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ABSTRACT. In this paper, we investigate the use of event models for automated planning. Event
models are the action defining structures used to define a semantics for dynamic epistemic logic.
Using event models, two issues in planning can be addressed: Partial observability of the en-
vironment and knowledge. In planning, partial observability gives rise to an uncertainty about
the world. For single-agent domains, this uncertainty can come from incomplete knowledge of
the starting situation and from the nondeterminism of actions. In multi-agent domains, an ad-
ditional uncertainty arises from the fact that other agents can act in the world, causing changes
that are not instigated by the agent itself. For an agent to successfully construct and execute
plans in an uncertain environment, the most widely used formalism in the literature on auto-
mated planning is “belief states”: sets of different alternatives for the current state of the world.
Epistemic logic is a significantly more expressive and theoretically better founded method for
representing knowledge and ignorance about the world. Further, epistemic logic allows for
planning according to the knowledge (and iterated knowledge) of other agents, allowing the
specification of a more complex class of planning domains, than those simply concerned with
simple facts about the world. We show how to model multi-agent planning problems using
Kripke-models for representing world states, and event models for representing actions. Our
mechanism makes use of slight modifications to these concepts, in order to model the internal
view of agents, rather than that of an external observer. We define a type of planning do-
main called epistemic planning domains, a generalisation of classical planning domains, and
show how epistemic planning can successfully deal with partial observability, nondeterminism,
knowledge and multiple agents. Finally, we show epistemic planning to be decidable in the
single-agent case, but only semi-decidable in the multi-agent case.
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1. Introduction

For most of its early life in the 60’s and 70’s, the field of automated planning was
concerned with ways in which the problem of creating long-term plans for achieving
goals could be formulated, such that solving problems of non-trivial size, would be
computationally feasible. The types of planning that arose from this early work, is
what is known today as Classical Planning. Classical Planning, as defined by (Ghallab
et al., 2004), imposes a number simplifying restrictions on the planning problem,
namely that it be finite, fully observable, deterministic and static.

While there certainly are computational benefits to the above restrictions, it is also
clear that such planning domains are much easier to construct theoretically sound plan-
ning algorithms for. In other words, the reason that Classical Planning became so dom-
inant was not only due to limited computational resources, but also a limited under-
standing of the intricacies of how, for instance, to take the actions of other agents into
account when planning, or how to naturally represent incomplete information about
the world state – the complexity of automated planning is not solely computational.

In this paper, we examine a new method of planning, with which the full observ-
ability and determinism requirement can be lifted. Getting partial observability comes
from the use of epistemic Kripke-models to represent knowledge about the world,
recognising that partial observability and knowledge (or a lack thereof) are two sides
of the same coin. Event models, taken from dynamic epistemic logic, are used in
defining the ways in which actions change epistemic models, whether they are factual
– changing propositional facts about the world – or epistemic – changing knowledge
of the facts, but not the facts themselves – or a combination thereof. In addition, event
models provide a natural way to handle nondeterminism. Epistemic planning, as we
name this new approach, will be considered in both single- and multi-agent versions.

Consider the similarities between belief states, the most widely used method in
the literature on automated planning for dealing with the incomplete knowledge that
arises from partial observability, and Kripke-models for epistemic logic. Belief states
are sets of propositions about the world, each of which represents an alternative ver-
sion of the world. In epistemic modal logic, each world also represents an alternative,
but with the addition of a notion of indistinguishability of these alternatives by par-
ticular agents. Even without going into details about models of epistemic logic, it is
immediately obvious that epistemic logic is at least as expressive as belief states when
it comes to planning, and, as the reader will learn, they are actually much more so.
With the combination of epistemic logic and event models, we gain the ability to plan
in nondeterministic, partially observable, multi-agent domains with knowledge, where
belief states only affords us the ability to deal with the first two. Further, epistemic
planning, as we call this new paradigm, internalises nondeterminism and observability
in the planning language, rather than dealing with it at an algorithmic level. We find
this to be a much more satisfying approach.

The remainder of this paper is organised as follows. Section 2 introduces the the
well known notions of epistemic models from the literature on modal logic, and shows
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how they, with rather elegant modifications, can be used to model the internal view of
an agent involved in the situation being modeled. Section 3 introduces our version
of event models, which are largely similar to those of dynamic epistemic logic, with
minor modifications to facilitate the internal view. In section 4 we show definitions of
classical planning problems, epistemic planning domains and their correspondences.
With epistemic planning defined, section 5 examines properties of different types of
actions based on event models, and establishes a nomenclature for these. Finally,
sections 6 and 7 deals with the single- and multi-agent versions of epistemic planning
domains respectively, and gives decidability results for both.

2. Epistemic logic and epistemic states

In this section we present the notions from (dynamic) epistemic logic required for
the remaining article. First of all, we define a language of epistemic logic. Let P be a
finite set of atomic propositions (propositional symbols), and A a finite set of agents.
We will most often use symbols p, q, r, s, . . . for atomic propositions and i, j, k, l, . . .
for agents. The language LK(P,A), the language of multi-agent epistemic logic on
(P,A), is generated by the following BNF:

φ ::= > | ⊥ | p | ¬φ | φ ∧ φ | Kiφ,

where p ∈ P and i ∈ A. As usual, the intended interpretation of a formula Kiφ
is "agent i knows φ". We also consider an extended language LKC(P,A) obtained
by adding formulas of the type Cφ intended to express common knowledge of φ. The
semantics of LK(P,A) and LKC(P,A) is defined as usual through Kripke structures,
here called epistemic models.

DEFINITION 1 (EPISTEMIC MODELS). — An epistemic model of the languages
LK(P,A) and LKC(P,A) is a tripleM = (W,R, V ), where

– W is the domain, a finite set of worlds (often called states in the literature, but
we will use the word “state” for a different purpose in this paper).

– R : A → 2W×W assigns an accessibility relation (or indistinguishability rela-
tion) Ri to each agent i ∈ A. All accessibility relations are equivalence relations.

– V : P → 2W assigns a set of worlds to each atomic proposition; this is the
valuation of that variable.

The domain W of an epistemic modelM = (W,R, V ) is often denoted D(M).
The requirement of the accessibility relations being equivalence relations ensures
that the modal operators Ki capture knowledge. Most of what we do in this paper
would work equally well with weaker or no conditions on the accessibility relations,
e.g.“belief” or even weaker notions, but for simplicity we stick to knowledge in this
paper.
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DEFINITION 2 (TRUTH IN AN EPISTEMIC MODEL). — Let an epistemic model
M = (W,R, V ) of LKC(P,A) be given. Let i ∈ A, w ∈W and φ, ψ ∈ LKC(P,A).

M, w |= > always
M, w |= ⊥ never
M, w |= p iff w ∈ V (p)
M, w |= ¬φ iff M, w 6|= φ
M, w |= φ ∧ ψ iff M, w |= φ andM, w |= ψ
M, w |= Kiφ iff for all v ∈W , if wRiv thenM, v |= φ
M, w |= Cφ iff for all v ∈W , if w(∪j∈ARj)

∗v thenM, v |= φ

where R∗ is the transitive closure of R.

