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AnB is a formal specification language based on the popular Alice-and-Bob-style notation of
security protocols. It is connected to the OFMC tool by means of a translator to OFMC’s native
language IF, the AVISPA Intermediate Format [1]. The expressiveness of IF is larger than that of
AnB, but AnB is much easier to use and nicer to read.

A formal definition of AnB can be found in [5]. This tutorial serves as a gentle introduction
to the concepts and how to use the language and also, to some extent, OFMC. To keep matters
simple, we use a lot of trivial examples of protocols that can be found in the Clark-Jacob library.

Highlighting Since this tutorial does not assume that readers are familiar with formal verifi-
cation, it might be boring to read for people who are. Therefore we note within the text with
paragraph-headings where a particular concept is introduced or discussed in detail so it can be
looked up quickly.

Moreover, a few central points are summarized in such a box.

1 Building a Key-Establishment Protocol

We follow here an example of protocol development found at the beginning of the book Protocols
for Authentication and Key-Establishment by Colin Boyd and Anish Mathuria [2]. The point in
that book is to show the stepwise development of a protocol and motivate each step as an answer
to a security problem. Here, we use it to illustrate AnB and the output of OFMC instead.

1.1 First Attempt

We want to write a simple key-exchange protocol that establishes a shared symmetric key between
two parties Alice and Bob that do not have a security relationship so far. This newly established
key shall then allow them to communicate securely by encrypting messages with that key. Since we
cannot establish such a secure connection out of thin air, we need some form of existing relationship
to begin with, and here it will be a trusted third party s (for “server”). If we entirely omit all the
cryptography for now, a very simple (and trivially insecure) protocol is the following:

Protocol: KeyEx # First Attempt

Types: Agent A,B,s;

Symmetric_key KAB

Knowledge:

A: A,B,s;

B: A,B,s;

s: A,B,s
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Actions:

A->s: A,B

# s creates key KAB

s->A: KAB

A->B: A,KAB

Goals:

A authenticates s on KAB ,B

B authenticates s on KAB ,A

KAB secret between A,B,s

Actions and the Communication Medium Let us begin with the Actions section. Here we
see the exchange of three messages: first, A tells the server s that she1 would like to talk to B.
The server creates a fresh symmetric key KAB and sends it back to her in the second step. In
the third step she forwards the key to B and they can start communicating.

In fact, the communication here is asynchronous. The notation A->B: M indicates two things:

• that A sends a message M on an insecure communication medium;

• that B waits for receiving a message of the given format and then (and only then) continues
with his next step.

The medium could be the Internet or a wireless connection: it is possible that an unauthorized
third party listens (and records) to the transmitted messages, inserts messages under a fake sender
ID. Moreover there is no guarantee that a sent message will arrive at the intended destination.

AnB also requires that in a sequence of messages, the receiver of one message is the sender of
the next message.

Variables and Constants A, B and KAB—and all identifiers that begin with upper-case
letters—are variables. That means that they are placeholders for a concrete value (the real name
of an agent or a concrete symmetric key in this case) that will be filled in when the protocol is
actually executed. Identifiers that start with a lower-case like s are constants.

Roles Variables and constants that are declared to be of type Agent are called roles. The use of
variables and constants is crucial here: we will allow that variables of type agent can be instantiated
arbitrarily with agent names. This includes the special agent i — the intruder. We will discuss
below in more detail what the intruder can and cannot do, but for now it is worth pointing out
that most roles should be specified like this. It represents that anybody can participate in the
respective role of the protocol under their real name, including a dishonest person. It turns out
that many protocols have surprising attacks when allowing dishonest participants. In contrast, we
sometimes want a trusted third party, like s in this case, that needs to be honest for the protocol to
work. 2 In a key-exchange protocol, a dishonest server can often trivially break the security goals.
When we want such an honest participant we specify a constant like s that cannot be instantiated
by the intruder.

1Throughout this tutorial, we assume that A (Alice) is female, B (Bob) and i (the intruder) are male, and all
others (servers etc.) are neutrum.

2The word “trust” has often lead to confusions, since the statement “A trusts B” has nothing to do with the
question whether B is actually trustworthy. We actually do not work with trust-statements, but rather only with
honest/dishonest. Terms like “trusted third party” are so common however, that we use them here as well in the
sense of “honest party”.
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Knowledge For each role of the protocol, one needs to specify an initial knowledge. This
knowledge is essential to the meaning of the AnB specification as we will discuss at several points
throughout this tutorial. In particular, we will check for every role and every message that they
have to send, whether this message can be constructed by that role from the initial knowledge
plus all messages it has received before. If this is not the case, then the specification has an error:
it is unexecutable and will be rejected by the translator to IF.

Variables in Knowledge MUST be of Type Agent The initial knowledge will usually
include the knowledge of all roles of the protocol.

It is crucial that no term in the initial knowledge contains a variable any other than of
type agent. For instance in our specification it would be an error to declare the variable
KAB as part of the knowledge.

