geometrical primitives.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Three-dimensional reconstructions of microstructural data
have become an important tool in analysing and gaining under-
standing of multiphase material systems on the microstructure
level [1–3]. These material systems include solid oxide fuel cell
(SOFC) electrodes where the distribution and interconnectivity
of constituent phases are of critical importance for the electro-
chemical performance. The volume specific triple phase boundary
(TPB) length is one of the most critical performance attributes of
SOFCs. The TPB length is the total length of the curves within
the microstructure that bound the interface between each of the
three constituent phases. The TPBs are important since they are the
locations where the electrochemical reactions within the cell take
place.

We present here a high accuracy method for quantifying the TPB
length and interface area of triple phase systems from a prior parti-
tion of the analyzed volume into its constituent phases (henceforth
denoted segmentation). This paper can be seen as a direct con-
tinuation of our previous work [4] that describes a computational
framework for sub-voxel (volume element) accuracy segmentation
of microstructural tomography data. The methodology described
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here enables the extraction of accurate measurements from already
obtained segmentations.

TPB length calculations have been carried out before [5,6]. Com-
mon to these calculations are that TPB sites are identified by
systematically searching through the voxel structure for locations
that contain all three types of phases in a small neighbourhood.
The result is a grid of TPB sites. The TPB length has then been quan-
tified either by counting the number of TPB sites and weighting
them by the voxel dimension or the points are connected and the
total length of the line segments is summed. Simply connecting
the TPB sites has been reported to cause problems of branching
curves [5]. These approaches lead to an overestimation of the TPB
curve length because the TPB line segments do not form a smooth
curve. A correction factor can be used to account for the overestima-
tion. However, determination of the correction factor is challenging
since the factor will be a function of both the sample and the reso-
lution of the voxel grid. Two-dimensional stereological approaches
such as [7] essentially fall into the same category since the TPB esti-
mate is based on a count of TPB sites and a correction factor derived
from an assumption of microstructure shape.

Ref. [8] employs a method where each phase is expanded slightly
and the TPB curves are extracted as the centrelines of the overlap-
ping tube-like volumes. This method will theoretically calculate
the TPB length of the segmentation accurately for an infinitesi-
mally small expansion. The segmentation will however need to
accurately represent the physical sample interfaces. For a conven-
tional segmentation where voxels are labelled as belonging to one
of the constituent phases, the interfaces between phases cannot be
represented as smooth surfaces. This means that an infinitesimal
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Fig. 1. An example of an implicit three phase segmentation representation. (A–C) The functions �1, �2 and �12 evaluated on the same domain. Blue shades denote negative
values, red shades denote positive values and the black curves show the zero level set of the functions. (D) The zero level sets of the functions �1, �2 and �12.

expansion of such a voxel accuracy segmentation will result in line
segments that lie exactly on the sides of the voxels. This in turn
leads to an overestimation of the TPB curve length as the TPB line
segments do not form a smooth curve.

The method presented here uses a different approach to iden-
tifying TPB curves. The method reconstructs all the two phase
interfaces in the structure as connected polygons. Edges are defined
as the line segments of the polygons and vertices are defined as the
intersection points between two edges. In this representation of the
phase interfaces each polygon shares edges and vertices with adja-
cent polygons. After the data structure is constructed the TPB curves
can be identified as the edges that are shared by three polygons
of different phase. This is a conceptually simplified explanation;
further details are given in Section 2.5.

In this approach the data structure is in essence the result. The
accuracy of the method thus ultimately depends on the accuracy
of the interface polygonization. This approach results in TPB curves
that all form connected curves without branches. The connectivity
of the TPB line segments makes it possible to perform smoothing
operations on the TPB line segments to lessen the overestimation
problem.

The result of the framework presented in our previous work
[4] is phase segmentations represented by the zero iso-level of a
signed distance function. This representation of the segmentation
provides increased accuracy compared to voxel classification. This
is because smooth surfaces can be represented since the interface
is not limited to lie exactly halfway between two voxels. The pro-
posed methodology is developed specifically to take advantage of
the increased accuracy of sub-voxel segmentations. Conventional
voxel accuracy segmentations can however be processed using the
same methodology by converting the segmentation to an implicit
surface representation.