If M, v |= φ holds for all epistemic models M = (W,R, V ) and all w ∈ W ,
the formula φ is said to be valid, denoted |= φ.

A pair (M, w) consisting of an epistemic modelM and a world w ∈ D(M) is
often called an epistemic state (or pointed epistemic model). In an epistemic state
(M, w), w denotes the actual world. Epistemic states provide a model of the world
from an external point of view, where the modeler is assumed to be an omniscient
and external observer of the epistemic situation (Aucher, 2010). Thus, the modeler
knows which is the actual world. In this paper, we also wish to be able to represent
an internal point of view, where the modeler is one of the agents represented in the
epistemic model. For this purpose, we distinguish between global (epistemic) states
representing the external view of the world and pointing out the actual state of affairs,
and local (epistemic) states representing individual agents’ view of the world. This is
related to the distinction made in e.g. (Aucher, 2010; Fagin et al., 1995).

DEFINITION 3 (LOCAL AND GLOBAL (EPISTEMIC) STATES). — A pair (M,Wd)
consisting of an epistemic model M = (W,R, V ) of LKC(P,A) and a non-empty
set of designated worlds Wd ⊆ W is called an epistemic state or simply a state (of
LKC(P,A)). If Wd is a singleton, the state is called global. If Wd is closed under
Ri, where i ∈ A, it is called a local state for agent i. In general, a local state is any
pair (M,Wd) which is the local state of some agent. Given a global state (M, {w}),
the associated local state of agent i is (M, {v | wRiv}). States (M,Wd) in which the
domain ofM is a singleton are called atomic states.

Note that in a local state (M,Wd) for agent i, it is possible to have a pair of
nodes w, v ∈ Wd with (w, v) 6∈ Ri. We will later use this to model “plan-time
indistinguishability” whereas if (w, v) ∈ Ri it models “run-time indistinguishability”.
Consider a local state s = (M,Wd) containing only w and v, and that these are plan-
time indistinguishable. This means, that while the agent is planning, it does not know
whether the actual world is w or v. However, when the plan is being executed and the
agent actually achieves the state of the world represented by s, it will know which of
w and v is the actual world. In other words, the agent knows, that while it does not
yet know the actual world, it will come to know this once the plan is being carried
out. If w and v are run-time indistinguishable, then the agent is unable to distinguish
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them, both while planning and when carrying out the plan. These concepts will be
elaborated on later, particularly in Section 6.

An alternative way to define (local) states would be to introduce an additional
accessibility relation Rd and an additional world w0 s.t. w0Rdw iff w belongs to the
set of designated worlds. In this way (local) states would become ordinary pointed
models of the form (M, w0). However, we stick to the definition above, as it makes
some of the following definitions and constructions simpler. The only disadvantage is
that one has to be a bit more careful in defining bisimulations on states. Here is the
definition.

DEFINITION 4 (BISIMULATIONS BETWEEN (EPISTEMIC) STATES). — A bisimu-
lation between states ((W,R, V ),Wd) and ((W ′, R′, V ′),W ′d) is a non-empty binary
relation B ⊆ W × W ′ which is an ordinary bisimulation between (W,R, V ) and
(W ′, R′, V ′) and which furthermore satisfies that the domain of B extends Wd and
the image of Wd under B is W ′d.

Note than when Wd and W ′d are singletons, this definition reduces to the ordinary
definition of a bisimulation between pointed models. We can then, as usual, define
the bisimulation contraction of a state as the quotient structure of the union of all
autobisimulations (see e.g. (Blackburn et al., 2001) for details).

DEFINITION 5 (TRUTH IN AN (EPISTEMIC) STATE). — Let (M,Wd) be an epis-
temic state ofLKC(P,A) and φ a formula ofLKC(P,A). Then truth of φ in (M,Wd)
is defined as follows:

(M,Wd) |= φ iff M, w |= φ for all w ∈Wd

Note that for all local states (M,Wd) of some agent i and all formulas φ, the
following holds: (M,Wd) |= Kiφ ⇔ (M,Wd) |= φ, as Wd is closed under Ri, and
since Ri is reflexive. The property reflects the fact that a local state of some agent
gives that agent’s internal view of the world. When (M,Wd) |= φ – or, equivalently,
(M,Wd) |= Kiφ – we say that agent i knows φ in (M,Wd). If (M,Wd) |= Kiφ ∨
Ki¬φ, we say that agent i knows whether φ holds.

EXAMPLE 6. — Consider the following state:

s =

w1 : p ∧ q

w3 : ¬p ∧ q

j

w2 : p ∧ ¬q

w4 : ¬p ∧ ¬q

j

i

i

The reflexive loops at each of the worlds have been left out for visual simplicity, which
will be the case in the remainder of this paper. More generally, we will always only
the show the reflexive transitive reduction of a state, that is, the one in which each
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accessibility relationRi has been replaced by the minimal relationR′i having the same
reflexive transitive closure as Ri. The symbol marks designated worlds. Here, the
designated worlds are w1 and w2. As the set of designated worlds is closed under
Ri but not Rj , the state is a local state of agent i but not agent j, thus enabling its
interpretation as i’s view of the world. That both w1 and w2 are designated is due to
agent i’s inability to recognise which of these is the actual world. In the state, agent i
knows that p holds, but doesn’t know whether q holds. i does, however, know that j
knows whether q holds. �

3. Event models and epistemic actions

From Dynamic Epistemic Logic (DEL), we take the concept event model (or up-
date model or action model), see e.g. (van Ditmarsch et al., 2008), for modeling the
changes to epistemic states, brought about by the execution of actions. The exact re-
lationship between event models and epistemic states in relation to planning will be
clarified later.

DEFINITION 7 (EVENT MODELS). — An event model forLKC(P,A) is a quadruple
E = (E,Q, pre, post), where

– E, the domain, is a finite non-empty set of events.
– Q : A → 2E×E assigns an accessibility relation (or indistinguishability rela-

tion) to each agent i ∈ A. All accessibility relations are equivalence relations.
– pre : E → LKC(P,A) assigns to each event a precondition.
– post : E → LKC(P,A) assigns to each event a postcondition. Postconditions

are conjunctions of propositional literals, that is, conjunctions of atomic propositions
and their negations (including > and ⊥).

The domain E of an event model E = (E,Q, pre, post) is denoted D(E). The
postcondition mapping is defined in a slightly non-standard way here. Usually, it is
defined as a mapping post′ : E → (P → LKC(P,A)). As shown in (van Ditmarsch
et al., 2008), one can without loss of generality restrict to mappings of this type where
post′(e)(p) is always either>,⊥ or p itself. Any such mapping gives rise to a mapping
post : E → LKC(P,A) of the type defined above by letting:

post(e) =

 ∧
post′(e)(p)=>

p

 ∧
 ∧

post′(e)(p)=⊥

¬p

 .

One of the advantages of this formulation of the postcondition mapping is that it
links more naturally with classical planning, as will be seen further below.

