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In the conic formulation of a convex optimization problem the constraints are

expressed as linear inequalities with respect to a possibly non-polyhedral convex cone.

This makes it possible to formulate elegant extensions of interior-point methods

for linear programming to general nonlinear convex optimization. Recent research

on cone programming algorithms has particularly focused on three convex cones,

for which symmetric primal-dual methods have been developed: the nonnegative

orthant, the second-order cone, and the positive semidefinite matrix cone. Although

not all convex constraints can be expressed in terms of the three standard cones,

cone programs associated with these cones are sufficiently general to serve as the

basis of convex modeling packages. They are also widely used in machine learning.

The main difficulty in the implementation of interior-point methods for cone pro-

gramming is the complexity of the linear equations that need to be solved at each

iteration. These equations are usually dense, unlike the equations that arise in linear

programming, and it is therefore difficult to develop general-purpose strategies for

exploiting problem structure based solely on sparse matrix methods. In this chapter

we give an overview of ad hoc techniques that can be used to exploit non-sparse

structure in specific classes of applications. We illustrate the methods with exam-

ples from machine learning and present numerical results with CVXOPT, a software
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package that supports the rapid development of customized interior-point methods.

1.1 Introduction

1.1.1 Cone programming

The cone programming formulation has been popular in the recent literature on

convex optimization. In this chapter we define a cone linear program (cone LP or

conic LP) as an optimization problem of the form

minimize cTx

subject to Gx �C h

Ax = b

(1.1)

with optimization variable x. The inequality Gx �C h is a generalized inequality,

which means that h − Gx ∈ C, where C is a closed, pointed, convex cone with

nonempty interior. We will also encounter cone quadratic programs (cone QPs)

minimize (1/2)xTPx+ cTx

subject to Gx �C h

Ax = b,

(1.2)

with P positive semidefinite.

If C = R
p
+ (the nonnegative orthant in R

p) the generalized inequality is a

componentwise vector inequality, equivalent to p scalar linear inequalities, and

problem (1.1) reduces to a linear program (LP). If C is a nonpolyhedral cone,

the problem is substantially more general than an LP, in spite of the similarity

in notation. In fact, as Nesterov and Nemirovskii (1994) point out, any convex

optimization problem can be reformulated as a cone LP by a simple trick: a general

constraint x ∈ Q, where Q is a closed convex set with nonempty interior, can be

reformulated in a trivial way as (x, t) ∈ C, t = 1, if we define C as the conic hull

of Q, i.e., C = cl{(x, t) | t > 0, (1/t)x ∈ Q}. More important in practice, it turns

out that a surprisingly small number of cones is sufficient to express the convex

constraints that are most commonly encountered in applications. In addition to the

nonnegative orthant, the most common cones are the second-order cone

Qp = {(y0, y1) ∈ R× R
p−1 | ‖y1‖2 ≤ y0}

and the positive semidefinite cone

Sp =
{

vec(U) | U ∈ Sp
+

}

.
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Here Sp
+ denotes the positive semidefinite matrices of order p and vec(U) is the

symmetric matrix U stored as a vector:

vec(U) =
√
2

(

U11√
2
, U21, . . . , Up1,

U22√
2
, U32, . . . , Up2, . . . ,

Up−1,p−1√
2

, Up,p−1,
Upp√
2

)

.

(The scaling of the off-diagonal entries ensures that the standard trace inner product

of symmetric matrices is preserved, i.e., Tr(UV ) = vec(U)T vec(V ) for all U , V .)

Since the early 1990s a great deal of research has been directed at developing a

comprehensive theory and software for modeling optimization problems as cone

programs involving the three ‘canonical’ cones (Nesterov and Nemirovskii, 1994;

Boyd et al., 1994; Ben-Tal and Nemirovski, 2001; Alizadeh and Goldfarb, 2003;

Boyd and Vandenberghe, 2004). YALMIP and CVX, two modeling packages for

general convex optimization, use cone LPs with the three canonical cones as their

standard format (Löfberg, 2004; Grant and Boyd, 2007, 2008).

In this chapter we assume that the cone C in (1.1) is a direct product

C = C1 × C2 × · · · × CK , (1.3)

where each cone Ci is of one of the three canonical types (nonnegative orthant,

second-order cone, or positive semidefinite cone). These cones are self-dual and the

dual of the cone LP therefore involves an inequality with respect to the same cone:

maximize −hT z − bT y

subject to GT z +AT y + c = 0

z �C 0.

(1.4)

The cone LP (1.1) is called a second-order cone program (SOCP) if C is a direct

product of one or more second-order cones. (The nonnegative orthant can be written

as a product of second-order cones Q1 of order 1.) A common and more explicit

standard form of an SOCP is

minimize cTx

subject to ‖Fix+ gi‖2 ≤ dTi x+ fi, i = 1, . . . ,K

Ax = b.

(1.5)

This corresponds to choosing

G =



















−dT1

−F1

...

−dTK

−FK



















, h =



















f1

g1
...

fK

gK



















, C = Qp1
× · · · × QpK

in (1.1), if the row dimensions of the matrices Fk are equal to pk − 1.
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The cone LP (1.1) is called a semidefinite program (SDP) if C is a direct product

of positive semidefinite matrix cones. For purposes of exposition a simple standard

form with one matrix inequality is sufficient:

minimize cTx

subject to
n
∑

i=1

xiFi � F0

Ax = b,

(1.6)

where the coefficients Fi are symmetric matrices of order p and the inequality

denotes matrix inequality. This can be seen as the special case of (1.1) obtained by

choosing

G =
[

vec(F1) · · · vec(Fn)
]

, h = vec(F0), C = Sp. (1.7)

The SDP (1.6) is in fact as general as the cone LP (1.1) with an arbitrary

combination of the three cone types. A componentwise vector inequality Gx � h can

be represented as a diagonal matrix inequality Diag(Gx) � Diag(h). A second-order

cone constraint ‖Fx+ g‖2 ≤ dTx+ f is equivalent to the linear matrix inequality
[

dTx+ f (Fx+ g)T

Fx+ g (dTx+ f)I

]

� 0.