In fact, as examples below demonstrate, the modeling of long-term keys must be done using
functions instead.3

Fresh Values All variables that are not part of the initial knowledge are freshly generated by
the agent who first uses them, in our example, this is s. Fresh means in reality: an unpredictable
random number; in the abstract formal world it means: when executing this step, the variable is
instantiated with a new constant (and the intruder and all other agents initially do not know it
this constant).

Secrecy Goals The most simple goal is secrecy: we denote a term and say between whom it
shall be secret. In this case, the secret KAB and it is shared between all participants of the
protocol. The specification of a group of people that share the secret is necessary: we allow the
intruder to play role A or role B and in this case, he is of course clear to know the shared key of
that particular protocol run. It is however an attack, if the intruder finds out a shared key of a
protocol run between two honest agents playing in roles A and B. (And due to lack of encryption,
this secrecy goal is trivially violated in the given protocol.)

We postpone the discussion of the more involved authentication goals to a later example.

Classic Mode It is suggested run every example first in OFMC’s classic mode, this may look
like this: ofmc KeyEx1.AnB -classic . The classic mode means that OFMC performs a classic
model-checking analysis for a bounded number of sessions (protocol runs). We begin with 1
session, if no attacks are found, we continue with 2 sessions and so forth, until either an attack is
found or the user stops OFMC. This classic mode is both good for quickly finding attacks and for
gaining confidence in a protocol (if no attacks are found within hours of search), but we can prove
the security only for a fixed number of sessions in this way.

Interpreting Attacks For our first protocol we get the following output in the AVISPA Output
Format:

SUMMARY

UNSAFE

GOAL

secrets

...

ATTACK TRACE

i -> (s,1): x29.x28

(s,1) -> i: KAB(1)

i -> (i,17): KAB(1)

3At the state of this writing, the AnB2IF translator accepts variables in the knowledge that are not of type
Agent, but they do behave like (public) values of type Agent.
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i -> (i,17): KAB(1)

This indicates, unsurprisingly, that we have an attack against the secrecy goals. In the first step,
the intruder sends a message to the server s. Here (s, 1) indicates that it is the server in session 1—
if we run several sessions of the protocol in parallel, which messages belong to the same instance
of some agent. The message that the intruder sends is x29.x28. This is a pair of variables.
Unfortunately, the Output format dictates here that a dot is used for pairing (concatenating)
messages while most other formats (including AnB) use a comma for this. The variables x29 and
x28 indicate that it is completely irrelevant for the attack what the intruder chooses here. In this
case, the server expects to receive two agent names, but just any will do for this attack. To be
entirely precise, there are two choices of agent names that would not work: x29 = i or x28 = i; in
these cases the trace it would not be a violation of secrecy. The exclusion of particular values is
currently not shown by OFMC.

Note that the intruder started the protocol with the server without the agent x29 having done
anything. This is because the network is asynchronous and no party can be sure that the other
parties are “on the same page” (that is ultimately the goal to achieve by a protocol).

The server now responds to the request by creating a new key and sending it. Fresh values
in an attack will always be the name in AnB followed by a unique number (which is in fact the
session number). Usually attacks will have pairs of steps where the intruder sends a message to an
honest agent and receives an answer from that agent. This reflects an efficient view of the protocol
analysis problem: the intruder is the communication medium and all communication that takes
place is the intruder using the honest agents as kind of oracles.

With this answer of the server, the attack is already completed: the intruder now knows the
shared key of two agents x29 and x28 that he can freely choose—violating secrecy. The last two
lines of the attack are just a technicality of OFMC: all steps of the form (i, 17) are just result of
an internal check that the intruder could generate a secret that he was supposed not to.

1.2 Second Attempt

We clearly need to protect the transmission of the secret shared key KAB and for that, we would
like to assume that every agent (including the intruder) initially has a shared key with the server.
We may for instance imagine that s provides wireless access, but everyone who wants to use it
has to first register. Let us say this registration happens offline (possibly checking a photo ID)
and involves installing a unique username and password. The username would be in our abstract
model the variable of type agent, and the password is a shared key with s.4

Modeling Long-Term Keys The important thing about the shared key is that it is not freshly
generated in a session but it is perpetual information. For simplicity, let us we ignore the possibility
of user revocation or updating of shared keys in regular intervals, and thus consider a model where
the shared key between a user and the server never changes. Then, we could model such a shared
key as a function of an agent, e.g. sk(A, s) would be the shared key of A and s. As such a term
contains only variables of type Agent, we are allowed to include them in the initial knowledge of
a role.

The second attempt to our protocol is now as follows, where AnB uses the notation {|M|}K

for the symmetric encryption of message M with key K:

Protocol: KeyEx # second attempt

Types: Agent A,B,s;

Symmetric_key KAB;

Function sk

4In reality, one would not directly use a textual password, but use a cryptographic hash function to generate a
key from the password for instance.
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Knowledge:

A: A,B,s,sk(A,s);

B: A,B,s,sk(B,s);

s: A,B,s,sk(A,s),sk(B,s)

Actions:

A->s: A,B

s->A: {| KAB |}sk(A,s), {| KAB |}sk(B,s)

A->B: A,{| KAB |}sk(B,s)

and the goals are the same as before.