DEFINITION 8 (LOCAL AND GLOBAL (EPISTEMIC) ACTIONS). — A pair (E , Ed)
consisting of an event model E = (E,Q, pre, post) of LKC(P,A) and a non-empty
set of designated events Ed ⊆ E is called an epistemic action or simply an action (of
LKC(P,A)). If Ed is a singleton, the action is called global. If Ed is closed under
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Ri, where i ∈ A, it is called a local action for agent i. In general, a local action is any
pair (E , Ed) which is the local state of some agent. Given a global action (E , {e}),
the associated local action of agent i is (E , {f | eQif}. Actions (E , Ed) in which the
domain of E is a singleton are called atomic actions.

The literature sometimes refer to our global actions as pointed updates and our
non-global actions as multi-pointed updates, see e.g. (Sadzik, 2006). Beware that
even though we sometimes refer to our actions as epistemic actions, they also allow
the possibility of expressing factual (ontic) change via the postcondition mapping.

DEFINITION 9 (PRODUCT UPDATE OF A STATE WITH AN ACTION). — Given
are a state (M,Wd) and an action (E , Ed), where M = (W,R, V ) and E =
(E,Q, pre, post). The product update of the state (M,Wd) with the action (E , Ed) is
defined as the state (M,Wd)⊗ (E , Ed) = ((W ′, R′, V ′),W ′d), where

– W ′ = {(w, e) ∈W × E | M, w |= pre(e)}
– R′i = {((w, e), (v, f)) ∈W ′ ×W ′ | wRiv and eQif}
– V ′(p) = ({(w, e) ∈ W ′ | M, w |= p} − {(w, e) ∈ W ′ | post(e) |= ¬p}) ∪

{(w, e) ∈W ′ | post(e) |= p}
– W ′d = {(w, e) ∈W ′ | w ∈Wd and e ∈ Ed}

DEFINITION 10 (APPLICABILITY OF AN ACTION IN A STATE). — Given are a state
(M,Wd) and an action (E , Ed). The action (E , Ed) is said to be applicable in the
local state (M,Wd) if the following holds: For each world w ∈ Wd there is a least
one event e ∈ Ed such thatM, w |= pre(e).

The intuition behind this definition is the following. First, note that if both the
state and the action are global, that is of the form Wd = {w} and Ed = {e}, this
reduces to the condition that the precondition of the designated event e holds in the
designated world w (M, w |= pre(e)). This corresponds to the condition of “possi-
bility” introduced with a similar purpose in (Löwe et al., 2010). The point is, that the
designated world w denotes the current world and the designated event e denotes the
event that actually takes place, so the condition simply ensures that the precondition
of the event that takes place is satisfied in the current world. If not, the pointed set W ′d
of the product update (M, {w})⊗ (E , {e}) would be empty.

Now consider the case of local states and actions. When we update a local state
(M,Wd) of agent i with a local action (E , Ed) of the same agent, the local action
is assumed to present agent i’s view on what the action will bring about (it could be
an action executed by i himself, but could also be an action executed by some other
agent, or a joint action of several agents). The condition of Definition 10 then has the
following meaning: For each of the worlds that agent i considers possible, the action
specifies at least one applicable event that i considers possible.

LEMMA 11. — If a local action (E , Ed) of an agent i is applicable in a local state
(M,Wd) of the same agent, then the product update (M,Wd) ⊗ (E , Ed) is again a
local state of i.

We leave the proof as an (easy) exercise for the reader.
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EXAMPLE 12. — The following example is inspired by the Sally-Ann test used in
cognitive psychology to test whether children possess a so-called theory of mind
(Wimmer et al., 1983). There are three agents, Sally (denoted by i), Ann (denoted
by j) and an observer, the child (denoted by k). Sally has a basket and Ann has a box.
There is a marble, which can either be in the basket or in the box. We use b to denote
the proposition "the marble is in the basket". In the initial situation, the marble is in
the basket, and this is common knowledge. Thus the following local state s0 describes
all three agents’ initial view of the world:

s0 = w1 : b

Now Sally (i) leaves the room, and in the meantime Ann (j) moves the marble to the
box. The observer sees this, but Sally doesn’t. However, it is common knowledge that
when Sally leaves the room, Ann has the possibility of moving the marble to the box.
The observer can represent the action taking place by the following local action a1:

a1 =
e1 : 〈b,>〉 e2 : 〈b,¬b〉

i

Labeling events by the pair 〈φ1, φ2〉 means that the event has precondition φ1 and
postcondition φ2. In the action a1, event e1 represents the possibility that Ann doesn’t
move the marble, and event e2 represents the possibility that she does. Since Sally
(i) has left the room, she cannot distinguish these two events, which is represented
by the two events being connected by an i-relation. There is, however, no j- or k-
relation connecting the two, since both Ann and the observer can distinguish between
the marble being moved and not being moved. The designated event is e2, since the
observer sees the marble being moved. Taking the product update of s0 with a1, we
then obtain the observers updated view of the world after the action has taken place:

s0 ⊗ a1 =
(w1, e1) : b (w1, e2) : ¬b

i

We can see that the observer now knows that Sally (i) doesn’t know where the marble
is (doesn’t know whether b or ¬b holds). It has been shown in (Wimmer et al., 1983)
that children under the age of 4, and autistic children in general, will—when playing
the role of the observer—conclude that Sally knows that the marble is now in the box
(¬b). �

With epistemic actions and states defined, we now show how these are employed
in a planning context.

4. Epistemic planning domains and problems

Following (Ghallab et al., 2004), any classical planning domain can be represented
as a restricted state-transition system Σ = (S,A, γ), where
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– S is a finite or recursively enumerable set of states.
– A is a finite set of actions.
– γ : S × A ↪→ S is a computable state-transition function. The state-transition

function is partial, that is, for any (s, a) ∈ S × A, either γ(s, a) is undefined or
γ(s, a) ∈ S.

A classical planning problem is then represented as a triple (Σ, s0, Sg), where

– Σ is a restricted state-transition system.
– s0 is the initial state, a member of S.
– Sg is the set of goal states, a subset of S.

A solution to a classical planning problem (Σ, s0, Sg) is a finite sequence of actions
(a plan) a1, a2, . . . , an such that

γ(γ(. . . γ(γ(s0, a1), a2), . . . , an−1), an) ∈ Sg.

Note that finding solutions to classical planning problems is always at least semi-
decidable: given a planning problem, we can compute its state space (the space of
states reachable by a sequence of actions applied to the initial state) in a breadth-first
manner, and if one of the goal states is reachable, we will eventually find it. Next
is the definition of epistemic planning domains, which are special cases of classical
planning domains.

DEFINITION 13 (EPISTEMIC PLANNING DOMAINS). — Given are a finite set P of
atomic propositions and a finite set A of agents. An epistemic planning domain on
(P,A) is a restricted state-transition system Σ = (S,A, γ), where

– S is a finite or recursively enumerable set of epistemic states of LKC(P,A).
– A is a finite set of actions of LKC(P,A).
– γ is defined by:

γ(s, a) =

{
s⊗ a if a is applicable in s
undefined otherwise

If all states and actions are from LK(P,A) it is called an epistemic planning domain
without common knowledge. If |A| = 1 it is called a single-agent epistemic planning
domain.