2. Methodology

An iso-surface polygonization scheme converts a specific iso-
level in a volumetric representation into a surface representation
defined by a mesh of polygons. Good polygonization techniques
such as the Marching Cubes algorithm [9] and its extensions [10]
have been around for decades. These techniques are well estab-
lished and an integral part of many software visualization packages.
Common to these polygonization methods is that they search
through the voxels in the volume to locate those voxel neighbour-
hoods that contain values above and below the specified iso-level.
Different interpolation schemes are then applied to create poly-
gons with vertices on iso-level locations. However, most of the
iso-surface polygonaization techniques are only designed for two
phase structures. Polygonization techniques have been developed
for the n-phase case [11]. The polygonization methodology pre-
sented below is similar to this technique and in many cases simpler.
The methodologies do diverge in the problem they attempt to solve;
mainly due to the need to collapse two representations of the same
interface into one as is described in Section 2.1. Since the poly-

gonization scheme is based primarily on existing techniques the
methodology described here will be on a largely conceptual level,
hence the reader is referred to the existing literature [9–13] for
an in-depth description of the underlying mathematics and algo-
rithms. Focus is placed instead upon the areas of the presented
approach that diverge from existing literature.

All figures in this section are constructed as two-dimensional
examples for illustration purposes only. Therefore phase bound-
aries are represented as curves and TPBs as points. However, the
algorithm itself works in three dimensions where phase boundaries
are calculated as surfaces (polygons) and TPBs as curves (connected
polygon edges).

2.1. Segmentation representation

Let us start by introducing the notion of a signed distance func-
tion in the context of a three-dimensional surface. The signed
distance function of an interface at a location (X, Y, Z) in the seg-
mented volume is defined as the distance to the closest point on
the interface, negative on the inside of the surface and positive on
the outside of the surface. A more thorough coverage of implicit
surfaces and signed distance functions is presented in Ref. [4].

The polygonization method described below takes as input
two sub-voxel accuracy segmentations where the interfaces are
described implicitly as the zero iso-level of a signed distance func-
tion. The concept is exemplified in Fig. 1(A and B). The signed
distance function is discretely evaluated on a regular grid of voxels.
Such a segmentation can be created as described in Ref. [4]. For a
three phase system it is required that a segmentation of two of the
constituent phases are provided. Let the three phases of the sys-
tem be denoted P1, P2 and P3 respectively and let the functions that
implicitly contain the interface of two of the phases be denoted
�1 and �2. A function �3 is not required since the P3 interface
information can be derived from �1 and �2. Fig. 1 shows the seg-
mentation representation. The segmentation representation leads
to a double representation of the interface between P1 and P2. A
polygonal interface representation is sought where each polygon
separates two specific phases and where only one polygon rep-
resents a specific interface section. A way to collapse the double
interface representation to a single interface is thus needed. Since
the segmentation of P1 and P2 can be performed independently it
cannot be assumed that the two representations of the same inter-
face are congruent. The two segmented phases represented by the
zero level sets of �1and �2 may overlap in some sections or have
small gaps between them in other areas. This means that a def-
inition of when the two interfaces are considered to coincide is
needed.

In the locations where the zero level sets of �1and �2 overlap the
optimal location of the collapsed surface is halfway in between the
two interfaces. This surface can be expressed as the zero level set
of the function �12 = (�1 − �2)/2. Recall that �1 and �2 are signed
distance functions which means that the value at any location cor-
responds to the distance to the interface. The function �12 will thus
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Fig. 2. Two-dimensional illustration of the mesh creation and vertex repositioning.

evaluate to zero at locations that have the same distance to the �1
and �2 zero level sets. The division by two ensures that �12 is a good
approximation to a signed distance function whenever the nearest
�1 and �2 zero iso-levels are close to parallel.

We define coincidence of the interface between P1 and P2 as
the locations x on the zero level set of �12 for which the distance
to both the P1 and P2 interface is smaller than a merge threshold
�m(�1(x) < �m ∧ �2(x) < �m ∧ �12(x) = 0). At these locations the coin-
ciding interfaces will be collapsed to the nearest point on the �12
zero level set. The following sections will describe step by step how
the interfaces are polygonized and stitched together at the triple
phase boundaries and how the zero level set locations are obtained
when x no longer represents a continuous location but a discrete
voxel location.

2.2. Phase map

A phase map is created from the two implicit functions �1 and
�2. This phase map corresponds to a conventional voxel accuracy
segmentation where each voxel location x has a label L(x) describing
what phase it belongs to. This phase map defines the topology of the
interface structures. The phase map is constructed at each location
x based on a set of basic rules:

(1) �1(x) ≤ 0 ∧ �2(x) > 0. The location is only inside the �1 zero level
set. Label as phase 1.