Use of Functions Note that we have declared sk as a “constant” of type Function. Here,
OFMC currently does not do any type checking: one may apply such a function to any terms.
Of course it is strongly recommended to keep the usage of such a function symbol consistent, e.g.
in this case using it always with two arguments of type agent and using the result as a key for
symmetric encryption.

Obviously every agent initially knows his or her shared key with the server. For the server we
specify only the knowledge of the shared keys with the other two roles (as obviously shared keys
with other principals is irrelevant for a session).

Executability In this new version of the protocol, the server does not transmit the key KAB
unprotected as in the first version. Instead, it creates two encryptions, one using the shared key
with A and another one using the shared key with B. These two encrypted messages are sent to
A. According to her knowledge, A can only decrypt the first of the two messages it receives, while
the second one cannot be analyzed by A. A is supposed to forward this second package to B who
has the necessary shared key to decrypt that message. So at least in a run where the intruder does
not interfere, all agents have enough knowledge to produce all messages they have to and end up
with a copy of the shared key KAB.

A central observation here is that A cannot check the second part of the message from the
server. Especially, if we think of an intruder producing such a message (possibly recycling older
messages he has seen on the communication medium), only the first part needs to have correct
format, while the second part can be anything. A will then send that anything on to B. If we
look at A in isolation, we may describe it as a program of the form

send(A,B); receive({|KAB|}sk(A,s),X); send(X);

The Model of Symmetric Encryption Many cryptographers may associate with the term
“symmetric encryption” only the pure encryption, without any means of protecting integrity such
as a message authentication code (MAC). Such a pure encryption would be vulnerable to the
intruder manipulating bits of the ciphertext and thereby changing the plaintext obtained by de-
cryption without and the recipient cannot detect this manipulation. We believe that there are
only very few cases in protocol verification when we actually need the pure symmetric encryp-
tion, but almost always we also need the integrity. We therefore model in AnB with {|.|}. a
primitive that includes the integrity. For our concrete example that means, when A receives the
two encrypted messages from the server, she will decrypt the first one to which she has the key;
the integrity mechanism of the primitive allows her to check (which overwhelming probability)
that the received message is indeed correctly encrypted with the right symmetric key sk(A, s) and
not some message manipulated by the intruder. Put another way, if the intruder sends any other
message that is not of the form {|.|}sk(A,s), then A will detect that and refuse it. We actually
do not even model that the intruder tries sending ill-formed messages to honest agents that they
will refuse.
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The general semantics of AnB and the algebraic theories of OFMC allow to model primitives
such as pure encryption without integrity check if they are really needed. One easy way to do
it is to use the algebraic theory specification of OFMC and declare for symmetric encryption the
cancellation property

scrypt(K,scrypt(K,M))=M

Here, scrypt is the name of the symmetric encryption primitive in the IF language.
We later look at how to model a MAC alone.

An Attack Against Weak Authentication Goals Running this second example with OFMC
in classic mode, we get the following attack:

SUMMARY

UNSAFE

GOAL

weak_auth

...

ATTACK TRACE

i -> (s,1): x29.x401

(s,1) -> i: {|KAB(1)|}_(sk(x29.s)).{|KAB(1)|}_(sk(x401.s))

i -> (x401,1): x27.{|KAB(1)|}_(sk(x401.s))

% Reached State:

%

% request(x401,s,purpose,KAB(1).x27,1)

% witness(s,x29,purpose,KAB(1).x401)

% witness(s,x401,purpose,KAB(1).x29)

% ...

The attack is a violation against weak authentication (which corresponds to Lowe’s non-injective
agreement [4]). The weak authentication is part of the standard (strong) authentication goal
(which corresponds to Lowe’s injective agreement [4]) that we have specified. We have also noted
three facts from the comments that OFMC gives out as part of the Reached State comment. These
facts are helpful in understanding an authentication attack as they reflect what the honest agents
think has happened from their point of view and that we review in detail now.

The attack again begins with the intruder sending two agent names to the server s and again
the concrete values do not matter for the attack so it is just two variables, here x29 and x401.
The server thus generates a fresh key KAB(1) and encrypts it with the shared keys sk(x29, s)
and sk(x401, s), respectively. At this point the two witness facts are created that we see in the
reached state. They correspond to the two authentication goals we have specified:

A authenticates s on KAB ,B

B authenticates s on KAB ,A

First goal expresses that when A finishes the protocol run, she can be sure that she agrees with
the server on the values of the variables KAB and B and (implicitly) also on her name A. The
witness fact therefore reflects what the server s really thinks these values are: namely it thinks
that its own name is s, it is communicating with x29 (that is whatever the intruder chooses in
the concrete attack to be A). For the pair KAB,B, the concrete value that the server works
with is KAB(1), x401, i.e. the fresh nonce it has just created and whatever agent name x401 the
intruder chooses to be B. The entry purpose is a dummy entry because this field is not used by
AnB currently. The second witness fact analogously reflects the servers belief with respect to the
second authentication goal.