DEFINITION 14 (EPISTEMIC PLANNING PROBLEMS). — An epistemic planning
problem is a triple (Σ, s0, φg), where

– Σ = (S,A, γ) is an epistemic planning domain on (P,A).
– s0, the initial state, is a member of S.
– φg is a formula in LKC(P,A) called a goal formula. The set of goal states is

Sg = {s ∈ S | s |= φg}.

If all states, actions, and formulas are from LK(P,A) it is called an epistemic plan-
ning problem without common knowledge. If |A| = 1 it is called a single-agent
epistemic planning problem.
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Epistemic planning problems are special cases of classical planning problems. A
solution to an epistemic planning is thus, according to the definition above, a sequence
of actions a1, a2, . . . , an s.t. γ(γ(. . . γ(γ(s0, a1), a2), . . . , an−1), an) ∈ Sg , that is,
s.t. s0⊗a1⊗a2⊗· · ·⊗an |= φg . As noted, finding solutions is at least semi-decidable.
A further look at the complexity of epistemic planning is found in later in the paper.
Before examining (in the next section) some of the different types of actions that can
be defined in epistemic planning problems, we briefly touch upon the relation between
epistemic planning and Dynamic Epistemic Logic (DEL).

Note that in our framework for epistemic planning, our only take away from DEL
is event models and product updates. We do not make use of the full DEL language,
that is, epistemic logic extended with action modalities. Action modalities are used
in DEL to express the logical consequences of performing actions encoded as event
models. This means that we have a logical language in which it is possible to represent
and reason about actions and their dynamics. In classical planning, on the other hand,
the underlying logical language only describes static states of affairs. The dynamics is
instead captured in a meta-language. This meta-language describes actions in terms of
how they modify state descriptions given as formulas of the object language (cf. e.g.
STRIPS). In other words, in classical planning the object language describing states is
completely separate from the meta-language describing actions. We have here taken
a similar approach, where the object language for describing states is simply standard
epistemic logic, and the meta-language for describing actions is event models.

It would of course also be possible in our framework to include action modalities
in the object language, that is, make it the full language of DEL. This would allow
us to include formulas with action modalities in pre- and post-conditions of actions as
well as in goal formulas. It would thus allow us to, for instance, express goals such as
“achieve a state in which it is (im)possible for agent j to perform an action that will
result in φ.” If we were to allow goals to include statements about actions and their
consequences, we would also like to be able to state goals such as: “achieve a state in
which it is (im)possible for agent j to perform any sequence of actions that will result
in φ.” This is not possible in standard DEL, but requires us to introduce iteration of
modalities. We leave this for future work.

5. Action types

An action (E , Ed) is called purely epistemic if for all events e in D(E), the post-
condition of e is implied by the precondition, that is, |= pre(e) → post(e). A purely
epistemic action is one that does not make any factual (ontic) changes. An important
example of such actions are public announcements, which are the purely epistemic
atomic actions. Actions that are not purely epistemic are called ontic. Along an or-
thogonal axis, we can distinguish between observable and non-observable actions. An
action (E , Ed) is called fully observable or public, if all the accessibility relations of
E are identities (that is, no two distinct events are connected). If an action is not fully
observable, it is called partially observable.
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Let there be given a partially observable action ((E,Q, pre, post), Ed) and a group
of agents G ⊆ A. If for each i ∈ G, the accessibility relation Qi is the identity, then
the action is said to be group observable by G. If, in addition, for each j ∈ A−G the
accessibility relation Qj is the universal relation, then it is said to be group observable
by G alone. An action is said to be privately observable by an agent i, if the action is
group observable by {i} alone. Note, that agents j ∈ A−G will know that something
has happened, though not precisely what.

An action ((E,Q, pre, post), Ed) is called globally deterministic if all precon-
ditions are mutually inconsistent, that is, |= pre(e) ∧ pre(f) → ⊥ for all distinct
e, f ∈ E, in other words, only one event is possible for each world. It is called a
sensing action if:

– it is purely epistemic
– it is globally deterministic
– its preconditions cover the logical space, that is, |=

∨
e∈E pre(e)↔ >.

Sensing actions are called answers in (Gerbrandy, 2007), but the word "sensing" is
better in line with the taxonomy of the automated planning literature.

EXAMPLE 15. — Consider again the Sally-Ann example (Example 12), but now
from the perspective of Sally. From her perspective, the event that takes place while
she is out of the room is represented by the following local action:

a′1 =
e1 : 〈b,>〉 e2 : 〈b,¬b〉

i

This action is group observable by {j, k} alone (Ann and the observer). The product
update of s0 with a′1 gives Sally’s view on the world after the event has taken place:

s0 ⊗ a′1 =
(w1, e1) : b (w1, e2) : ¬b

i

Sally now no longer knows whether the marble is in the basket or not, that is, s0⊗a′1 |=
¬Kib ∧ ¬Ki¬b. Sally might after this consider the action of entering the room again
and look into the basket, where the marble used to be. This is a sensing action, where
Sally will get to know whether the marble is in the basket or not. The sensing action
looks as follows, again from the viewpoint of Sally:

a′2 =
e1 : 〈b,>〉 e2 : 〈¬b,>〉

Note that both events are still designated. This is because Sally does not know the
outcome of the sensing action at the time she plans the action (see a more thorough
discussion of this in the following section). Now, updating Sally’s local state s0 ⊗ a′1
with this sensing action, we get:

s0 ⊗ a′1 ⊗ a′2 =
(w1, e1, e1) : b (w1, e2, e2) : ¬b
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Now there is no longer an i-edge between the two worlds, because it represents the
situation after Sally has been sensing which of the two holds. We now have that Sally
knows whether the marble is in the basket, that is, s0 ⊗ a′1 ⊗ a′2 |= Kib ∨Ki¬b. �

In the next section, we will look at how epistemic planning domains generalise
some well-known types of planning domains studied in automated planning.

6. Propositional planning and partial observability in single-agent domains

Following (Ghallab et al., 2004), a propositional planning domain (or set-theoretic
planning domain) on a finite set P of atomic propositions is a restricted state-transition
system Σ = (S,A, γ) satisfying:

– S = 2P .
– A is a set of pairs a = (precond(a), effects(a)), where both precond(a) and

effects(a) are finite sets of literals over P . An action a is said to be applicable in a
state if precond+(a) ⊆ s and precond−(a) ∩ s = ∅.1

– γ is defined by:

γ(s, a) =

{
(s− effects−(a)) ∪ effects+(a) if a is applicable in s
undefined otherwise

Note that propositional planning is decidable, as the set of states is finite. Every propo-
sitional planning domain Σ = (S,A, γ) is equivalent to an epistemic planning domain
Σ′ = (S′, A′, γ′) defined as follows:

– S′ is the set of atomic states of LKC(P,A) where |A| = 1.
– A′ is the set that for each a ∈ A contains an atomic action (Ea, Qa, prea, posta)

given by Ea = {e}, Qa = {(e, e)}, pre =
∧

p∈precond+(a) p ∧
∧

p∈precond−(a) ¬p
and post =

∧
p∈effects+(a) p ∧

∧
p∈effects−(a) ¬p.