(2) �1(x) > 0 ∧ �2(x) ≤ 0. The location is only inside the �2 zero level
set. Label as phase 2.

(3) �1(x) ≤ 0 ∧ �2(x) ≤ 0. The location is inside both the �1 and �2
zero level sets (overlapping interfaces). Label as the phase with
the lowest �(x) value.

(4) �1(x) > 0 ∧ �2(x) > 0. The location is outside both the �1 and �2
zero level sets. If �1(x) > �m ∧ �2(x) > �m label as phase 3 other-
wise label as the phase with the lowest �(x) value.

Rules 1–3 are straight forward and intuitive however the 4th
might seem counter intuitive since these locations are clearly out-
side both the �1 and �2 zero level set. The threshold �m is used to
prevent problems in locations where the �1 and �2 zero level sets
almost coincide but still have a small gap between them. At these
locations a thin layer of phase 3 voxels can form between P1 and P2.
Note that this threshold typically is set to a very low value depend-
ing on the quality of the segmentation, typically between 0 and 1
voxels. A final optional step is to collapse isolated phase regions in
the phase map with an unrealistic small volume as these are more

likely to be segmentation errors than actual particles. The phase
map creation is illustrated in Fig. 2A.

2.3. Voxel accuracy polygonization

The phase map is processed through a very simple initial poly-
gonization scheme. The scheme runs through all voxels in the phase
map. Three of the voxels six non-diagonal neighbours are checked
and if the neighbour has a different class than the current voxel a
quadrilateral is created on the side of the voxel. Only three of the
six sides are tested in order to avoid duplicated polygons of the
same interface. Quadrilaterals consist of 4 edges that connect pairs
of vertices. The concept is illustrated in Fig. 2B. At this initial stage
each polygon is unaware of its position in the mesh relative to other
polygons and no edges or vertices are shared between polygons. To
be able to resolve the connectivity of the polygons a reference to
the polygon is inserted into a connectivity matrix. A connectivity
matrix exists for each voxel corner in the voxel grid that is used by
at least one polygon. The connectivity matrix makes it possible to
merge vertices that coincide according to the topology of the phase
map.

2.4. Sub-voxel accuracy polygonization

The voxel accuracy polygon structure is ill suited for surface or
TPB calculations due to its cubic nature as it overestimates area
and length calculations. If no sub-voxel accuracy information was
available this would typically be remedied by smoothing the poly-
gon mesh after the connectivity of the polygons had been resolved.
Smooth sub-voxel accuracy surface information is however avail-
able from the three functions �1, �2 and �12. The implicit surfaces
described by those functions are supported directly by the inten-
sity information in the raw intensity data [4] and are thus preferred
over post-segmentation smoothing.

To obtain polygon vertex coordinates with sub-voxel accuracy
a vertex movement scheme is applied to all vertices. The position-
ing scheme takes advantage of two important properties of signed
distance functions:

• The absolute value of the signed distance function evaluated at a
certain location corresponds to the distance to the closest point
on the zero level set.

• The gradient of a signed distance function evaluated at a certain
location corresponds to the direction in which the closest point
on the zero level set is found.
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These two properties enable us to design a vertex movement
scheme that moves each vertex onto the interface described by the
zero level set of the signed distance function.

For each vertex position xv we interpolate the value �(xv) and
the gradient ∇�(xv) of the appropriate signed distance function
from the values at the surrounding voxels. The new vertex posi-
tion is then found at xnew = xv − �(xv)∇�(xv). Given a continuous
signed distance function this movement scheme will move the ver-
tex exactly on to the interface represented by the zero level set of
the signed distance function. The appropriate function to evaluate
is based purely on which set of two phases the polygon that the
vertex is part of separates.

• For an interface between P1 and P3, �1 is used.
• For an interface between P2 and P3, �2 is used.
• For an interface between P1 and P2, �12 is used.

The sub-voxel accuracy repositioning scheme is illustrated in
Fig. 2C.