Multiple matrix inequalities can be represented by choosing block-diagonal matrices

Fi. For algorithmic purposes, however, it is better to handle the three types of cones

separately.

1.1.2 Interior-point methods

Interior-point algorithms have dominated the research on convex optimization

methods from the early 1990s until recently. They are popular because they reach

a high accuracy in a small number (10–50) of iterations, almost independent of

problem size, type, and data. Each iteration requires the solution of a set of

linear equations with fixed dimensions and known structure. As a result, the time

needed to solve different instances of a given problem family can be estimated quite

accurately. Interior-point methods can be extended to handle infeasibility gracefully

(Nesterov et al., 1999; Andersen, 2000), by returning a certificate of infeasibility if

a problem is primal or dual infeasible. Finally, interior-point methods depend on

only a small number of algorithm parameters, which can be set to values that work

well for a wide range of data, and do not need to be tuned for a specific problem.

The key to efficiency of an interior-point solver is the set of linear equations solved

in each iteration. These equations are sometimes called Newton equations, because

they can be interpreted as a linearization of the nonlinear equations that charac-

terize the central path, or Karush-Kuhn-Tucker (KKT) equations, because they

can be interpreted as optimality (or KKT) conditions of an equality-constrained

quadratic optimization problem. The cost of solving the Newton equations deter-



1.2 Primal-dual interior-point methods 5

mines the size of the problems that can be solved by an interior-point method.

General-purpose convex optimization packages rely on sparse matrix factorizations

to solve the Newton equations efficiently. This approach is very successful in linear

programming where problems with several 100,000 variables and constraints are

solved routinely. The success of general-purpose sparse linear programming solvers

can be attributed to two facts. First, the Newton equations of a sparse LP can

usually be reduced to sparse positive definite sets of equations, which can be solved

very effectively by sparse Cholesky factorization methods. Second, dense linear pro-

grams, which of course are not uncommon in practice, can often be converted into

sparse problems by introducing auxiliary variables and constraints. This increases

the problem dimensions, but if the resulting problem is sufficiently sparse, the net

gain in efficiency is often significant.

For other classes of cone optimization problems (for example, semidefinite pro-

gramming), the ‘sparse linear programming approach’ to exploiting problem struc-

ture is less effective, either because the Newton equations are not sufficiently sparse,

or because the translation of problem structure into sparsity requires an excessive

number of auxiliary variables. For these problem classes, it is difficult to develop

general-purpose techniques that are as efficient and scalable as linear programming

solvers. Nevertheless, the recent literature contains many examples of large-scale

convex optimization problems that were solved successfully by scalable customized

implementations of interior-point algorithms (Benson et al., 2000; Roh and Van-

denberghe, 2006; Gillberg and Hansson, 2003; Koh et al., 2007; Kim et al., 2007;

Joshi and Boyd, 2008; Liu and Vandenberghe, 2009a; Wallin et al., 2009). These

results were obtained by a variety of direct and iterative linear algebra techniques

that take advantage of non-sparse problem structure. The purpose of this chapter

is to give a survey of some of these techniques and illustrate them with applications

from machine learning. There is of course a trade-off in how much effort one is pre-

pared to make to optimize performance of an interior-point method for a specific

application. We will present results for a software package, CVXOPT (Dahl and

Vandenberghe, 2009), that was developed to assist in the development of custom

interior-point solvers for specific problem families. It allows the user to specify an

optimization problem via an operator description, i.e., by providing functions for

evaluating the linear mappings in the constraints, and to supply a custom method

for solving the Newton equations. This makes it possible to develop efficient solvers

that exploit various types of problem structure, in a fraction of the time needed to

write a custom interior-point solver from scratch. Other examples of interior-point

software packages that allow customization include the QP solver OOQP (Gertz

and Wright, 2003) and the Matlab-based conic solver SDPT3 (Tütüncü et al., 2003).

1.2 Primal-dual interior-point methods

We first describe some implementation details for primal-dual interior-point meth-

ods based on the Nesterov-Todd scaling (Nesterov and Todd, 1997, 1998). How-
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ever, much of the following discussion also applies to other types of primal-dual

interior-point methods for second-order cone and semidefinite programming (Helm-

berg et al., 1996; Kojima et al., 1997; Monteiro and Zhang, 1998).

1.2.1 Newton equations

Consider the cone LP (1.1) and cone QP (1.2). The Newton equations for a primal-

dual interior-point method based on the Nesterov-Todd scaling have the form








P AT GT

A 0 0

G 0 −WTW

















∆x

∆y

∆z









=









rx

ry

rz









(1.8)

(with P = 0 for the cone LP). The right-hand sides rx, ry, rz change at each

iteration and are defined differently in different algorithms. The matrix W is

a scaling matrix that depends on the current primal and dual iterates. If the

inequalities in (1.1) and (1.4) are generalized inequalities with respect to a cone

of the form (1.3), then the scaling matrix W is block-diagonal with K diagonal

blocks Wk, defined as follows.

If Ck is a nonnegative orthant of dimension p (Ck = R
p
+) then Wk is a positive

diagonal matrix,

Wk = Diag(d)

for some d ∈ R
p
++.

If Ck is a second-order cone of dimension p (Ck = Qp) then Wk is a positive

multiple of a hyperbolic Householder matrix

Wk = β(2vvT − J), J =

[

1 0

0 −I

]

, (1.9)

where β > 0, v ∈ R
p satisfies vTJv = 1, and I is the identity matrix of order p− 1.

The inverse of Wk is given by

W−1

k =
1

β
(2JvvTJ − J).