– γ′ is defined as above for general epistemic planning domains.

It is easy to check that Σ and Σ′ are indeed equivalent. This shows that propositional
planning domains are a special case of epistemic planning domains, and that the propo-
sitional planning domains can be precisely characterised as those epistemic planning
domains where all states and actions are atomic, and where all actions have purely
propositional preconditions. This should come as no surprise, but is still worth noting,
as it clarifies the exact link between classical propositional planning and epistemic
planning.

Epistemic planning domains also allow for a nice treatment of partial observabil-
ity. Assume we are still in a single-agent domain, that is |A| = 1. Let i denote the
element of A. Assume we have a local action ((E,Q, pre, post), Ed) of agent i. Let

1. For any set of literals L, L+ denotes the set of atoms in L and L− denotes the set of atoms
whose negations are in L.
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e, e′ ∈ Ed. We say that e and e′ are runtime indistinguishable if eQie
′, otherwise they

are called runtime distinguishable or plan-time indistinguishable. The point is this.
Assume, for example, that the agent is facing a closed box which might either be full
(denoted by f ) or empty (denoted by ¬f ), but he doesn’t know which. Let c denote
the proposition “the box is closed". Then his local state is this:

s0 =

w1 : f ∧ c

w2 : ¬f ∧ c
i

Now assume he considers the action of opening the box to see its content. At plan-
time (when he is still computing the plan), he only knows that the effect of opening the
box will be that he either learns f or learns ¬f , but not which. So the two outcomes
are plan-time indistinguishable to him. However, at run-time when actually carrying
out the action, he will know which of the two is the case. We can model this by the
following local action:

openBox =
e1 : 〈f,¬c〉 e2 : 〈¬f,¬c〉

Updating the state above with this action we then get:

s0 ⊗ openBox =

(w1, e1) : f ∧ ¬c

(w2, e2) : ¬f ∧ ¬c

The state after the execution only differs from the state before by the substitution
of ¬c for c (opening the box) and the removal of the edge between the f -world and
the ¬f -world. This means that after the action the agent will be able to distinguish
between f and ¬f . However, as the agent at plan time still doesn’t know which it will
be, we need to keep both worlds in the set of distinguished worlds. This explains the
need of the set of distinguished worlds, Wd, and the need of a special definition of
bisimulation between states.

Constructing actions that combine runtime indistinguishable events with plan-time
indistinguishable events allows us to model partial observability: if two possible out-
comes (events) will be indistinguishable even when the action is performed at runtime
(no observation), then they should be in the same Qi equivalence class; if the two
possible outcomes will be distinguishable when the action is performed (observable),
then they should be in distinct Qi equivalence classes. And, obviously, if the exact
outcome is known already at plan-time, the action will contain only a single event rep-
resenting this outcome. Note that this approach to partial observability is consistent
with the definition of fully observable actions introduced earlier. According to this
definition, a single-agent action is fully observable if and only if its accessibility rela-
tion is the identity, that is, all pairs of events are runtime distinguishable. The articles
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(Bacchus et al., 1998; Petrick et al., 2002) argue in favour of a similar approach to
partial observability.

As it can easily be seen, in the single-agent case, each local state can—modulo
bisimulation—be uniquely described by a set of atomic actions and a description of
which of the actions are runtime distinguishable. Thus it seems fair to say that epis-
temic planning with one agent captures exactly what is involved in propositional plan-
ning in (nondeterministic) domains with partial observability.

EXAMPLE 16. — Continuing the example with the agent and the box, consider the
following action:

emptyBox =
e1 : 〈f ∧ ¬c,¬f〉 e2 : 〈¬f,>〉

This is an action for emptying the box. Note that it distinguishes between two cases:
one covering the case where the box is full and open, and another covering the case
where it’s already empty. Note that the action is only applicable when the agent knows
that either the box is open or already empty. We now get:

s0 ⊗ openBox⊗ emptyBox =

(w1, e1, e1) : ¬f ∧ ¬c

(w2, e2, e2) : ¬f ∧ ¬c

Thus a solution to the planning problem of satisfying the goal formula ¬f given the
initial state s0 would be openBox,EmptyBox. Note that the branching that usually
takes place when planning in partially observable domains like this is being inter-
nalised in the state descriptions. Note also that if we take the bisimulation contraction
of the state s0⊗openBox⊗ emptyBox, we get an atomic state. Thus if we want to plan
further, e.g. close the box again, we can now work with atomic states. �

We will now prove that single-agent epistemic planning is decidable, that is, given
any epistemic planning problem we can decide whether a plan exists or not. In the
proof we actually show something slightly stronger, since we also show how to con-
struct a plan if one exists.

THEOREM 17. — Single-agent epistemic planning is decidable.

PROOF. — Given any single-agent epistemic planning problem, we can perform a
breadth-first exploration of the state space. However, after computing each new state,
we make sure to replace it by its bisimulation contraction, which can be computed in
linear time (Dovier et al., 2001). Now it suffices to prove that when |A| = 1, there
are only finitely many distinct bisimulation minimal states of LKC(P,A) (recall that
P is always assumed to be finite). Consider first connected states of LKC(P,A), that
is, states with only one equivalence class. Since the accessibility relation is an equiva-
lence relation, there can be no two worlds satisfying the same atomic propositions in a
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bisimulation minimal state (the two worlds would be bisimilar). Thus all bisimulation
minimal connected states are substates of the following state (up to isomorphism):2

((2P , 2P × 2P , V ), 2P ),where V (p) = {w | p ∈ w}.

There can obviously only be finitely many such substates (up to isomorphism). Now
consider the case of non-connected states. Note that we can not immediately reduce
these to connected states due to the way we defined bisimulations on states. In any
case, each equivalence class in the state must again be a substate of the state defined
above. Furthermore, there can be no two bisimilar equivalence classes, by bisimulation
minimality. Thus, there can also only be finitely many bisimulation minimal non-
connected states (up to isomorphism). This is the required conclusion. �

In this section we have only been considering the single-agent case, but obviously
the multi-agent case is the most interesting, and, as we will see next, also far more
challenging.

7. Multi-agent epistemic planning

We will start this section by giving an example of a multi-agent epistemic planning
domain inspired by the well-known Byzantine Agreement problem (or coordinated
attack problem) (Fagin et al., 1995).