At this point the set of polygons do not constitute surfaces but
rather a collection of individual polygons. To form a data structure
from which calculations can be extracted the vertices from adjacent
polygons must be merged and neighbour connection information
must be stored for each polygon. This connectivity information
is constructed by processing each connectivity matrix in turn.
The connectivity matrix contains a reference to all polygons that
according to the topology of the phase map share the same vertex.
This vertex is denoted the centre vertex. The index of the polygon in
the connectivity matrix corresponds to the polygons relative posi-
tion to the centre vertex. Using these matrix indices it is possible to
efficiently connect all pairs of polygons that share two vertices (an
edge). Compared to polygons that separate two phases only, the
polygons located at the TPB use three different functions (�1, �2
and �12) for vertex repositioning. It is therefore not expected that
these vertices are repositioned to the same position. The position
of the centre vertex is thus calculated as the average position of the
vertices that are to be merged. The vertex merging is illustrated in
Fig. 2D and the final mesh can be seen in Fig. 2E.

At the initial polygon creation step a reference to the two voxels
that the polygon separates is stored together with the polygon. A
powerful dual representation of the phase structure is thus avail-
able. A phase map representation that represents the interior of
each phase and a polygonal mesh that accurately describes the
interface between the phases. The references between polygons
and the two voxels they separate facilitate a simple transition
between the two representations.

2.5. TPB identification

With the interface topology/morphology of the phases stored in
a data structure as described above it is straight forward to locate
the edges in the mesh that correspond to a triple phase curve seg-
ment. The TPB edges are identified as the outline of the interface
surface between phases 1 and 2. In other words, edges that are
part of only one polygon that separates a phase 1–2 and both a 1–3
and a 2–3 polygon simultaneously. This definition intuitively pro-
vides us with the TPB edges since a TPB must exist where a two
phase boundary meets the third phase. This definition also guaran-
tees that the TPB curves will form non-branching curves that either
form a loop inside the voxel cube or that intersect the side of the
voxel cube.

In practice this scheme is implemented by running through
all polygons checking the criteria described above. The qualifying
edges are stored in a separate list and linked to their neighbours by
identifying when two edges use the same vertex. To obtain accurate
TPB measurements it is important that the extracted TPB curves are

smooth. However, this will often not be the case. The connectivity
information of the edges can however be used to smooth the edges.

A simple smoothing approach has been applied here where each
vertex of the edge curve is repositioned by calculating a weighted
average of the position of itself and its immediate neighbours.
Let xc, xp and xc denoted the current, previous and next vertex
positions of a TPB curve loop, respectively. The repositioning step
moves the current vertex to the position xc = 0.5xc + 0.25xp + 0.25xn.
This smoothing approach can be repeated, each time resulting in
a smoother curve of connected edges. However, a higher number
of smoothing iterations is not strictly an improvement in accuracy.
An increase in smoothing iterations corresponds to an increase in
the number of neighbour vertices with non-zero weights. This will
result in a shrinkage effect of the TPB curve loops. It is thus neces-
sary to weigh the benefit of the smoothing against the shrinkage
effect. A quantitative analysis of this dilemma is available in Section
3.2. Note that the smoothing operations reposition vertices that are
still part of the interface mesh. The mesh structure will thus contain
the smoothed TPB edges which remain congruent with the surface
mesh for visualization purposes.

The finished mesh structure allows very simple calculations of
both two phase boundaries and TPBs. Area calculations are per-
formed by simply summing the area of polygons that separate
specific phase pairs. In this way the two phase boundary areas
between two specific phases can be calculated along with the total
interface area of each phase. The TPB length can be calculated by
summing the length of the edges that make up the TPB curves. The
link between the mesh representation and voxel representation can
be used to further characterize the TPB locations. As an example the
percolation [6] of each TPB edge can be identified by performing the
percolation identification on the voxel grid and then utilizing the
reference between the polygons and the voxel grid to check for
percolation of the TPB edges.

3. Results

One approach to assessing the accuracy of proposed TPB mea-
surement methods is to compare measured values with physical
measurements that are believed to be governed mainly by the
TPB length [1]. It is however difficult to determine the cause
of the disparities by comparing a TPB length measure based on
microstructure calculations to a measure obtained by a model of a
directly measurable physical property. The disparity could be due
to several factors.

• Errors or insufficient resolution in the segmentation.
• Errors in the computation method used to calculate the TPB

length from the segmentation.
• The model that connects the physical measurement to the TPB

length could be too simple.

The accuracy analysis presented here takes a different approach.
To asses the accuracy of the TPB length and surface area measure-
ment method alone, tests are constructed that seek to eliminate
segmentation errors and model errors. This is achieved by apply-
ing the method to spheres of varying diameter in a set-up similar
to Ref. [8]. The advantage of using spheres for the analysis is
3-fold.

