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One hillion dollars to map the human proteome

Jeong, et al., Nature (2001)
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Biologists initiate plan to map human ‘
proteome .
Project aims to characterize all human proteins. *

Helen Pearson

Ambitious plans to
catalogue and
characterize all
proteins in the
human body — a
Human Proteome
Project — are being
drawn up by a small

group of researchers.

But with a price tag
of around US$1
billion, some
question whether the
organizers can raise
enough money or
momentum for such
an undertaking.




Accuracy and coverage are a concern for
protein interaction (and most other) datasets

100+ y
Purified
complexes

o (TAP)

o Purified

oy complexes

o (HMS-PCI) -

Sy [ In silico
— = mBMNA- ‘predictions
> 8 correlated @® Two methods
%E expression \
T o Synthetic :
= lethality Combined
D & evidence
O 2

E 14 High—ﬂ'\ruughpgt /

E yeast two-hybrid @ Three

= methods

9 & Raw data

- s Filtered data

+—+ Parameter choices
D.-I T T 1
0.1 1 10 100

Accuracy (%)

Fraction of data confirmed by reference set

von Mering et al., Nature (2002)



All network data is subject to noise




Network properties are often sensitive to even
low error rates
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Network properties are often sensitive to even
low error rates
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ror the most part, we ignore(d) the issue of
neiwork daia rellablllty aml 1) that
thers is no probl
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What is to bhe done?

2> Given a single noisy observation of a network, determine:

> Missing interactions Interactions that exist but are not captured
INn our observation of the system

2 Spurious interactions Interactions that do not exist but, for
some reason, are included in our observation

> Reconstruct the network, so that our reconstruction has
properties that are closer to the properties of the true network



What is to bhe done?

2> Given a single noisy observation of a network, determine:

> Missing interactions Interactions that exist but are not captured
INn our observation of the system

2 Spurious interactions Interactions that do not exist but, for
some reason, are included in our observation

> Reconstruct the network, so that our reconstruction has
properties that are closer to the properties of the true network

=2 But;

2 We want to be able to do this for arbitrary real networks
about which we don't know anything

2 There seems to be a paradox in trying to identity what is
wrong in a network observation—from the network
observation itself !



There are two possible scenarios
when in comes to solving the paradox

> Scenario 1: We don't have a clue about what the
network should look like, or where does it come from
(mechanistically or statistically):

2 We cannot do anything

2> Scenario 2: We do have some ideas about the
structure of the network:

2 \We can formalize these ideas into a set of models

2 We can use the models to assess what is likely to be
missing/wrong



The “reliability formalism”

2 We assume our network is the outcome of an undetermined
model M from a (potentially infinite) collection of models M

> \We observe a network 4°

2 Given my observation 4°, what is the probability that a
property X takes the value X=x if we generate a new network
(with the same model)?

pX = 2/A°) = [ aM p(X = a|M) p(h]4°)
M

Joq AM p(X = x| M) p(A°|M) p(M)
Jaq @M p(ACIM ) p(M)

> We call p(X=x|4°) the reliability of the X=x measurement

Guimera, Sales-Pardo, PNAS (2009)



In particular, one can use the formalism to
infer missing and spurious interactions

Jq dM p(Ay; = 1|M) p(A°|M) p(M)

R Oy _
p(Ai; = 1]A”) Sy AM p(AC|M) p(M)

2 What property of networks is general enough that
applies to all complex networks?

2 Broad (scale-free) connectivity distribution”? No

2 Small world property? Yes—but no realistic/tractable
model

2 Modularity? Group structure? YES

Clauset, Moore, Newman, Nature (2008)
Guimera, Sales-Pardo, PNAS (2009)



Stochastic block models (SBM) are general,
empirically grounded and analytically tractable
A B e A

2 A stochastic block model is fully determined by a partition of
the nodes into groups and the probabilities O that a node in a

group is connected to a node in any other group
White, Boorman, Breiger, AJS (1976)

Holland, Laskey, Leinhardt, Soc. Networks (1983)
Nowicki, Snijders, JASA (2001)



Stochastic block models (SBM) are general,
empirically grounded and analytically tractable

Jq dM p(Ai; = 1|M) p(A°|M) p(M)

J— Oy —
p(Aij = 1]A7) [ i dM p(AC[M) p(M)
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Guimera, Sales-Pardo, PNAS (2009)



The link reliability is an ensemble average over
all possible partitions of the nodes into groups

2 |n the end, the reliability of a link is

nt +1
p(Aij = 1]A%) = % > ( oios 1 ) exp|—H(P)]

0 1
PE,P nO'n;O'j —I_nO'iO'j —|_2

2> \Where;

H(P) = Z In(nag + 1)! — In(ngg)! — In(nyg)!]

a<f

Guimera, Sales-Pardo, PNAS (2009)



We test our algorithm to see if it can identify
missing and spurious interactions in real

networks
Uhserved network “
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Our approach accurately recovers missing
interactions
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Accuracy

Accuracy

Our approach accurately recovers spurious

jnteractlionsl
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Wonkish interlude I: H, module identification,
maximum likelihood hlock models and all that

1
nO'@'O'j _|_ 1

1
- Oy - — _
p(Ay = 114°%) = = > (n T H) expl~H(P)]

PeP

2 \What is this “energy”?