EXAMPLE 18. — There are three logicians, a philosopher (i), a computer scientist
(j), and a mathematician (k). They work at the same university, so usually they go
together in the same car, allowing them to discuss logic on the way. One day at work
it happens that agent i suddenly recalls that he forgot to turn off the lights of the car,
so that the battery is now flat. Let l denote the proposition “the lights are on" and let b
denote the proposition “the battery is flat". A possible local state describing agent i’s
internal view of the world immediately after having realised that the light were left on
could then be:

s0 =

w1 : l ∧ b

w2 : ¬l ∧ ¬b

w3 : ¬l ∧ b

j, k

j, k

Recall that, by convention, we only show the reflexive transitive reduction of the state,
so there is an implicit j, k-edge from w1 to w3. In this local state, it is assumed to be
common knowledge that j and k are still unaware of whether the lights are on or not.
The fact that there is no world labelled l∧¬b means that it is also common knowledge
that if the lights are on, then the battery is flat, that is, l→ b.

2. A state ((W ′, R′, V ′),W ′d) is called a substate of a state ((W,R, V ),Wd) if (W ′, R′, V ′)
is a submodel of (W,R, V ) and W ′d = Wd ∩W ′.
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Assume further, to keep the example manageable (and because leaving the lights
on happens more often than the three logicians would wish to think about), that it is
common knowledge that from now on agent i can repeatedly only choose between the
following three actions:

1) tell agent j that l:
2) go to the car and turn the lights off if they are still on;
3) tell agent k that l.

Actions 1 and 3 are both announcement of l, so they can both be expressed by the event
〈l,>〉 . Action 2 is an ontic action that can be expressed by the event 〈>,¬l〉 .

Agent k cannot distinguish 1 from 2 and agent j cannot distinguish 2 from 3. So we
obtain an event model E looking like this:

E =
e1 : 〈l,>〉 e2 : 〈>,¬l〉 e3 : 〈l,>〉

k j

The three local actions available to agent i are then (E , {e1}), (E , {e2}) and (E , {e3})
(note that agent i has full observability). The three possible actions are modelled by
the same event model, only differing in the designated set. This is often the case in
multi-agent epistemic planning domains, and it means that the branching that usually
takes place in the search for a plan is here internalised in a single epistemic action,
and the branching factor of the plan search becomes 1 (if we make sure to label worlds
with their update history to be able to keep track of the designated sets). Of course,
what you pay for this is that the epistemic models might grow exponentially in size
as you move down through the state space, but this is essentially no different from
classical planning, where the number of reachable states can grow exponentially with
the depth.

Now consider the product update of the initial state s0 with the local action a =
(E , {e1, e2, e3}), where we have chosen all three events as designated to postpone the
decision of which to pick (corresponds to nondeterministic, but observable, choice,
cf. Section 5):

s0 ⊗ a =

(w1, e1) : l ∧ b (w1, e2) : ¬l ∧ b (w1, e3) : l ∧ b
k j

(w2, e2) : ¬l ∧ ¬b
j, k

(w3, e2) : ¬l ∧ b
j, k
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It can be seen that if agent i e.g. chooses to do e1 (tell l to j), then afterward Kjb
and ¬Kkb (since these formulas hold in the world (w1, e1)). Now consider a second
update with the action a:

s⊗ a⊗ a =

(w1, e1, e1) : l ∧ b (w1, e1, e2) : ¬l ∧ b (w1, e1, e3) : l ∧ b
k j

(w1, e2, e2) : ¬l ∧ b
k

(w1, e3, e1) : l ∧ b (w1, e3, e2) : ¬l ∧ b
k

j

(w1, e3, e3) : l ∧ b
j

(w2, e2, e2) : ¬l ∧ ¬b

j, k

(w3, e2, e2) : ¬l ∧ b
j, k

If agent i first chooses e1 and then e3, the designated world (actual world) will become
(w1, e1, e3). We here haveKkKjb but notKjKkKjb. It might at first seem intuitively
puzzling that k knows that j knows the battery to be flat after i having performed only
the action sequence e1, e3 (tell l to j, tell l to k). To explain the intuition, first note that
by choice of event model, whenever agent i performs an action, all three agents will
“know” that one of e1, e2 or e3 has happened, but not necessarily which. Thus after i
having performed first e1 and then e3, we can intuitively think of agent k as being able
to perform the following line of reasoning: “Agent i’s second action was to tell me l.
Thus the lights must still be on. Therefore agent i’s first action can not have been to
turn off the lights. Since his first action wasn’t to let me know about the lights either,
his first action must have been to let agent j know that the lights are on. From this,
j must have been able to conclude that the battery is flat." This reasoning leads k to
conclude that j knows b (no sequence of actions can change the truth value of b). This
provides the informal intuition behind why KkKjb holds at (w1, e1, e3).

It can easily be shown that in general in the world

(w1,

2(n+1)︷ ︸︸ ︷
e1, e3, e1, e3, . . . , e1, e3)

of the state s0⊗ a2(n+1) we have (KkKj)
n+1b but not Kj(KkKj)

n+1b. It’s a bit like
an inverse Muddy Children puzzle: instead of iteratively decreasing the depth of the
agents’ uncertainty, it is iteratively increased. This is similar to the situation obtained
in the Byzantine Agreement problem. From this we can infer that there is no upper
bound on the size of the models in the chain s0 ⊗ a, s0 ⊗ a2, s0 ⊗ a3, . . . , not even if
we take the bisimulation contractions of the states. Similar to Byzantine Agreement,
it is also easy to infer that no matter which sequence of choices agent i makes, it will
never become common knowledge that the battery is flat (there will always be exactly
one world in which ¬l ∧ ¬b holds, and this world is accessible from all other worlds
by some path). �
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The example we just gave made use of ontic actions. However, in (Sadzik, 2006)
it is shown that even allowing only purely epistemic actions with propositional pre-
conditions, we can still get iterated updates of arbitrary size (using a variant of the
coordinated attack problem). From the fact that in multi-agent epistemic planning
problems there is in general no upper bound on the size of the reachable epistemic
states, one might fear that planning is not even decidable in the general case. Indeed,
this is exactly the case, as we will now show.

THEOREM 19. — Multi-agent epistemic planning is undecidable (even without com-
mon knowledge).

PROOF. — Undecidability here means that there is no decision procedure that for
arbitrary multi-agent epistemic planning problems can determine whether a solution
exists or not. We give the proof by showing that for any Turing machine M we can
construct an epistemic planning problem PM that has a solution if and only if M
halts. As the halting problem is undecidable, so is epistemic planning. The underlying
idea is this. Given any Turing machine M , we can encode its configurations (state,
tape content and head position) as epistemic models—models containing exactly one
world per non-blank tape cell. Furthermore, we can encode the possible transitions of
M as epistemic actions. In this way, we achieve that any run ofM can be simulated by
a sequence of epistemic actions applied to the epistemic state representing the initial
configuration of M . Suppose M has only a single halting state which we represent in
the epistemic language by a special propositional symbol qf . We can then conclude
that M halts if and only if there is a sequence of epistemic actions leading from the
(representation of the) initial epistemic state to an epistemic state in which qf holds
in one of the worlds. In this way, the Turing machine halts if and only if there is a
solution to the planning problem in which the goal is that qf should hold in one of
the worlds. This gives us the required planning problem PM that has a solution if and
only if M halts.