If Ck is a positive semidefinite cone of order p (Ck = Sp) then Wk is the matrix

representation of a congruence operation: Wk and its transpose are defined by the

identities

Wk vec(U) = vec(RTUR), WT
k vec(U) = vec(RURT ), (1.10)

for all U , where R ∈ R
p×p is a nonsingular matrix. The inverses of Wk and WT

k are
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defined by

W−1

k vec(U) = vec(R−TUR−1), W−T
k vec(U) = vec(R−1UR−T ).

The values of the parameters d, β, v, R (or R−1) in these definitions depend on

the current primal and dual iterates and are updated after each iteration of the

interior-point algorithm.

The number of Newton equations solved per iteration varies with the type of

algorithm. It is equal to two in a predictor-corrector method, three in a predictor-

corrector method that uses a self-dual embedding, and it can be higher than three

if iterative refinement is used. However, since the scaling W is identical for all the

Newton equations solved in a single iteration, only one factorization step is required

per iteration and the cost per iteration is roughly equal to the cost of solving one

Newton equation.

By eliminating ∆z, the Newton equation can be reduced to a smaller system
[

P +GTW−1W−TG AT

A 0

][

∆x

∆y

]

=

[

rx +GTW−1W−T rz

ry

]

. (1.11)

The main challenge in an efficient implementation is to exploit structure in the

matrices P , G, A, when assembling the matrix

P +GTW−1W−TG = P +

K
∑

k=1

GT
kW

−1

k W−T
k Gk, (1.12)

(where Gk is the block row of G corresponding to the kth inequality) and when

solving the equation (1.11).

General-purpose solvers for cone programming rely on sparsity in P , G, and A

to solve large-scale problems. For example, if the problem does not include equality

constraints, one can solve (1.11) by a Cholesky factorization of the matrix (1.12).

For pure LPs or QPs (W diagonal) this matrix is typically sparse if P and G are

sparse and a sparse Cholesky factorization can be used. In problems that involve

all three types of cones it is more difficult to exploit sparsity. Even when P and G

are sparse, the matrix (1.12) is often dense. In addition, forming the matrix can be

expensive.

1.2.2 Customized implementations

In the following sections we will give examples of techniques for exploiting certain

types of non-sparse problem structure in the Newton equations (1.8). The numerical

results are obtained using the Python software package CVXOPT, which provides

two mechanisms for customizing the interior-point solvers.

Users can specify the matricesG, A, P in (1.1) and (1.2) as operators, by providing

Python functions that evaluate the matrix-vector products and their adjoints.

Users can provide a Python function for solving the Newton equation (1.8).
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This is made straightforward by certain elements of the Python syntax, as the

following example illustrates. Suppose we are interested in solving several equations

of the form
[

−I AT

A 0

][

x1

x2

]

=

[

b1

b2

]

, (1.13)

with the same matrix A ∈ R
m×n and different right-hand sides b1, b2. (We assume

m ≤ n and rank(A) = m.) The equations can be solved by first solving

AATx2 = b2 +Ab1,

using a Cholesky factorization of AAT , and then computing x1 from x1 = ATx2−b1.

The following code defines a Python function factor() that computes the Cholesky

factorization of C = AAT , and returns a function solve() that calculates x1 and

x2 for a given right-hand side b. A function call f = factor(A) therefore returns

a function f that can be used to compute the solution for a particular right-hand

side b as x1, x2 = f(b).

from cvxopt import blas, lapack, matrix

def factor(A):

m, n = A.size

C = matrix(0.0, (m, m))

blas.syrk(A, C) # C := A * A^T.

lapack.potrf(C) # Factor C = L * L^T and set C := L.

def solve(b):

x2 = b[-m:] + A * b[:n]

lapack.potrs(C, x2) # x2 := L^-T * L^-1 * x2.

x1 = A.T * x2 - b[:n]

return x1, x2

return solve

Note that the Python syntax proves very useful in this type of applications.

For example, Python treats functions as other objects, so the ‘factor’ function can

simply return a ‘solve’ function. Note also that the symbols A and C are used

in the body of the function solve() but are not defined there. To resolve these

names, Python therefore looks at the enclosing scope (the function block with

the definition of factor()). These scope rules make it possible to pass problem-

dependent parameters to functions without using global variables.
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1.3 Linear and quadratic programming

In the case of a (non-conic) LP or QP the scaling matrix W in the Newton

equation (1.8) and (1.11) is a positive diagonal matrix. As already mentioned,

general-purpose interior-point codes for linear and quadratic programming are very

effective at exploiting sparsity in the data matrices P , G, A. Moreover many

types of non-sparse problem structure can be translated into sparsity by adding

auxiliary variables and constraints. Nevertheless, even in the case of LPs or QPs,

it is sometimes advantageous to exploit problem structure directly by customizing

the Newton equation solver. In this section we discuss a few examples.

1.3.1 ℓ1-Norm approximation

The basic idea is illustrated by the ℓ1-norm approximation problem

minimize ‖Xu− d‖1, (1.14)

with X ∈ R
m×n, d ∈ R

m, and variable u ∈ R
n. This is equivalent to an LP with

m+ n variables and 2m constraints,

minimize 1T v

subject to

[

X −I

−X −I

][

u

v

]

�
[

d

−d

]

(1.15)

with 1 the m-vector with entries equal to one. The reduced Newton equation (1.11)

for this LP is
[

XT (W−2

1 +W−2

2 )X XT (W−2

2 −W−2

1 )

(W−2

2 −W−2

1 )X W−2

1 +W−2

2

][

∆u

∆v

]

=

[

ru

rv

]

(1.16)

where W1 and W2 are positive diagonal matrices. (To simplify the notation, we

do not propagate the expressions for the right-hand sides when applying block

elimination.) By eliminating the variable ∆v the Newton equation can be further

reduced to an equation

XTDX∆u = r,

where D is the positive diagonal matrix

D = 4W−2

1 W−2

2 (W−2

1 +W−2

2 )−1 = 4(W 2
1 +W 2

2 )
−1.