H(P) = —Inp(P|A°)

2 Therefore, the partition that minimizes this energy is the
most likely given the data (except for priors, degree
correction of the block model...):

2> More appropriate “modularity” function
2 No need to play with the number of groups
2 No over-fitting



Wonkish interlude Il

Unipartatite unweighted: H(P) = Z In(neg + 1)! — ln(ngﬁ)! — ln(n}xﬁ)!}

K
Unipartite weighted: H(P) = Z In(neg + K — 1) — Z ln(ngﬁ)!}
a<pg L k=1

K
Bipartite weighted: H(Py,Pz) = Z In(nag + K — 1) — Z ln(ngﬁ)!}
a, S k=1

Guimera, Sales-Pardo, PNAS (2009)
Guimera, Sales-Pardo, PLOS ONE (2011)

Guimera, Llorente, Moro, Sales-Pardo, PLOS ONE (2012)
Rovira-Asenjo, Gumi, Sales-Pardo, Guimera, in press (2013)



Reconstructing a network is more complicated
than just adding missing interactions and
removing spurious interactions

2 Challenges:

2> We don't know how many links need to be added and removed

2 Links cannot be added and removed independently of each other



We define a network reliability

2 The reliability of a network is

p(AJAC) = Z f(A; A9, P) exp[~H(P)]
PEP

Guimera, Sales-Pardo, PNAS (2009)



The network reconstruction is the most reliable
network

2 The reliability of a network is

p(A|AC) = Z f(A; A9, P) exp[~H(P)]
PEP

2 The reconstruction AR is the network that maximizes this
probability

2> We obtain A% using uphill search

Guimera, Sales-Pardo, PNAS (2009)



We can test what is the effect of
random errors in our network observations
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Relative error

Relative error

Network reconstructions provide hetter
estimates of global network properties than the
observations themselves
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Network reconstructions provide hetter
estimates of global network properties than the
observations themselves
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The challenge of discovering novel drug-drug

interactions

élmy I. B SHARD

Dangerous Liaisons

... With a large portion of the US population taking

ok multiple prescription drugs and supplements,

the increased risk of drug interactions and side
CLICK H effects drives the need for better testing

’ | before the medicines reach patients.
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> Twenty-nine percent [of
U.S. population aged
57-85] used at least 5
prescription medications
concurrently.

2 Overall, 4% of
iIndividuals were
potentially at risk of
having a major drug-
drug interaction.

Qato et al. JAMA (2008)



Can we predict which severe drug interactions
will be dded to / removed from a datahase?

v— &

" 2 Two snapshots of the drug-
SDrugs.com E interaction database available
at drugs.com:

# Drugs A-Z ~ Pill Identifier Interactions Checker News [ Alerts ~ Health Profes

ome aracetamol — Drug Interactions i Print  w* Save or Share
Paracetamol (acetaminophen) Drug Interactions
- May 10th, 2010
Drug Interactions (146) = | AlcohollFood Interactions (1) | | Disease Interactions (3)
Currently displaying 5 drugs known to have a major interaction with Paracetamol - Feb ru ary 2 2 n d y 2 O 1 2
(acetaminophen).
See also: The most common drugs checked in combination with this medicine. 9 Be‘twee n 'the S n apS h O'tS :
Medicati_ons known to interact with Paracetamol . .
(acetaminophen) - 1349 interactions added
Show me: | Major interactions (5) v| o Generic only
erowse Index: L - 165 interactions removed
E
@ ethanol
L

© leflunomide

Guimera, Sales-Pardo, submitted (2013)



We can predict which severe drug interactions
will be removed from and added to a database
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Guimera, Sales-Pardo, submitted (2013)
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Predicting human preferences can he
reformulated as a problem of network
inference
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Our approach predicts human preferences
better than state-of-the-art collahorative
filtering algorithms

2 MovielLens set: 100,000

real 1-5 movie ratings by
~1,000 users

2 5 independent splits of
the data into 80,000
observed ratings and
20,000 validation ratings

Guimera, Llorente, Moro, Sales-Pardo (PLOS ONE 2012)



Our approach predicts human preferences
hetter than state-of-the-art collahorative
filtering algorithms

B Maive
> MovieLens set: 100,000 B Fuicsvo
real 1-5 movie ratings by . 7 Curem SEM
~1,000 users §0_44‘_ Ar
2 5 independent splits of g 042r
the data into 80,000 g oor
observed ratings and goer
20,000 validation ratings O
% 0.81
£0.78
%0.75
EU.?2

Guimera, Llorente, Moro, Sales-Pardo (PLOS ONE 2012)

Test set



Can we predict what a US Supreme Gourt
justice votes bhased on whaghe others did?
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Supreme Gourt votes are more predictable
than expected from ideal courts
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Guimera, Sales-Pardo, PLOS ONE (2011)



Supreme Gourt votes are more predictable
than expected from ideal courts
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Tracking team conflict in the real world

2 16 teams with ~6 people, working on a real project
during 9 months

2 We administer 2 surveys:
2 First: After 4 months working together
> Second: At the end of the project

2 “Would you like to work with this person again in the
future”



Gan we predict where conflict is going to arise
and where it is going to resolve?

§0=1.0

Rovira-Asenjo, Gumi, Sales-Pardo, Guimera, in press (2013)



Our approach predicts conflict appearance and
conflict resolution whereas structural halance
does not
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Rovira-Asenjo, Gumi, Sales-Pardo, Guimera, in press (2013)
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Thank you

2 1. Gumi, A. Llorente, E. Moro, N. Rovira-Asenjo, M. Sales-

Pardo

2 Funding
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2 More information:

- http://seeslab.info
- @sees_lab


http://seeslab.info/
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