We now proceed with the details. Let there be given a deterministic Turing ma-
chine M with two-way infinite tape, and states q0, q1, . . . , qf , where q0 is the initial
state and qf is the (only) halting state. The set of tape symbols is some finite set Γ in-
cluding a blank symbol, b. We will now show how to construct an epistemic planning
problem in which the Turing machine’s configurations (state, tape content and head
position) are encoded as epistemic states, and the transitions of the Turing machine
are encoded as epistemic actions. First we will make use of common knowledge, but
later we will show how the role of common knowledge can be replaced by the in-
troduction of an additional agent. We build the planning problem on the language
LKC({q0, . . . , qf} ∪ Γ ∪ {ri, rj}, {i, j}).

Assume we are given a configuration of M with instantaneous description (ID)

x1 · · ·xn−2xn−1qsxnxn+1 · · ·xm,
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where qs ∈ {q0, . . . , qf} and all xi ∈ Γ (see (Hopcroft et al., 2006) for details on
Turing machines and instantaneous descriptions). Then this instantaneous description
will be encoded as either of the following local states:

x1 xn−2 xn−1
i

qs ∧ xn ∧ ri
j

xn+1

i
xn+2

j
xm

(1)

x1 xn−2 xn−1
j

qs ∧ xn ∧ rj
i

xn+1

j
xn+2

i
xm

(2)

We call these local states the states representing the ID. There is exactly one world
to represent each of the non-blank tape cells of the Turing machine, and this world
is labelled by the symbol representing the content of the cell. In addition, the world
representing the current tape cell is labelled by two additional atomic propositions:
the name of the current state (qs) and either the proposition ri or the proposition rj .
The purpose of the propositions ri and rj will be explained in a moment. First note
the alternation of i- and j-edges in these models. This is to ensure that the local
states represent linear structures where each world has exactly one left and one right
neighbour. If instead all edges were i-edges, all pairs of worlds would be each others
neighbours, as all accessibility relations are assumed to be equivalence relations. Thus,
if all edges were i-edges, we would be representing a set rather than a linear structure.
The linear structure is required, since this is the only way we can encode the tape of
a Turing machine. This also indicates why the current proof wouldn’t work in the
single-agent case, at least as long as we insist on using only equivalence classes, that
is, insist on representing knowledge.

Now back to the propositions ri and rj . The purpose of ri and rj is to mark
which indistinguishability relation (either i or j) will lead to the tape cell to the right
of the current one (the “next” tape cell). If ri holds at the world representing the
cell currently scanned, it means that the tape cell to the right is represented by the
neighbouring world reached by following the i-edge—and vice versa for rj . Since
in 1, ri holds at the world representing the current tape cell, it means that the world
representing the tape cell to the right is the one labelled xn+1. If we replaced ri by rj
in 1, it would correspond to changing the direction of the tape, and the right neighbour
would instead become xn−1.

The initial configuration of M (empty tape) will be represented by the singleton
local state

s0 = q0 ∧ b ∧ ri

This will be the initial state of our planning problem PM . In the planning problem, we
put two (symmetric) local actions for each of the transitions of the Turing machine.
We will only show the local actions for transitions of the form

δ(qs, xn) = (qt, y, R),where xn 6= y, (3)
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as transitions of the form δ(qs, xn) = (qt, y, L) and transitions with xn = y can
be handled similarly. There are two local actions corresponding to (3), where one is
obtained from the other by interchanging i with j everywhere. We thus only show one
of the two:

e1 : 〈¬qs ∧Ki¬qs ∧ ¬rj ,>〉

e2 : 〈qs ∧ xn ∧ ri ∧ ¬rj ,¬qs ∧ ¬xn ∧ ¬ri ∧ y〉

e3 : 〈¬qs ∧ ¬Ki¬qs ∧ ¬rj , qt ∧ rj〉

e4 : 〈qs ∧ xn ∧ ri ∧Kiqs ∧ ¬rj ,¬qs ∧ ¬xn ∧ ¬ri ∧ qt ∧ b ∧ rj〉

i, j

i

i (4)

We call these local actions the actions representing the transitions of the Turing ma-
chine. Suppose M can perform a move from an instantaneous description ID1 to an
instantaneous description ID2, and let a be the local action representing the transition
used in the move. The point is now that if s is a local state representing ID1, then the
product update s ⊗ a will be representing ID2. Before providing the details, we will
try to explain the intuition behind the construction of the local actions, and how they
can simulate the moves of the Turing machine.

Let a denote an action of the form shown above, representing a transition of type
(3). Let s denote a local state representing an instantaneous description of M , that is,
s is on the form (1) or (2). Suppose a is applicable in the local state s. Then, by the
applicability condition (Definition 10), s can only be of the form (1), as none of the
events of a have preconditions that satisfy rj . Now consider what happens when a is
applied to s, that is, when we form the product update s⊗ a. We denote the world of
s in which qs holds by wc. The world wc represents the current tape cell of the Turing
machine (before the update). We now consider how the events e1, . . . , e4 of a affect
the product update.

Event e1 has its precondition satisfied in all worlds of s except wc (because of the
conjunct ¬qs) and its right neighbour (because of the conjunct Ki¬qs). Since e1 has
an empty postcondition, this implies that in s⊗a all worlds of s exceptwc and its right
neighbour will be kept unchanged (paired with e1). In other words, the tape excluding
the current cell and its right neighbour remain the same after the update, as it should.

Event e2 has its precondition satisfied in wc and this world only. Its postcondition
deletes qs, x, and ri, and instead adds y. Thus, event e2 makes sure to change the
symbol at the current tape cell from x to y, and remove the head from this cell.

Event e3 has its precondition satisfied in the right neighbour of wc, if such a right
neighbour exists in s. In case it exists, qt and rj will be added as conjuncts to it. Thus
e3 makes sure to place the head at the right neighbour of the previous current cell, and
to update the state from qs to qt.

In case the right neighbour ofwc doesn’t exist, the action amakes sure to construct
such a right neighbour. This is done via the event e4. In casewc has no right neighbour,
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the precondition of e4 will be satisified in wc. This implies that the product update
s ⊗ a will contain both a world (wc, e2) and a world (wc, e4). The first of these is
the “updated version” of wc, whereas (wc, e4) is a “new” world. This new world
is accessible from (wc, e2) by an i-edge. It is the new right neighbour of wc. The
postcondition of e4 makes sure that qt ∧ b ∧ rj will hold in this new right neighbour.
Thus e4 makes sure to construct a new right neighbour cell (if needed), make this the
new current cell, put a blank symbol into it, and update the state.

Note that given any state s, either it will contain a world satisfying pre(e3) or a
world satisfying pre(e4), but not both. There will be a world satisfying pre(e3) if the
head stays within the previously used part of the tape when the transition represented
by a is executed, otherwise there will be a world satisfying pre(e4).