The cost of solving the ℓ1-norm approximation problem is therefore equal to a small

multiple (10–50) of the cost of solving the same problem in ℓ2-norm, i.e., solving

the normal equations XTXu = XT d of the corresponding least-squares problem

(Boyd and Vandenberghe, 2004, page 617).
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The Python code shown below exploits this fact. The matrix

G =

[

X −I

−X −I

]

is specified via a Python function G that evaluates the matrix-vector products with

G and GT . The function F factors the matrix XTDX and returns a ‘solve’ routine

f that takes the right-hand side of (1.8) as its input argument and replaces it

with the solution. The input argument of F is the scaling matrix W stored as a

Python dictionary W containing the various parameters of W . The last line calls the

CVXOPT cone LP solver. The code can be further optimized by a more extensive

use of the BLAS.

from cvxopt import lapack, solvers, matrix, mul, div

m, n = X.size

def G(x, y, alpha = 1.0, beta = 0.0, trans = ’N’):

if trans == ’N’: # y := alpha * G * x + beta * y

u = X * x[:n]

y[:m] = alpha * ( u - x[n:] ) + beta * y[:m]

y[m:] = alpha * (-u - x[n:] ) + beta * y[m:]

else: # y := alpha * G’ * x + beta * y

y[:n] = alpha * X.T * (x[:m] - x[m:]) + beta * y[:n]

y[n:] = -alpha * (x[:m] + x[m:]) + beta * y[n:]

def F(W):

d1, d2 = W[’d’][:m]**2, W[’d’][m:]**2

D = 4*(d1 + d2)**-1

A = X.T * spdiag(D) * X

lapack.potrf(A)

def f(x, y, z):

x[:n] += X.T * ( mul( div(d2 - d1, d1 + d2), x[n:] ) +

mul( .5*D, z[:m] - z[m:] ) )

lapack.potrs(A, x)

u = X * x[:n]

x[n:] = div( x[n:] - div(z[:m], d1) - div(z[m:], d2) +

mul(d1**-1 - d2**-1, u), d1**-1 + d2**-1 )

z[:m] = div(u - x[n:] - z[:m], W[’d’][:m])

z[m:] = div(-u - x[n:] - z[m:], W[’d’][m:])

return f

c = matrix(n*[0.0] + m*[1.0])

h = matrix([d, -d])

sol = solvers.conelp(c, G, h, kktsolver = F)

Table 1.1 shows the result of an experiment with six randomly generated dense
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m n CVXOPT CVXOPT/BLAS MOSEK (1.15) MOSEK (1.17)

500 100 0.12 0.06 0.75 0.40

1000 100 0.22 0.11 1.53 0.81

1000 200 0.52 0.29 1.95 1.06

2000 200 1.23 0.60 3.87 2.19

1000 500 2.44 1.32 3.63 2.38

2000 500 5.00 2.68 7.44 5.11

2000 1000 17.1 9.52 32.4 12.8

Table 1.1: Solution times (seconds) for six randomly generated dense ℓ1-
norm approximation problems of dimension m× n. Column 3 gives the CPU
times for the customized CVXOPT code. Column 4 gives the CPU times for a
customized CVXOPT code with more extensive use of the BLAS for matrix-
vector and matrix-matrix multiplications. Columns 5 and 6 shows the times
for the interior point solver in MOSEK v6 (with basis identification turned
off) applied to the LPs (1.15) and (1.17), respectively.

matricesX. We compare the speed of the customized CVXOPT solver shown above,

the same solver with further BLAS optimizations, and the general-purpose LP solver

in MOSEK (MOSEK ApS, 2010), applied to the LP (1.15). The last column shows

the results for MOSEK applied to the equivalent formulation

minimize 1T v + 1Tw

subject to Xu− d = v − w

v � 0, w � 0.

(1.17)

The times are in seconds on an Intel Core 2 Quad Q9550 (2.83 GHz) with 4GB of

memory.

The table shows that a customized solver, implemented in Python with a modest

programming effort, can be competitive with one of the best general-purpose sparse

linear programming codes. In this example, the customized solver takes advantage

of the fact that the dense matrix X appears in two positions of the matrix G. This

property is not exploited by a general-purpose sparse solver.

1.3.2 Least-squares with ℓ1-norm regularization

As a second example, we consider a least-squares problem with ℓ1-norm regulariza-

tion,

minimize ‖Xu− d‖22 + ‖u‖1,

with X ∈ R
m×n. The problem is equivalent to a QP

minimize (1/2)‖Xu− d‖22 + 1T v

subject to −v � u � v,
(1.18)
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m n CVXOPT MOSEK (1.18) MOSEK (1.20)

50 200 0.02 0.35 0.32

50 400 0.03 1.06 0.59

100 1000 0.12 9.57 1.69

100 2000 0.24 66.5 3.43

500 1000 1.19 10.1 7.54

500 2000 2.38 68.6 17.6

Table 1.2: Solution times (seconds) for 6 randomly generated dense least-
squares problems with ℓ1-norm regularization. The matrix X has dimension
m × n. Column 3 gives the CPU times for the customized CVXOPT code.
Column 4 shows the times for MOSEK applied to (1.18). Column 5 shows the
times for MOSEK applied to (1.20).

with 2n variables and 2n constraints. The reduced Newton equation (1.11) for this

QP is
[

XTX +W−2

1 +W−2

2 W−2

2 −W−2

1

W−2

2 −W−2

1 W−2

1 +W−2

2

][

∆u

∆v

]

=

[

ru

rv

]

where W1 and W2 are diagonal. Eliminating ∆v as in the example of section 1.3.1

results in a positive definite equation of order n

(XTX +D)∆u = r,

where D = 4(W 2
1 +W 2

2 )
−1. Alternatively, we can apply the matrix inversion lemma

and convert this to an equation of order m

(XD−1XT + I)∆ũ = r̃. (1.19)

The second option is attractive when n ≫ m, but requires a customized interior-

point solver, since the matrix D depends on the current iterates. A general-purpose

QP solver applied to (1.18), on the other hand, is expensive if n ≫ m, since it does

not recognize the low-rank structure of the matrix XTX in the objective.