In the last step of the attack, the intruder forms a message that has the correct format of the
last step of the protocol and sends it to agent x401, who is thus playing in role B. In this message
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has chosen yet another agent name x27 (again the concrete value does not matter for the attack)
to be the agent apparently in role A. The second part of that message is a valid encryption for
x401 and so x401 believes that he has just received a shared key with the communication with
x27, authorized by the server. This is reflected by the request fact. (The last argument of the
request fact, 1, is only relevant for strong authentication and will be explained below.)

The situation of witness and request facts now shows that the intruder has caused a misun-
derstanding. s has meant the key for communication between x29 and x401, while x401 thinks
the key is for communication between x27 and x401. So it is in this case the second goal being
violated.

More generally, the violation of weak authentication is given if there is a request fact
without a matching witness fact. For a goal of the form B authenticates A on M, the
witness fact reflects the point of view of A while the request fact reflects the point of view
of B. This goal should thus be used if we the protocol is supposed ensure the authentic
communication of a message M from A to B. It then counts as an attack, if B finishes
the protocol believing that A has sent message M for him; this includes the case that A
has meant the message for somebody else (as in the example attack) or it is somebody
else than A sending this message, even somebody honest. Additionally, in contrast to
weak authentication, the standard strong authentication includes also a freshness aspect
that we discuss later.

The problem of the second-attempt protocol could be described as follows. Whenever the server
produces an encryption {|KAB|}sk(A,s) then this indicates to A that the key has been produced
by the server s for use between A and some other agent that is not mentioned in that message.
Similarly, the message {|KAB|}sk(B,s) only indicates to B that KAB is a shared key for B and
somebody else. Since everything outside the encryption can freely be manipulated by the intruder,
he can easily confuse the agents and break authentication goals. One may wonder why such a
confusion is such a big deal since the benefit intruder apparently does not benefit much from it.
For that, consider that the established key may later be used for the transmission of sensitive
information like banking transactions or medical data; it is very undesirable that such information
are directed to a wrong party because of an authentication problem in the key-exchange.

1.3 Third Attempt

From the previous example we have learned that the encrypted messages by the server should
explicitly mention the other agent that the key is meant for, i.e. in the encryption for A the name
of B should be mentioned and vice-versa. The exchange then looks as follows:

A->s: A,B

s->A: {| KAB ,B |}sk(A,s), {| KAB ,A |}sk(B,s)

A->B: {| KAB ,A |}sk(B,s)

This time we get an attack that is not described in the book by Colin Boyd and Anish Math-
uria [2] whose development we were following so far:

GOAL:

weak_auth

...

ATTACK TRACE:

i -> (s,1): x401,x27

(s,1) -> i: {|KAB(1),x27|}_(sk(x401,s)),{|KAB(1),x401|}_(sk(x27,s))

i -> (x401,1): {|KAB(1),x27|}_(sk(x401,s))

% Reached State:

%
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% request(x401,s,pBsKABA,KAB(1),x27,1)

...

% witness(s,x401,pAsKABB,KAB(1),x27)

This is indeed a very subtle attack, and one may even argue that this should not be considered
an attack. In fact, OFMC has—in the present version—a more sensitive notion of authentication.
In contrast to other definitions of authentication, we do not only require that the parties agree on
some data, e.g. here the agent x401 and the server s on the key KAB(1); rather, we also require
that they agree on the which roles they play. In fact, the agent x401 believes to play role B here,
while the server thinks that x401 plays role A. This may be considered less important, mainly
because the intruder did not learn the key, and nobody got confused about the names of the
partners they are talking with; however, it can in general lead to problems when there is confusion
in which role the different participants are acting.

We therefore slightly divert from the development in [2] and change the message format to
take this into account. In order to keep consistency with the book, we call this version “3b”.
Basically we need to prevent that the messages that the server sends to role A and role B could
be confused. There are in fact many ways to do this, e.g. introducing new constants. Instead, we
simply mention both the agent A and the agent B in the messages, so the first one is the initiator,
the second the responder:

A->s: A,B

# s creates key KAB

s->A: {| KAB,A,B |}sk(A,s), {| KAB,A,B |}sk(B,s)

A->B: {| KAB,A,B |}sk(B,s)

Strong Authentication/Replay In this case, we get a violation of the strong authentication
aspect of the goal:

Verified for 1 sessions

SUMMARY

UNSAFE

GOAL

strong_auth

...

ATTACK TRACE

i -> (s,1): x34,x501

(s,1) -> i: {|KAB(1),x34,x501|}_(sk(x34,s)),{|KAB(1),x34,x501|}_(sk(x501,s))

i -> (x501,1): {|KAB(1),x34,x501|}_(sk(x501,s))

i -> (x501,2): {|KAB(1),x34,x501|}_(sk(x501,s))

% Reached State:

%

% request(x501,s,pBsKABA,KAB(1),x34,2)

% request(x501,s,pBsKABA,KAB(1),x34,1)

...