(1) Segmentation error can be eliminated since a sphere can be
constructed as an implicit surface of a signed distance func-
tion without errors. This is achieved by calculating the exact
Euclidian distance to the centre of the sphere at each voxel
location. To obtain a sphere with a specific radius the radius
is simply subtracted from all voxels. This representation is
error free in the sense that it is the most accurate signed dis-
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Fig. 3. The intersecting sphere test set-up. (A) An example of the mesh reconstruction without smoothing. (B) Enlargement of a TPB section of A. (C) The same enlargement
with two smoothing iterations applied.

tance function representation that can be achieved at a given
resolution.

(2) The surface area of a sphere is defined as As = 4�r, where r is
the radius of the sphere. Since this is an exact formula and not a
model the calculations of surface area can be directly compared.
For the TPB length calculations a similar exact formula can be
obtained for the intersection of two spheres of radius r, at the
distance r from each other. The length of the intersection curve
between the two spheres, and thus the TPB length, is defined

as Lint = 2�
√

r2 − (r/2)2.
(3) The segmentation sampling resolution error can be assessed

by varying the resolution of the sphere representation on the
voxel grid. Let the radius of the sphere be measured in voxel
widths. Increasing the radius will then result in a subsequent
increase in sampling resolution. Recall that the basis of the sur-
face area and TPB length calculations is a voxel grid with finite
resolution.

To show the accuracy of the proposed method on voxel accuracy
segmentation the following changes were made to the implicit sur-
faces used as input for the method. The signed distance map was
first constructed as outlined above for the implicit surface represen-
tation of the spheres. The voxel grid was then discretized into three
classes based on the voxel value of both implicit functions using the
same methodology as described in Section 2.2.This segmentation
represents the best achievable voxel accuracy segmentation of the
sphere. The voxel accuracy segmentation was then converted back
to a set of signed distance function implicit surfaces but loosing
the advantage of the sub-voxel accuracy in the process. Both a sub-
voxel accuracy and voxel accuracy set-up were used in the tests. All
tests were performed with radii ranging from 1 to 30 voxels with
increments of 0.25 voxel.

Two different set-ups where used for the sphere centres, an
aligned set-up and a skewed set-up:

• The aligned set-up sets the centre of the spheres in the centre of a
voxel. This set-up creates a set-up with many symmetric axes that
coincide with the three major directions of the voxel grid. The TPB
length calculations place the second sphere the distance r away in
the direction of the vector Valign = [1 0 0]T. This set-up represents a

best case scenario where the most accurate reconstruction result
can be expected.

• The skewed set-up represents a more challenging case where the
centres of the spheres are not in the centre of voxels. The offset
from the centre of the voxel was chosen to be 0.1817. This offset
was selected to not be a simple fraction between 0 and 1 but the
value could have been any other number. The TPB length calcu-
lations place the second sphere the distance r away from the first
in the direction of the vector Vskew = [1 1 1]T. This set-up repre-
sents a worst case scenario where the least accurate results can
be expected. The set-up can be seen in Fig. 3.

It is reasonable to assume that the accuracy of a real microstruc-
ture with a similar radius of curvature of its interface boundaries
would be somewhere between the accuracy of these worst case
and best case set-ups. In total four set-ups were tested: Aligned
spheres and skewed spheres both with and without sub-voxel accu-
racy. The sphere results are reported as relative errors calculated as
err = (mexact −mmeasured)/mexact, where mexact is the exact analytical
quantity.

3.1. Surface area

The surface area of the sphere in each of the 4 set-ups was
calculated as described in Section 2.5. For the surface area cal-
culations only one sphere was used in each of the set-ups. The
results of the surface area calculations can be seen in Fig. 4.
The general trend for all 4 set-ups is the same. The error is
large for spheres with small radii and has an asymptotic conver-
gence as the radii increases. To increase the readability of the
figures they only show the relative error for radii larger than
3.

As can be seen the results for the aligned and skewed set-up are
almost identical in the case of sub-voxel accuracy. This is because
the signed distance function evaluated on the voxel grid can rep-
resent the skewed case just as well as the aligned case. The voxel
accuracy tests perform worse than the sub-voxel accuracy tests for
large radii. This is because the discrete voxel classification cannot
accurately represent the sphere; the surface of the polygonized
sphere will thus have artefacts caused by the voxelated surface
structure of the voxel accuracy representation. The noise in the
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Fig. 4. Surface area results. The relative error of the surface area calculations as a
function of sphere radius for the 4 different set-ups. Note that results of the aligned
and skewed sub-voxel precision set-ups are very similar and thus indistinguishable
from each other in the figure.

curves is caused by some radii resulting in surfaces that are more
aligned with the voxel grid than others.