Table 1.2 shows the result of an experiment with randomly generated dense

matrices X. We compare the speed of a customized QP solver with the general-

purpose QP solver in MOSEK applied to the QP (1.18) and the equivalent QP

minimize (1/2)wTw + 1T v

subject to −v � x � v

Xu− w = d

(1.20)

with variables u, v, w. Although this last formulation has more variables and

constraints than (1.18), MOSEK solves it more efficiently because it is sparser.

For the custom solver the choice between (1.18) and (1.20) is irrelevant because the
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Newton equations for both QPs reduce to an equation of the form (1.19).

1.3.3 Support vector machine training

A well-known example of the technique in the previous section arises in the training

of support vector machine classifiers, via the QP

minimize (1/2)uTQu− dTu

subject to 0 � Diag(d)u � γ1

1Tu = 0

(1.21)

In this problem Q is the kernel matrix and has entries Qij = k(xi, xj), i, j =

1, . . . , N , where x1, . . . , xN ∈ R
n are the training examples and k : Rn × R

n → R

is a positive definite kernel function. The vector d ∈ {−1,+1}N contains the labels

of the training vectors. The parameter γ is given. The reduced Newton equation

for (1.21) is

[

Q+W−2

1 +W−2

2 1

1T 0

][

∆u

∆y

]

=

[

ru

ry

]

. (1.22)

This equation is expensive to solve when N is large because the kernel matrix Q is

generally dense. If the linear kernel k(v, ṽ) = vT ṽ is used, the kernel matrix can be

written as Q = XXT where X ∈ R
N×n is the matrix with rows xT

i . If N ≫ n, we

can apply the matrix inversion lemma as in the previous example, and reduce the

Newton equation to an equation

(

I +XT (W−2

1 +W−2

2 )−1X
)

∆w = r

of order n. This method for exploiting low-rank structure or diagonal-plus-low-

rank structure in the kernel matrix Q is well known in machine learning (Ferris and

Munson, 2003; Fine and Scheinberg, 2002).

Crammer and Singer (2001) have extended the binary SVM classifier to classifi-

cation problems with more than two classes. The training problem of the Crammer-

Singer multiclass SVM can be expressed as a QP

minimize (1/2)Tr(UTQU)− Tr(ETU)

subject to U � γE

U1m = 0

(1.23)

with a variable U ∈ R
N×m, where N is the number of training examples and m

the number of classes. As in the previous section, Q is a kernel matrix with entries

Qij = k(xi, xj), i, j = 1, . . . , N . The matrix E ∈ R
N×m is defined as

Eij =

{

1 training example i belongs to class j

0 otherwise.
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The inequality U � γE denotes componentwise inequality between matrices. From

the optimal solution U one obtains the multiclass classifier, which maps a test point

x to the class number

argmax
j=1,...,m

N
∑

i=1

Uijk(xi, x).

An important drawback of this formulation, compared to multiclass classifiers

based on a combination of binary classifiers, is the high cost of solving the QP (1.23),

which has Nm variables, Nm inequality constraints, and N equality constraints.

Let us therefore examine the reduced Newton equations,



















Q+W−2

1 0 · · · 0 I

0 Q+W−2

2 · · · 0 I
...

...
. . .

...
...

0 0 · · · Q+W−2
m I

I I · · · I 0





































∆u1

∆u2

...

∆um

∆y



















=



















ru1

ru2

...

rum

ry



















with variables ∆uk, ∆y ∈ R
N . The variables ∆uk are the columns of the search

direction ∆U corresponding to the variable U in (1.23). Eliminating the variables

∆uk gives an equation H∆y = r with

H =

m
∑

k=1

(Q+W−2

k )−1.

Now suppose the linear kernel is used, and Q = XXT with X ∈ R
N×n and N large

(compared to mn). Then we can exploit the low rank structure in Q and write H

as

H =

m
∑

k=1

(

W 2
k −W 2

kX(I +XTW 2
kX)−1XTW 2

k

)

= D − Y Y T

where D =
∑

k W
2
k is diagonal and Y is an N ×mn matrix

Y =
[

W 2
1XL−1

1 W 2
2XL−1

2 · · · W 2
mXL−1

m

]

where Lk is a Cholesky factor of I+XTW 2
kX = LkL

T
k . A second application of the

matrix inversion lemma gives

∆y = (D − Y Y T )−1r

=
(

D−1 +D−1Y (I + Y TD−1Y )−1Y TD−1
)

r.

The largest dense matrix that needs to be factored in this method is the mn ×
mn matrix I + Y TD−1Y . For large N the cost is dominated by the matrix

products XTW 2
i D

−1W 2
j X, i, j = 1, . . . ,m, needed to compute Y TD−1Y . This
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N time iterations test error

10000 5699 27 8.6%

20000 12213 33 4.0%

30000 35738 38 2.7%

40000 47950 39 2.0%

50000 63592 42 1.6%

60000 82810 46 1.3%

Table 1.3: Solution times (seconds) and numbers of iterations for the
multiclass SVM training problem applied to the MNIST set of handwritten
digits (m = 10 classes, n = 785 features).

takes O(m2n2N) operations.

In table 1.3 we show computational results for the multiclass classifier applied

to the MNIST handwritten digit data set (LeCun and Cortes, 1998). The images

are 28× 28. We add a constant feature to each training example, so the dimension

of the feature space is n = 1 + 282 = 785. We use γ = 105/N . For the largest N ,

the QP (1.23) has 600, 000 variables and inequality constraints, and 60000 equality

constraints.