The attack trace starts like the previous ones with the intruder sending a message to the server
choosing two agent names, now called x34 and x501. The server answers with the corresponding
message mentioning everywhere the agent names. (This produces again the corresponding witness
facts.) Now the intruder sends this message to agent x501 which is actually as the protocol intends
it. x501 generates a request term and this request term actually matches the second of the two
witness terms; so authentication is fine here (for every request there is a matching witness). Now
in the final step the intruder just sends the same message a second time—a replay. Note that the
receiver is now (x501, 2) while in the previous it was (x501, 1). This means that in both cases it
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is the same agent x501, but it is playing in two different sessions of the protocol. Imagine that
the last step of the attack happens much later, say a week, than the first three. That would
mean x501 accepts a quite old key for communication again. This can be bad for several reasons.
First, think of a banking transaction: if one can make the bank perform a transaction several
times that was actually issued only once this is clearly a problem. Also it is in many contexts
important that a message is recent and not a replay of an old message, e.g. think of electronic
stock-market applications. Finally, in many scenarios such as wireless communication, shared keys
may be of very limited length, allowing an intruder to find them in a brute-force attack that takes
a few hours or days. Establishing a new key frequently can still provide security against such
an intruder—but only if the key exchange protocol is protected against replay of course, so the
intruder cannot re-introduce an old key that he has broken.

A replay attack (and thus a violation of strong authentication without violating weak
authentication) is characterized by two identical request terms with different session
numbers, i.e. an agent is made accept the exact same message more than once.

In fact Lowe’s definition of injective agreement [4] is more complicated: it requires basically (in
our terminology) there is an injective mapping from request facts to corresponding witness facts.
If assume, however, that the message being authenticated upon contains at least one part that is
supposedly fresh (like the key KAB in this case), then we will never have two times exactly the
same witness fact and two times exactly the same request fact occurs iff there is a replay attack.

Timestamps A very simple and natural way to ensure freshness is the use of timestamps in
messages. Assuming we manage to have computers’ clocks synchronized up to a few seconds, we
can safely require that agents never accept messages that have a timestamp that is more than a
few minutes old. This takes already ensures that only recent messages are accepted. Additionally,
we can prevent any replay even within the validity of the timestamp, if all messages are stored as
long as their timestamp is valid and newly incoming messages are checked against this store.

AnB (and OFMC) have no precise model of timestamps; the reason is that talking about
concrete timing would require assigning also concrete times to all the normal operations and we
would need to formalize also the speed at which the intruder can send messages and similar things.

However, the above sketched methods with timestamps effectively prevent old messages or
replays. So if the protocol has these mechanisms in place, one may simply drop the check for
replay in our model. In our example that would mean to write the authentication goals as:

A weakly authenticates s on KAB ,B

B weakly authenticates s on KAB ,A

With this, the protocol can actually be verified. In fact, looking closely at the attack trace against
strong_auth, we see that the first line says (with slight grammatical problems):

Verified for 1 sessions

This means that looking at only one single session, OFMC found no attack. This is not surprising
as a replay attack requires at least two sessions of some agent. Using now the weak authentication
we see after some time also that it is verified for 2 sessions and so on.

1.4 Fourth Attempt

The described buffering of messages for a limited amount of time can still be an impractical
solution in many scenarios, especially when dealing with large amounts of data or a distributed
system. (Nonetheless the use of timestamps in electronic transaction is generally a good idea.)

Nonces An alternative way to ensure recentness is the use of challenge-response protocols. The
challenge is random number chosen by one party; this number is often called a nonce. It abbreviates
number once, indicating it should be used only one time. The point is that if another party has
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to include the nonce in a response, then the creator of the nonce can be sure that that response
is no older than the nonce it contains. The value of these guarantees of course depends on the
cryptographic operations in which the nonce is used.

Since in our case, we want to protect B against a replay of the key, we add two steps to the
protocol, namely one where B generates a nonce NB and sends it encrypted with the new shared
key KAB to A, and then A has to respond with NB− 1 encrypted with KAB. (The subtraction
of 1 is so that the response is actually a different message than the challenge.) The protocol the
looks as follows:

...

Number NB;

Function sk,pre

Knowledge:

A: A,B,s,sk(A,s),pre;

B: A,B,s,sk(B,s),pre;

s: A,B,s,sk(A,s),sk(B,s),pre

Actions:

A->s: A,B

s->A: {| KAB ,A,B |}sk(A,s), {| KAB ,A,B |}sk(B,s)

A->B: {| KAB ,A,B |}sk(B,s)

B->A: {| NB |}KAB

A->B: {| pre(NB) |}KAB

Public Functions To model the function −1 in our abstract model as simple as possible, we
have declared a new function symbol pre and given that to the knowledge of every agent. As a
consequence, every agent is able to produce pre(M) for a message M that it knows. We do not
model more aspects of arithmetic, because that is not really necessary for this model.