By observing Fig. 4 the consequence of two kinds of errors can
be observed. The two types of error are illustrated in Fig. 5.

(1) The first error is sampling frequency. The sphere is represented
by a finite number of polygons and the surface area is calculated
as the combined area of these. The total measured area will thus
always be smaller than the theoretical value assuming that the
polygon vertices are placed exactly on the surface of the sphere.
This error is clearly visible in Fig. 4 where all the tests have a
large under estimation for small radii and a decreasing under
estimation for larger radii. The limit of the sampling frequency
error is zero as the radius approaches infinity.

(2) The second error is sampling accuracy. This is an error in the
location of the vertices of the polygons. An extreme case would
be to use the sides of the voxel segmentation as polygons
directly. This scheme would cause a severe over estimation of
the surface area. This error can be made very low but it will
always be present to some degree and the error will always be
an overestimation assuming that the sampling accuracy error
has no preferred direction.

Fig. 5. The two types of errors in the reconstruction. Sampling frequency error is
the error introduced by approximating smooth curves with line segments. Sampling
accuracy error is the error introduced by inaccurate vertex positioning.

Any measurement will thus always be the result of two errors
that influence the measurement in different directions. The surface
area measurements are heavily influenced by sampling frequency
error for small radii thus giving a large under estimation. The sub-
voxel accuracy measurements generally have a very small sampling
accuracy error. This can be seen by the fact that the underestimation
decreases towards zero as the radii becomes larger. If a significant
sampling accuracy error was present we would expect the estima-
tion error to cross zero at some point. The voxel accuracy tests in
Fig. 4 both cross zero, indicating that they are affected by sampling
accuracy error. This also explains why the error does not tend to
zero for large radii.

The sub-voxel test becomes very accurate for large radii with a
relative error of −0.17% for a radius of 20, where the aligned and
skewed voxel accuracy tests have a relative error of approximately
2.0% and 2.5% respectively for the same radius.

The radius of curvature of interfaces in a real sample will be a
distribution of values rather than a single value. These interfaces
will have a random alignment with respect to the three major axes
of the voxel grid. The relative error of a random interface orientation
is expected to be bounded by the aligned and skewed set-ups since
they correspond to a worst case and best case scenario. For this
purpose sub-voxel and voxel precision results should be treated
separately. In general the plots of relative error versus sphere radius
can be used in two ways.

• To asses the accuracy and precision of a calculation on a phys-
ical microstructure. The worst case accuracy can be assessed as
the largest absolute relative error of the aligned and skewed set-
up results. Only the values in the expected radius of curvature
range of the sample should be used. The precision can be assessed
based on the difference between the signed highest and low-
est value in the same range of the aligned and skewed set-up.
A high precision is characterized by relative errors that are close
to constant (a smooth flat relative error curve in Fig. 4) and a
small difference between the relative errors of the aligned and
skewed set-ups. In such a case there is a systematic under or over
estimation that can be systematically corrected in the interface
calculations.

• To choose image resolution and slice frequency before data acqui-
sition. Based on the assessed curvature of radius of the sample
the expected accuracy of the results can be assessed before data
requisition begins. As an example supposed an estimate of the
surface area of interfaces in a sample is wanted with maximum
±1.5% error. From inspection of two-dimensional micrographs
the typical radius of curvature of the grains is assessed to range
between 200 and 450 nm. From Fig. 4 it is observed that a radius of
curvature of between 4 and 9 voxels has relative errors between
−4% and −1% for a sub-voxel precision segmentation. Estimates
in this range can thus be systematically corrected for the 2.5%
underestimation we would expect when centring the range on
zero. The maximum error with this correction in place would
be ±1.5%. The maximum voxel size that would ensure this accu-
racy is 50 nm (200 nm/4 voxels). Note that this maximum error
is only a measure of the error introduced by the sampling resolu-
tion and the calculation method. Errors introduced by inaccurate
segmentation need to be assessed separately.