1.4 Second-order cone programming

Several authors have provided detailed studies of techniques for exploiting sparsity

in SOCPs (Andersen et al., 2003; Goldfarb and Scheinberg, 2005). The coefficient

matrix (1.12) of the reduced Newton equation of a linear and quadratic cone

program with K second-order cone constraints of dimension p1, . . . , pK , is

P +
K
∑

k=1

GT
kW

−2

k Gk, W−1

k =
1

βk

(2Jvkv
T
k J − J). (1.24)

The scaling matrices are parameterized by parameters βk > 0 and vk ∈ R
pk with

vTk Jvk = 1 and J the sign matrix defined in (1.9). We note that

W−2

k =
1

β2
(2wkw

T
k − J) =

1

β2
(I + 2wkw

T
k − 2e0e

T
0 ), wk =

[

vTk vk

−2vk0vk1

]

where e0 is the first unit vector in R
p, vk0 is the first entry of vk, and vk1 is the

(p− 1)-vector of the other entries. Therefore

GT
kW

−2

k Gk =
1

β2

(

GT
kGk + 2(GT

kwk)(G
T
kwk)

T − 2(GT
k e0)(G

T
k e0)

T
)

,

i.e., a multiple of GT
kGk plus a rank-two term.

We can distinguish two cases when examining the sparsity of the sum (1.24). If
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the dimensions pk of the second-order cones are small, then the matrices Gk are

likely to have many zero columns and the vectors GT
kwk will be sparse (for generic

dense wk). Therefore the products GT
kW

−2

k Gk and the entire matrix (1.24) are

likely to be sparse. At the extreme end (pk = 1) this reduces to the situation in

linear programming where the matrix (1.12) has the sparsity of P +GTG.

The second case arises when the dimensions pk are large. Then GT
kwk is likely to

be dense which results in a dense matrix (1.24). If K ≪ n, we can still separate the

sum (1.24) in a sparse part and a few dense rank-one terms, and apply techniques

for handling dense rows in sparse linear programs (Andersen et al., 2003; Goldfarb

and Scheinberg, 2005).

Robust support vector machine training

Second-order cone programming has found wide application in robust optimization.

As an example, we discuss the robust SVM formulation of Shivaswamy et al. (2006).

This problem can be expressed as a cone QP with second-order cone constraints:

minimize (1/2)wTw + γ1T v

subject to Diag(d)(Xw + b1) � 1− v + Eu

v � 0

‖Sjw‖2 ≤ uj , j = 1, . . . , t.

(1.25)

The variables are w ∈ R
n, b ∈ R, v ∈ R

N , and u ∈ R
t. The matrix X ∈ R

N×n

has as its rows the training examples xT
i and the vector d ∈ {−1, 1}N contains the

training labels. For t = 0, the term Eu and the norm constraints are absent, and

the problem reduces to the standard linear SVM

minimize (1/2)wTw + γ1T v

subject to di(x
T
i w + b) ≥ 1− vi, i = 1, . . . , N

v � 0.

(1.26)

In problem (1.25) the inequality constraints in (1.26) are replaced by a robust

version that incorporates a model of the uncertainty in the training examples.

The uncertainty is described by t matrices Sj , with t ranging from 1 to N , and an

N×n-matrix E with 0-1 entries and exactly one entry equal to one in each row. The

matrices Sj can be assumed to be symmetric positive semidefinite. To interpret the

constraints, suppose Eij = 1. Then the constraint in (1.25) that involves training

example xi can be written as a second-order cone constraint

di(x
T
i w + b)− ‖Sjw‖2 ≥ 1− vi.

This is equivalent to

inf
‖η‖2≤1

(

di(xi + Sjη)
Tw + b

)

≥ 1− vi.
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N t = 2 t = 10 t = 50 t = 100

4000 2.5 2.8 4.1 5.0

8000 5.4 5.3 6.0 6.9

16000 12.5 12.5 12.7 13.7

Table 1.4: Solution times (seconds) for customized interior-point method for
robust SVM training (n = 200 features and t different uncertainty models).

In other words, we replace the training example xi with an ellipsoid {xi +

Sjη | ‖η‖2 ≤ 1} and require that di(x
Tw + b) ≥ 1 − vi holds for all x in the

ellipsoid. The matrix Sj defines the shape and magnitude of the uncertainty about

training example i. If we take t = 1, we assume that all training examples are

subject to the same type of uncertainty. Values of t larger than one allow us to use

different uncertainty models for different subsets of the training examples.

To evaluate the merits of the robust formulation it is useful to compare the cost

of solving the robust and non-robust problems. Recall that the cost per iteration

of an interior-point method applied to the QP (1.26) is of order Nn2 if N ≥ n,

and dominated by an equation of the form (I + XTDX)∆w = r with D positive

diagonal. To determine the cost of solving the robust problem we write it in the

standard cone QP form (1.2) by choosing x = (w, b, v, u) ∈ R
n × R × R

N × R
t,

K = 1 + t, C = R
2N
+ × Qn+1 × · · ·Qn+1. We have

P =













I 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


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


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
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

where ek is the kth unit vector in R
t. We can note that ETDE is diagonal for any

diagonal matrix D, and this property makes it inexpensive to eliminate the extra

variable ∆u from the Newton equations. As in the nonrobust case, the Newton

equations can then further be reduced to an equation in n variables ∆w. The cost

of forming the reduced coefficient matrix is of order Nn2 + tn3. When n ≤ N and

for modest values of t, the cost of solving the robust counterpart of the linear SVM

training problem is therefore comparable with the standard non-robust linear SVM.