This version has a similar attack as the following famous variant:

Needham-Schroeder Shared Key We have now arrived at a protocol very similar to a classic
protocol, the Needham-Schroeder Shared Key protocol [8]. That protocol also had a nonce NA
from A that is included in the server’s message for A and here the two encryptions are nested, i.e.
the server sends the message for B as part of the encrypted message for A:

A->s: A,B,NA

s->A: {| KAB ,B,NA , {| KAB ,A |}sk(B,s) |}sk(A,s)

A->B: {| KAB ,A |}sk(B,s)

B->A: {| NB |}KAB

A->B: {| pre(NB) |}KAB

Denning-Sacco attack on NSSK Both our fourth protocol and the NSSK are vulnerable for
very similar attacks, first reported by Denning and Sacco [3]. For NSSK we obtain:

SUMMARY

UNSAFE

GOAL

strong_auth

...

ATTACK TRACE

i -> (s,1): i.x701.x206

(s,1) -> i: {|KAB(1).x701.x206.{|KAB(1).i|}_(sk(x701.s))|}_(sk(i.s))

i -> (x701,1): {|KAB(1).i|}_(sk(x701.s))

(x701,1) -> i: {|NB(2)|}_KAB(1)

i -> (x701,1): {|pre(NB(2))|}_KAB(1)
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i -> (x701,2): {|KAB(1).i|}_(sk(x701.s))

(x701,2) -> i: {|NB(4)|}_KAB(1)

i -> (x701,2): {|pre(NB(4))|}_KAB(1)

The Intruder Acting Under His Real Name This is again a replay attack. As in the
previous attacks, we begin with the intruder sending a message to the server s. Here for the first
time, we see that the intruder chose a concrete name as a sender: his own name. The reason is
that this particular attack only works if the intruder can decrypt the outermost encryption of the
reply by the server, which is with the key sk(A, s). The intruder does not know any shared key
of an honest agent with the server, but he knows his own shared key with the server: sk(i, s). So
for the concrete choice A = i, he is actually able to decrypt the answer from the server.

The reader may wonder where it is specified that the intruder knows sk(i, s). It is actually
specified both by the knowledge of role A and role B, since both roles can be played by the
intruder:

In general, for the initial knowledge specification A : m1, . . . ,mn (where A is a variable),
then the intruder obtains for his initial knowledge all messages m1, . . . ,mn where all
occurrences of A are substituted by i.

The first 5 steps of the attack trace are in fact a perfectly normal protocol run: the intruder
acts just like an honest agent would behave in role A. The variables x701 and x206 are again
choices of the intruder, namely of the agent playing role B and the value of the nonce NA, that
do not matter for the attack. The actual attack now happens in the last three steps. Here the
intruder talks to a second session of the agent x701 (in role B) using the old message from the
server and then responding to the challenge from x701. Note that x701 actually generates a fresh
nonce NB(4) for this second session.

Meaning of the Attack With this attack, the intruder makes an honest B accept an old
session key a second time, violating the strong authentication goal between B and the server. In
this form, the attack is actually not that interesting because the intruder needs to play under his
real name to achieve it, so it is a session key for secure communication between i and B which is
not very attractive to attack. The attack becomes more interesting if we think of KAB as a short
session key (that can be broken with brute force within some hours) and sk(A, s) and sk(B, s)
as long-term keys that have more length and cannot be broken by brute force. In this case, the
attack would also work for an honest A because the intruder just needs to replay an old message
of step 3 of the protocol for which he has cracked the contained session key.

AnB currently does not have a method to specify the loss of short-term secrets, although this
can be done on the IF level. A (quite technical) workaround to specify it in AnB would be to add
an old session key and messages in the initial knowledge, e.g.

A: ...,oldkab,{|oldkab,A|}sk(B,s)

However, the fact that we get a very similar attack by the normal specification (although it is less
interesting) is often indicative that there may be other, related, problems.

1.5 Fifth Attempt

Denning and Sacco suggest to rearrange the protocol a bit and to let B start with sending a nonce
NB to A, so that the server can include the nonces of both agents in its messages, and thus
provide freshness guarantees to both agents. This protocol now looks as follows:

B->A: A,B,NB

A->s: A,B,NA,NB

s->A: {| KAB ,B,NA |}sk(A,s), {| KAB ,A,NB |}sk(B,s)

A->B: {| KAB ,A,NB |}sk(B,s)
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This protocol is considered secure by many (including [2]). However, OFMC still finds an
attack! First, we get again the role confusion problem of the 3rd attempt. So the stricter goals
of authentication that OFMC is using are still not satisfied. Let us fix that the same way we did
before changing the protocol into:

B->A: A,B,NB

A->s: A,B,NA,NB

s->A: {| KAB ,A,B,NA |}sk(A,s), {| KAB ,A,B,NB |}sk(B,s)

A->B: {| KAB ,A,B,NB |}sk(B,s)

Anyway we still get an attack! This time it is a replay attack:

GOAL

strong_auth

...