3.2. TPB length

Fig. 6 shows the TPB length calculations with zero and two
smoothing iterations for the four different set-ups. Note that for
the TPB figures, the relative errors are plotted versus the radius
of the TPB circle at the intersection rather than the radius of the
spheres. This is done to be able to asses the accuracy versus the
radius of curvature of the TPB curve loop.
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Fig. 6. TPB length accuracy for the 4 set-ups for no smoothing and two smoothing iterations. (A) The relative error of the TPB length calculations without smoothing. (B) The
relative error of the TPB length calculations with 2 smoothing iterations.

Fig. 6A shows the accuracy for the 4 set-ups with no smooth-
ing. For TPB curve radii larger than 5 voxels an overestimation of
approximaetly 5–25% of the TPB length is observed for the 4 set-
ups. Note that there is a large difference between the results for the
aligned and skewed set-ups and each curve has significant noise.
This indicates that the calculated result is very dependent on the
orientation of the surface relative to the voxel grid. As a result, cal-
culations performed without any smoothing iterations would have
a large confidence interval.

The overestimation is more severe for the skewed set-up and
for voxel precision surface representations. This is as expected since
the reconstructed TPB curve loop of the skewed set-up by construc-
tion is not parallel with the major axes of the voxel grid tessellation,
thus resulting in a rough TPB curve loop. A visualization of the rough
reconstruction of the TPB curve can be seen in Fig. 3. Clear artefacts
from the original voxel structure can be seen in the curve. Even
though these artefacts are much smaller than if the vertex posi-
tioning scheme had not been applied they still cause a substantial
lengthening of the TPB curve.

If the shape of the phase structures where known it would be
possible to obtain a much better initial TPB curve reconstruction.
The algorithm described here however works on any phase struc-
ture. The algorithm thus reconstructs the spheres as it would any
other structure.

Fig. 6B shows the accuracy for the four set-ups with two smooth-
ing iterations applied. The two smoothing iterations increase the
accuracy across the 4 set-ups compared to not applying smooth-
ing. For radii larger than 5 voxels a relative error of between −1.1%
and 3.8% is observed for the voxel accuracy test and a relative
error of between −1.6% and 2.2% is observed for the sub-voxel
accuracy tests. The figures can be used to give a rough confidence
interval of the TPB estimates analogous to the discussion in Sec-
tion 3.1. Similarly the figures can be used to select the required
voxel size for a given TPB estimation accuracy. The typical radius
of curvature range of the TPB curves is not easily extracted from
two-dimensional slices and a three-dimensional reconstruction of
a similar sample is thus likely required to select the required voxel
size of future samples.

The relative errors of the 4 set-ups appear to reach an asymptotic
value with added noise for radii larger than 5 in Fig. 6A and for radii
larger than 10 in Fig. 6B. These radii indicate the minimum radius of
curvature of the TPB curve that is sufficient to obtain the maximum

accuracy of the reconstruction algorithm using the given smoothing
scheme.

Fig. 6A and B shows how applying a few iterations of smooth-
ing dramatically reduces the relative error of the reconstruction for
radii larger than 5 voxels. The number of smoothing iterations is a
parameter of the TPB curve reconstruction and can in theory be set
at arbitrarily large values. Increasing the number of smoothing iter-
ations can be seen as including a larger neighbourhood of vertices
in the weighted sum calculation of the new vertex position (Section
2.5). Since the TPB curves form loops this means that for the num-
ber of iterations approaching infinity the TPB curves will collapse to
a single point that is the centre of gravity of the loop. In practice the
amount of smoothing iterations will have to be chosen based on the
radius of curvature of the TPB curves. Fig. 7 shows the skewed sub-
voxel accuracy set-up for smoothing iterations between zero and
ten. It is seen that a high number of smoothing operations result
in slower convergence but increases the asymptotic accuracy and
precision. For 10 smoothing iterations the calculated TPB length
estimate is within ±0.4% of the theoretical value but a radius of
curvature of 15 or higher is required to obtain this accuracy. For

Fig. 7. The effect of smoothing. The relative error of the TPB length calculations for
varying amounts of smoothing iterations on the skewed sub-voxel set-up.
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Fig. 8. LSC/CGO electrode interface visualization. (A) The pore/LSC interface. (B) The
TPB curves.

smaller radii of curvature 10 smoothing iterations can result in a
severe under estimation of the TPB length. This shows the signifi-
cance of choosing a smoothing scheme that is appropriate for the
chosen voxel dimension and sample structure size. Fig. 7 also gives a
hint of the accuracy that can be achieved as tomography resolution
and quality improves.