We can now finalise the proof. The set of local actions of the planning problem
PM is taken to be the set of local actions representing the transitions of M . Now
suppose there is a move of the Turing machine from an instantaneous description
ID1 to an instantaneous description ID2. We then need to prove that if s1 is a local
state representing ID1, then for all actions a applicable in s1, the local state s1 ⊗ a
represents ID2. We need to split the proof into cases, distinguishing the cases where
the tape head moves into the previously unused part of the tape, and those where it
doesn’t. We will only cover one of the cases here, as they are largely similar. Let
us consider the most tricky case, where the tape gets extended. So assume ID1 is an
instantaneous description of the following form:

ID1 = x1 · · ·xn−2xn−1qsxn,

and the move performed is a result of the following transition:

δ(qs, xn) = (qt, y, R),where xn 6= y. (5)

The move will then result in the following instantaneous description:

ID2 = x1 · · ·xn−2xn−1yqtb.

There are two local states that can represent ID1, but they are symmetric, so we
can without loss of generality assume that the local state s1 representing ID1 is the
following:

s1 =
w1 : x1 wn−2 : xn−2 wn−1 : xn−1

i
wn : xn ∧ ri ∧ qs
j

Now, the only actions applicable in this state are actions containing at least one event
with its preconditions being satisfied by xn ∧ ri ∧ qs. This implies that the only action
applicable is the one representing the transition (5) (recall that the Turing machine is
deterministic). This is the action shown in (4). Taking the product update of s1 with
the action (4), we get the following local state s2:

s2 =

(w1, e1) : x1 (wn−2, e1) : xn−2

(wn−1, e1) : xn−1
i

(wn, e2) : y
j

(wn, e4) : qt ∧ rj ∧ b
i
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The reader is encouraged to check that this is indeed the correct product update of
s1 with the action (4). Action s2 is immediately seen to be a representation of the
instantaneous description ID2, as required.

It now follows that if a1, a2, . . . is any sequence of actions in PM where each ai
is applicable in s0⊗ a1⊗ · · · ⊗ ai−1, then the sequence s0, s0⊗ a1, s0⊗ a1⊗ a2, . . .
will be a representation of the sequence of the moves of the Turing machine M . Now
choose the goal formula of PM to be ¬C¬qf . This formula expresses that there is
world accessible by some path at which qf holds. It holds exactly in those epistemic
states representing halting states of the Turing machine. Thus we now have that the
planning problem has a solution if and only if M halts. This is the required result.

The proof just given makes use of common knowledge. We can do away with
common knowledge by introducing a third agent, k, instead. The idea is quite simple:
whenever there is an i- or j-edge in any of the states or actions introduced above,
we also add a k-edge. Since all accessibility relations are equivalence relations, this
means that if a world of a state is accessible by any path, then it is accessible by a
single k-edge. Thus we can replace the goal formula ¬C¬qf by the formula ¬Kk¬qf .
The rest of the proof remains unchanged. Whether epistemic planning with only two
agents and no common knowledge is decidable or not is an open problem. �

There seem to be no direct equivalents of this result in the existing literature, al-
though there are obviously some connections to the non-stabilisation results of iterated
updates over various types of purely epistemic actions in (Sadzik, 2006), and to the
undecidability of the logic of iterated public announcements in (Miller et al., 2005).
The result above is of course not encouraging for epistemic planning in the general
case, however, semi-decidability can sometimes be sufficient for a planner, as a plan-
ner embedded in an agent architecture (e.g. a BDI agent) would usually in any case
rely on being timed out if a plan is not found within a reasonable time. From a positive
perspective, this result shows that we have been introducing a very expressive plan-
ning framework, more expressive than previous frameworks suggested for planning
based on epistemic logic (van der Hoek et al., 2002; Petrick et al., 2002) (since these
other frameworks are known to be decidable, and ours is only semi-decidable in the
most general case). In any case, an interesting problem of course becomes to find frag-
ments of epistemic planning that are decidable. We already saw one such fragment,
the single-agent case. Another decidable fragment is the one that only allows globally
deterministic actions (cf. Section 5). This covers e.g. public announcements, atomic
ontic actions, and sensing actions. That this fragment is decidable follows trivially
from the fact that updates with actions having mutually inconsistent preconditions can
never increase the model size. In (Löwe et al., 2010), it is shown that interesting
planning problems can be expressed even within such restrictive fragments. A more
thorough investigation of which fragments of multi-agent epistemic planning are de-
cidable is left for future work.
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8. Related and future work

Work on using Dynamic Epistemic Logic in planning was recently independently
initiated by Löwe, Pacuit and Witzel (Löwe et al., 2010). Their work however differs
from ours in a number of ways. They only consider purely epistemic actions (no
postconditions), but on the other hand they allow arbitrary accessibility relations in
models. Both accounts can surely be extended to cover both ontic actions and arbitrary
accessibility relations with a bit of extra work. In (Löwe et al., 2010), a restricted
planning fragment is shown to be decidable by giving an upper bound on model size,
but general algorithms and decidability issues are not covered. Our work also differs in
allowing the internal perspective on planning, where the epistemic models represent
the planning agent’s internal view of the world. We showed that this gives a very
nice and natural way to deal with partial observability in planning (even relevant in
the single-agent case). The closest relative to our idea of epistemic models from an
internal perspective appears to be the recent work by Aucher (Aucher, 2010), however,
his approach is technically slightly different.

Another line of research considers planning as model checking. The idea is here
to represent the state space of the planning problem as a model in a suitable tempo-
ral logic, and then recast the planning problem as a model checking problem (model
checking of a formula expressing reachability of the goal state). The article (van der
Hoek et al., 2002) considers epistemic planning from this perspective. It however
assumes that the state space is already given, and that it is finite. Thus, it doesn’t con-
sider the problem of how to express actions in a convenient formalism, and it doesn’t
allow the expressiveness we have in our formalism. In this approach, the treatment of
epistemic and ontic change is similar—either way it is just a next step in a run, and
how the valuation between different point changes is not essential to define or describe
the transition (van Ditmarsch et al., 2008). Note also that the word "tractable" in the
article (van der Hoek et al., 2002) refers to the fact that the model checking algorithm
is polynomial in the size of the model, that is, in the size of the entire state space.
Usually the complexity of planning problems is rather stated as functions of the size
of the descriptions of the available actions, and from this perspective even classical
propositional planning is PSPACE-complete.

Future work includes generalising the framework to arbitrary accessibility rela-
tions, in particular for representing belief rather than knowledge. However, for this
to be realistic in planning scenarios, one should also take belief revision into account,
e.g. along the lines of (Baltag et al., 2007). We would also like to carry through a more
thorough investigation of the decidable fragments of epistemic planning. Finally, and
probably most importantly, we wish to develop languages suitable for describing lo-
cal actions in a form which is more manageable and closer to the traditional planning
languages like STRIPS. Such languages should not necessarily possess the full ex-
pressivity of local actions, but should be tailored for expressing a non-trivial subset
relevant for actual planning problems in multi-agent domains (e.g. with different pre-
defined action types for dealing with sensing, announcements, and ontic change, and
parameters for specifying the observers of the action).
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