ATTACK TRACE:

(x701,1) -> i: x701,x701,NB(1)

(x701,2) -> i: x701,x701,NB(2)

i -> (s,2): x701,x701,NB(2),NB(1)

(s,2) -> i: {|KAB(3),x701,x701,NB(2)|}_(sk(x701,s)),{|KAB(3),x701,x701,NB(1)|}_(sk(x701,s))

i -> (x701,1): {|KAB(3),x701,x701,NB(1)|}_(sk(x701,s))

i -> (x701,2): {|KAB(3),x701,x701,NB(2)|}_(sk(x701,s))

In fact, the attack is more easy to understand if we reorder the messages in there (the slightly
confusing ordering is due to partial-order reduction techniques used in OFMC [7]):

ATTACK TRACE

(x701,1) -> i: x701,x701,NB(1)

i -> (s,2): x701,x701,NB(2),NB(1)

(s,2) -> i: {|KAB(3),x701,x701,NB(2)|}_(sk(x701,s)),{|KAB(3),x701,x701,NB(1)|}_(sk(x701,s))

i -> (x701,1): {|KAB(3),x701,x701,NB(1)|}_(sk(x701,s))

(x701,2) -> i: x701,x701,NB(2)

i -> (x701,2): {|KAB(3),x701,x701,NB(2)|}_(sk(x701,s))

Talking to Oneself In the attack trace, we see a strange thing: the agent x701 who starts
(playing role B) intends to talk to — x701. We see here that if the roles A and B can be
instantiated by two agents, this does not exclude A = B. Some people have argued that such
scenarios should be considered since a user may work on different physical machines and on all
machines, the user may have the same long-term keys. Then, when a user (like x701 in this
example) tries to establish a secure connection between the two machines (using Denning-Sacco
in this case) he would instantiate both roles A and B and thus both shared keys with the server
are the same, namely sk(x701, s). If such a scenario is possible, i.e. if the protocol does not
explicitly require that the logical name of the two endpoints are different, then the above attack
is possible. Note here with logical name we mean the identity to which the keys are bound. This
is usually not the concrete IP-address of the machine and could thus be completely independent
from addressing mechanisms. We therefore recommend to make protocols even safe for agents
“talking to themselves” and interpret attacks as being related to different machines the agent is
working on.

1.6 Final Version

A simple way to fix this last attack is to simply add a constraint to the knowledge section:

where A!=B
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This prevents all instantiations of the roles where A and B are played by the same agent. This
should of course be noted when implementing the protocol: the implementation should always
check whether the identity of the other partner claims to be the same agent identifier (that would
have the same key).

Using the Fixedpoint Mode Now we finally have a protocol that is accepted by OFMC for
a couple of sessions. We can then proceed and try the newer and more experimental fixedpoint
module that performs an abstraction similar to ProVerif . The advantage is that this verifies
the protocol for an unbounded number of sessions. It may however happen that the abstraction
leads to false attacks (that would not work in the concrete model of classic OFMC). Also the
interpretation is far more restricted: it is blind for replay and reflection attacks.5 Using the line

ofmc KeyEx5c.AnB -fp

we obtain after a few seconds the result that no attacks are found and that the protocol is thus safe
in this restricted model for an unbounded number of sessions. Note that it is always recommended
to use both the classic and fixedpoint module to extensively check the protocol as being methods
with complementary strengths that may find different kinds of attacks.

2 TLS

We now look at a more interesting example both since it is more complex and since it is one of
the most widely used protocols in the Internet. Our model is inspired by the one of Paulson [9].

1 Protocol: TLS

2 Types: Agent A,B,s;

3 Number NA ,NB ,Sid ,PA ,PB ,PMS;

4 Function pk,hash ,clientK ,serverK ,prf

5 Knowledge: A: A,pk(A),pk(s),inv(pk(A)),{A,pk(A)}inv(pk(s)),B,

6 hash ,clientK ,serverK ,prf;

7 B: B,pk(B),pk(s),inv(pk(B)),{B,pk(B)}inv(pk(s)),

8 hash ,clientK ,serverK ,prf

9 Actions:

10 A->B: A,NA,Sid ,PA

11 B->A: NB,Sid ,PB ,

12 {B,pk(B)}inv(pk(s))

13 A->B: {A,pk(A)}inv(pk(s)),

14 {PMS}pk(B),

15 {hash(NB ,B,PMS)}inv(pk(A)),

16 {|hash(prf(PMS ,NA ,NB),A,B,NA ,NB ,Sid ,PA ,PB ,PMS )|}

17 clientK(NA ,NB ,prf(PMS ,NA ,NB))

18 B->A: {|hash(prf(PMS ,NA ,NB),A,B,NA ,NB ,Sid ,PA ,PB ,PMS )|}

19 serverK(NA ,NB ,prf(PMS ,NA ,NB))

20 Goals:

21 B authenticates A on prf(PMS ,NA,NB)

22 A authenticates B on prf(PMS ,NA,NB)

23 prf(PMS ,NA ,NB) secret between A,B

Walkthrough We discuss the messages step by step:

5The latter means that A tries to start a session with B and the intruder just reflects every message back to A.
If the protocol is completely symmetric, this may appear as a second session started by B, and A actually finishes
the protocol talking to herself.
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Client hello (line 10) A client A first contacts the server B that she wants to connect to. This
includes a fresh nonce NA and session identifier Sid, as well as the security preferences PA.
The security preferences cannot really be modeled here, and we replace them with a nonce
(to not change the message format).