3.3. Interface characterization of a SOFC electrode

The proposed characterization calculations were applied to a
segmentation of a real SOFC sample. The sample is a compos-
ite SOFC cathode consisting of 50/50 wt.% strontium-substituted
lanthanum cobaltite (LSC) and gadolinia-substituted ceria (CGO),
similar to Ref. [14]. The sub-voxel segmentation of this sam-
ple has previously been described in Ref. [4] along with figures
showing the raw electron microscopy image data and the seg-
mentation results. The interface calculations were performed
on a grid of 180 × 180 × 190 voxels with a voxel dimension of
58.6 nm × 58.6 nm × 44.5 nm. The collapse range was set to 0.5 vox-
els and connected material grains smaller than 10 voxels were
collapsed before the polygonization. These two parameters were
described in Section 2.2. Two smoothing iterations were applied

Table 1
Interface measurements on a LSC/CGO cathode. All measurements are volume
specific.

LV (TPB) 1.808 �m−2

LV (percolating TPB) 1.413 �m−2

SV (pore surface area) 1.074 �m−1

SV (CGO surface area) 1.896 �m−1

SV (LSC surface area) 1.822 �m−1

SV (pore/CGO surface area) 0.575 �m−1

SV (pore/LSC surface area) 0.500 �m−1

SV (CGO/LSC surface area) 1.322 �m−1

to the TPB curves. Fig. 8A shows a visualization of the pore/LSC
two phase boundaries and Fig. 8B shows the extracted TPB curves.
Table 1 shows the calculated interface measurements for the sam-
ple. The percolating TPB length was calculated by only summing
TPB line segments that have a percolating path in each phase to
their respective source side: the LSC phase to the side facing the
electrolyte and the CGO and pore phases to the opposite side.

As discussed at the beginning of Section 3 the accuracy of the
calculated interface parameters on real samples are influenced by
several factors. Thus, this investigation of a real SOFC electrode is
provided as an example of the applicability of the methodology to
real data and not as the validation of the methodology.

3.4. Computational cost

The described method was implemented by the authors in the
C++ programming language. This implementation was used for
both the analysis on geometrical primitives and the real electrode.
The values presented in Table 1 including the percolation analysis
took 107 s to calculate on a laptop with an Intel® CoreTM 2 T7200
2 GHz CPU and 2 GB of memory. The analyzed already segmented
data consisted of 6.1 million voxels. Of the 107 s, 18 s were taken up
by the polygonization resulting in a mesh of 2.2 million triangles.

3.5. Future work

The algorithm as described above has a direct correspondence
between the resolution of the voxel grid and the resolution of the
constructed polygon mesh. Many algorithms exist for polygonal
subdivision [15] such as Catmull–Clark subdivision [16]. The result-
ing increase in polygons could increase the accuracy of both the area
and TPB estimates by reducing the influence of sampling frequency
error without increasing voxel resolution.

More advanced smoothing techniques could be employed for
the TPB vertex smoothing, for instance by fitting splines to the TPB
vertex positions. The use of splines to represent the TPB curves
would reduce the error introduced by sampling frequency since
the spline representation can be evaluated continuously.

4. Conclusion

In this paper a method for accurate calculation of two phase
interface area and TPB curve length is presented. The method recon-
structs the phase interfaces as a non-manifold polygonal mesh of
the structure based on sub-voxel accuracy segmentations of two of
the phases. After the creation of the mesh the two phase interface
areas are extracted as the sum of the area of polygons that separate
sets of two phases. The TPB curve is extracted as the line segments
in the mesh that join three polygons of different phase. This TPB
curve definition ensures that the extracted TPB curve is a single
connected loop of line segments without branches.

The accuracy of the method is analyzed based on calculations
performed on perfect spheres of varying radius. The accuracy of
the method is dependent on the radius of curvature of the phase
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structures in the sample. For radii of curvature larger than 5 vox-
els a relative error between −1.6% and 2.2% was achieved as a
worst case estimate for TPB calculations on sub-voxel accuracy set-
ups with two smoothing iterations. The TPB estimate is shown to
have asymptotical very high accuracy for future increases in voxel
resolution.

It is shown how graphs of the relative error as a function of radius
can be utilized to assess the accuracy of the interface calculations
based on knowledge of typical radii of curvature of the interfaces
and the TPBs.

The reconstruction algorithm is used to reconstruct the phase
interfaces of a SOFC electrode. The two phase interface areas and
TPBs are calculated and a qualitative overview of the extracted TPB
curves is presented.
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