Table 1.4 shows the solution times for a customized CVXOPT interior-point

method applied to randomly generated test problems with n = 200 features. Each

training vector is assigned to one of t uncertainty models. For comparison, the

general-purpose solver SDPT3 v.4 called from CVX takes about 130 seconds for

t = 50 and N = 4000 training vectors.
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1.5 Semidefinite programming

We now turn to the question of exploiting problem structure in cone programs that

include linear matrix inequalities. To simplify the notation we explain the ideas for

the inequality form SDP (1.6).

Consider the coefficient matrix H = GTW−1W−TG of the reduced Newton

equations, with G defined in (1.7) and the scaling matrix W in (1.10). The entries

of H are

Hij = Tr
(

R−1FiR
−TR−1FjR

−T
)

, i, j = 1, . . . , n. (1.27)

The matrix R is generally dense, and therefore the matrix H is usually dense, so

the equation H∆x = r must be solved by a dense Cholesky factorization. The cost

of evaluating the expressions (1.27) is also significant and often exceeds the cost of

solving the system. For example, if p = O(n) and the matrices Fi are dense, then

it takes O(n4) operations to compute the entire matrix H and O(n3) to solve the

system.

Efforts to exploit problem structure in SDPs have focused on using sparsity and

low-rank structure in the coefficient matrices Fi to reduce the cost of assembling

H. Sparsity is exploited, in varying degrees, by all general-purpose SDP solvers

(Sturm, 1999, 2002; Tütüncü et al., 2003; Yamashita et al., 2003; Benson and Ye,

2005; Borchers, 1999). Several of these techniques use ideas from the theory of

chordal sparse matrices and positive definite matrix completion theory to reduce

the problem size or speed up critical calculations (Fukuda et al., 2000; Nakata et al.,

2003; Burer, 2003; Andersen et al., 2010). It was also recognized early on that low-

rank structure in the coefficients Fi can be very useful to reduce the complexity of

interior-point methods (Gahinet and Nemirovski, 1997; Benson et al., 2000). For

example if Fi = aia
T
i , then it can be verified that

H = (ATR−TR−1A) ◦ (ATR−TR−1A)

where A is the matrix with columns ai and ◦ is componentwise matrix multiplica-

tion. This expression for H takes only O(n3) operations to evaluate if p = O(n).

Low-rank structure is exploited in the LMI Control Toolbox (Gahinet et al., 1995),

DSDP (Benson and Ye, 2005), and SDPT3 (Tütüncü et al., 2003). Recent ap-

plications of dense, low-rank structure include SDPs derived from sum-of-squares

formulations of nonnegative polynomials (Löfberg and Parrilo, 2004; Roh and Van-

denberghe, 2006; Roh et al., 2007; Liu and Vandenberghe, 2007). Kandola et al.

(2003) describe an application in machine learning.

Sparsity and low-rank structure do not exhaust the useful types of problem

structure that can be exploited in SDP interior-point methods, as demonstrated

by the following two examples.
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1.5.1 SDPs with upper bounds

A simple example from (Toh et al., 2007; Nouralishahi et al., 2008) will illustrate

the limitations of techniques based on sparsity. Consider a standard form SDP with

an added upper bound

minimize Tr(CX)

subject to Tr(AiX) = bi, i = 1, . . . ,m

0 � X � I.

(1.28)

The variable X is a symmetric matrix of order p. Since general-purpose SDP solvers

do not accept this format directly, the problem needs to be reformulated as one

without upper bounds. An obvious reformulation is to introduce a slack variable S

and solve the standard form SDP

minimize Tr(CX)

subject to Tr(AiX) = bi, i = 1, . . . ,m

X + S = I

X � 0, S � 0.

(1.29)

This is the semidefinite programming analog of converting an LP with variable

bounds,

minimize cTx

subject to Ax = b

0 � x � 1,

into a standard form LP

minimize cTx

subject to Ax = b, x+ s = 1

x � 0, s � 0.

(1.30)

Even though this is unnecessary in practice (LP solvers usually handle variable

upper bounds directly), the transformation to (1.30) would have only a minor effect

on the complexity. In (1.30) we add n extra variables (assuming the dimension of x

is n), and n extremely sparse equality constraints. A good LP solver that exploits

the sparsity will solve the LP at roughly the same cost as the corresponding problem

without upper bounds. The situation is very different for SDPs. In (1.29) we increase

the number of equality constraints from m to m+ p(p+ 1)/2. SDP solvers are not

as good at exploiting sparsity as LP solvers, so (1.29) is much harder to solve using

general-purpose solvers than the corresponding problem without upper bound.

Nevertheless, the SDP with upper bounds can be solved at a cost comparable

to the standard form problem, via a technique proposed by Toh et al. (2007);

Nouralishahi et al. (2008). The reduced Newton equations (1.11) for the SDP with
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upper bounds (1.29) are

T1∆XT1 + T2∆XT2 +
m
∑

i=1

∆yiAi = rX (1.31a)

Tr(Ai∆X) = ryi, i = 1, . . . ,m (1.31b)

where T1 = R−T
1 R−1

1 and T2 = R−T
2 R−1

2 are positive definite matrices. (The Newton

equations for the standard form problem (1.28) are similar, but have only one term

T∆XT in the first equation, making it easy to eliminate ∆X.)

To solve (1.31) we first determine a congruence transformation that simultane-

ously diagonalizes T1 and T2,

V TT1V = I, V TT2V = Diag(γ),

where γ is a positive vector (see (Golub and Loan, 1996, §8.7.2)). If we define

∆X̃ = V −1∆XV −T , Ãi = V TAiV , the equations reduce to

∆X̃ +Diag(γ)∆X̃ Diag(γ) +

m
∑

i=1

∆yiÃi = V T rXV

Tr(Ãi∆X̃) = ryi
, i = 1, . . . ,m.