Server hello (line 11) The server replies with his own nonce NB and his own preferences PB
(again represented as a nonce).

Server certificate (line 12) The server sends a certificate of his public key. This is essentially
a digital signature by some trusted certificate authority s, signing for B’s public key. Of
course, the real certificates may contain more fields, in particular expiry dates, but we do
not model that.

In our model, every agent A has a long-term public key pk(A) and a corresponding private
key inv(pk(A)). Note that pk is a function symbol that we declare similar to sk in previous
examples to represent a given (static) key infrastructure. In contrast, inv is a built-in symbol
that maps public keys to corresponding private keys. The general rule is that public-key
encrypted messages can only be decrypted with the corresponding private key and vice-versa.
Encryption with a private key thus means signing a message (because only the owner of the
private key can have done that). We distinguish asymmetric (public/private-key) encryption
from symmetric encryption by using the notation {M}K for encryption of message M with
key K.

The initial knowledge of role A contains her public and private key as well as a certificate for
her public key by the server and the server’s public key. The knowledge of B is analogous.
They both do not in advance know each other’s public keys, modeling that they only learn
them through the exchange of the certificates. In order to verify the certificates, they need
the public key of the server. As a consequence, in the translation from AnB to IF, the first
exchange looks like this on the side of A:

send(A,NA,Sid,PA).receive(NB,Sid,PB,{B,PKB}inv(pk(s)))

Here, the public key of B is learned by A as PKB from the certificate. A has no means to
check PKB = pk(B) as it is supposed to be, although this will always be the case since in
this model nobody has the key inv(pk(s)), so nobody can forge certificates.

Client certificate (line 13) Similar to the server’s certificate. Note this is optional in TLS: if
omitted (which is usually the case if the client is a normal web-browser) then the client is
not authenticated. The authentication and secrecy goals we state do not hold then. We
discuss this interesting case of a unilaterally authenticated TLS channel below.

Client Key exchange (line 14) The client generates the pre-master secret PMS, which is just
another fresh random number. This number is encrypted with the public key of the server.

Certificate verify (line 15) This signature is present iff the client certificate (line 13) is present.
It then authenticates the PMS and links it with the nonce NB and the name of B.

What is signed is actually a cryptographic hash of NB,B, PMS. Recall that a cryptographic
hash provides a cryptographic check function in the sense that for two random messages M
and M ′, it is very unlikely that h(M) = h(M ′) (low chance of collisions); it is difficult to
obtain M from knowing only h(M) (hard to invert); and for given M (or h(M)) it is hard to
find M ′ such that h(M) = h(M ′) (collision-resistant). We simply model this in AnB again
as a new function symbol hash and give this function to initial knowledge of all roles, so
everybody can compute h(M) for given M ; the hardness of finding collisions and inverses is
modeled by the absence of intruder rules in the algebraic theory of OFMC.

Client finished (line 16-17) The next message for the first time contains the basis of the shared
keys that A and B will obtain. This basis is K = prf(PMS,NA,NB) where prf stands for
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perfect random function and is just another cryptographic hash (like in line 15). This basis
K is used to create a message authentication code, i.e. a hash-function with a symmetric
key. The original TLS specification tells us to MAC all messages that have been exchanged
so far with K. To simplify this a bit, we use just the variables that occur so far. This hash
is called the “Finished”-Message. It is transmitted encrypted with the client’s shared key
clientK(NA,NB,K) where clientK is yet another hash-function.

Server finished (line 18-19) The server B answers with the same finished message encrypted
with his shared key serverK(NA,NB,K) where serverK is the last of the hash-functions
we introduce. Note that both A and B can compute both client and server keys. The
distinction is made so that messages from A to B can not be mistaken as messages from B
to A.

2.1 Unilateral TLS

The most commonly used form of TLS is without the optional client authentication (i.e. lines
13 and 15 in the above AnB specification), because the user does not have a certificate. These
connections have strictly weaker security guarantees: the server cannot be sure about the identity
of the client he is talking with (while the client can, thanks to the server’s certificate). Still,
this client and server have a secure connection in the sense that confidentiality and integrity are
preserved. We may think of a client having acting under a pseudonym and but being authenticated
with respect to that pseudonym as proposed in [6].

OFMC supports special goals that reflect this weakened security goals, namely

[A] *->* B : prf(PMS,NA,NB)

B *->* [A] : prf(PMS,NA,NB)

The first goal indicates that A has securely (authentic and secret) communicated the key prf(...)
to B—where A’s identity has not been certified hence the notation [A]. Similar we have secrecy
and agreement in the other direction. For a formal definition of this channel notation see [6].

Exercise A very common use of the unilateral TLS is the authentication of a user with username
and password. How can such a login via the unilateral TLS channel be modeled in AnB? What
would be appropriate goals?

3 Construction Area

There are many more things to be said and explained and this tutorial is work in progress. If you
have problems, questions, ideas, requests, please let me know.
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