From the first equation, we can express ∆X̃ in terms of ∆y:

∆X̃ = (V T rXV ) ◦ Γ−
m
∑

i=1

∆yi(Ãi ◦ Γ) (1.32)

where Γ is the symmetric matrix with entries Γij = 1/(1 + γiγj). Substituting this

in the second equation gives a set of equations H∆y = r where

Hij = Tr(Ãi(Ãj ◦ Γ)) = Tr((Ãi ◦ Ãj)Γ)), i, j = 1, . . . ,m.

After solving for ∆y, one easily obtains ∆X from (1.32). The cost of this method

is dominated by the cost of computing the matrices Ãi (O(p4) flops if m = O(p)),

the cost of assembling H (O(p4)), and the cost of solving for ∆y (O(p3)). For dense

coefficient matrices Ai, the overall cost is comparable to the cost of solving the

Newton equations for the standard form SDP (1.28) without upper bound.

Table 1.5 shows the time per iteration of a CVXOPT implementation of the

method described above. The test problems are randomly generated, with m = p,

and dense coefficient matrices Ai. The general-purpose SDP solver SDPT3 v.4 called

from CVX applied to the problem (1.29) with m = p = 100 takes about 23 seconds

per iteration.

1.5.2 Nuclear norm approximation

In section 1.3.1 we discussed the ℓ1-norm approximation problem (1.14) and showed

that the cost per iteration of an interior-point method is comparable to the cost of

solving the corresponding least-squares problem (i.e., O(mn2) operations). We can
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m = p time per iteration

50 0.05

100 0.33

200 2.62

300 10.5

400 30.4

500 70.8

Table 1.5: Time (seconds) per iteration of a customized interior-point
method for SDPs with upper bounds.

ask the same question about the matrix counterpart of ℓ1-norm approximation, the

nuclear norm approximation problem

minimize ‖X(u)−D‖∗. (1.33)

Here ‖ · ‖∗ denotes the nuclear matrix norm (sum of singular values) and X(u) =
∑n

i=1
uiXi is a linear mapping from R

n to R
p×q. The nuclear norm is popular

in convex heuristics for rank minimization problems in system theory and machine

learning (Fazel et al., 2001; Fazel, 2002; Fazel et al., 2004; Recht et al., 2010; Candès

and Plan, 2010). These heuristics extend ℓ1-norm heuristics for sparse optimization.

Problem (1.33) is equivalent to an SDP

minimize (TrV1 +TrV2)/2

subject to

[

V1 X(u)−D

(X(u)−D)T V2

]

� 0,
(1.34)

with auxiliary symmetric matrix variables V1, V2. The presence of the extra variables

V1 and V2 clearly makes solving (1.34) using a general-purpose SDP solver very

expensive, unless p and q are small, and much more expensive than solving the

corresponding least-squares approximation problem (i.e., problem (1.33) with the

Frobenius norm substituted for the nuclear norm).

A specialized interior-point method is described in (Liu and Vandenberghe,

2009a). The basic idea can be summarized as follows. The Newton equations

for (1.34) are

∆Z11 = rV1
, ∆Z22 = rV2

, Tr(XT
i ∆Z12) = rui

, i = 1, . . . , n

and
[

∆V1 X(∆u)

X(∆u)T ∆V2

]

+ T

[

∆Z11 ∆Z12

∆ZT
12 ∆Z22

]

T = rZ ,

where T = RRT . The variables ∆Z11, ∆Z22, ∆V1, ∆V2 are easily eliminated, and



22 Interior-point methods for large-scale cone programming

n = p = 2q time per iteration

100 0.30

200 2.33

300 8.93

400 23.9

500 52.4

Table 1.6: Time (seconds) per iteration of a customized interior-point
method for the nuclear norm approximation problem.

the equations reduce to

X(∆u) + T11∆Z12T22 + T12∆ZT
12T12 = rZ12

Tr(XT
i ∆Z12) = rui

, i = 1, . . . , n,

where Tij are subblocks of T partitioned as the matrix in the constraint (1.34). The

method of Liu and Vandenberghe (2009a) is based on applying a transformation

that reduces T11 and T22 to identity matrices and T12 to a (rectangular) diagonal

matrix, and then eliminating ∆Z12 from the first equation, to obtain a dense linear

system in ∆u. The cost of solving the Newton equations is O(n2pq) operations

if n ≥ max{p, q}. For dense Xi this is comparable to the cost of solving the

approximation problem in the least-squares (Frobenius-norm) sense.

Table 1.6 shows the time per iteration of a CVXOPT code for (1.34). The

problems are randomly generated with n = p = 2q. Note that the SDP (1.34)

has n+ p(p+1)/2+ q(q+1)/2 variables and is very expensive to solve by general-

purpose interior-point codes. CVX/SDPT3 applied to (1.33) takes 22 seconds per

iteration for the first problem (n = p = 100, q = 50).

1.6 Conclusion

Interior-point algorithms for conic optimization are attractive in machine learning

and other applications because they converge to a high accuracy in a small number

of iterations and are quite robust with respect to data scaling. The main disadvan-

tages are the high memory requirements and linear algebra complexity associated

with the linear equations that are solved at each iteration. It is therefore critical

to exploit problem structure when solving large problems. For linear and quadratic

programming, sparse matrix techniques provide a general and effective approach

to handling problem structure. For nonpolyhedral cone programs, and semidefinite

programs in particular, the sparse approach is less effective, for two reasons. First,

translating non-sparse problem structure into a sparse model may require introduc-

ing a very large number of auxiliary variables and constraints. Second, techniques

for exploiting sparsity in SDPs are less well developed than for LPs. It is therefore
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difficult to develop general-purpose techniques for exploiting problem structure in

cone programs that are as scalable as sparse linear programming solvers. How-

ever, it is sometimes quite straightforward to find special-purpose techniques that

exploit various types of problem structure. When this is the case, customized im-

plementations can be developed that are orders of magnitudes more efficient than

general-purpose interior-point implementations.
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