
Problem Set 5

Ph.D. Course 2012:

Nodal DG-FEM for solving partial differential equations

If you have not already done so, please download all the Matlab codes
from the book from

http://www.nudg.org/

and store and unpack them in a directory you can use with Matlab.

We shall consider the prototype model for hyperbolic PDEs, namely, the
linear advection equation stated in differential form as

ut + cxux + cyuy = 0, x ∈ Ω([−1, 1]2) (1)

which describes translation of some quantity u with advection speed vector
given as c = (cx, cy)

T . The exact solution to this equation can be shown to
be of the form

u(x, y, t) = f(x− cxt)g(y − cyt) (2)

where g(·), f(·) are arbitrary functions.

• Verify that the system is hyperbolic and conserves energy if u is as-
sumed periodic.

• Using an energy technique, discuss how many boundary conditions are
needed in a finite domain at different boundaries in a square domain.

Having established well-posedness for the problem, we shall seek to de-
velop a numerical solver for this problem using DG-FEM.

For this exercise, you can use the mesh file stored in squaremesh.dat.
Load into matlab and visualize with the commands

>> load

>> triplot(EToV,VX,VY)

• Implement a DG-FEM solver by modifying existing Matlab codes and
thereby set up as usual your own three Advec2dxx Matlab scripts to
solve the problem.

• Implement both a central flux and an upwind flux. Boundary condi-
tions should be imposed according to the incoming characteristics.

Scientific Computing Section, DTU Informatics, Kgs.-Lyngby, Denmark.



• Carry out hp-convergence tests to establish the error behavior for the
scheme for respectively central and upwind fluces.

Now, we will modify the problem slightly by assuming that the velocities
are dependent on the spatial coordinates such that we instead solve the
linear advection equation with spatially varying coefficients cx = cx(x, y)
and cy = cy(x, t).

• Consider what changes will be required for your DG-FEM solver to
account for varying advection coefficients?

• Implement those changes in your solver and prepare it for use on a
finite domain where the exact solution is imposed at all of the outer
domain boundary x ∈ ∂Ωh using mapB.

• Consider the case of a rotating Gaussian hill with c = (2πy,−2πx)T

in (x, y) ∈ Ω where Ω = {−1 ≤ x, y,≤ 1} with Dirichlet boundary
conditions. Use the following Gaussian-shaped initial condition

u(x, y, 0) = exp

(

−
(x− x0)

2 + (y − y0)
2

2λ2

0

)

with shape-parameter λ0 = 1/8 and initial center location (x0, y0) =
(−1

2
, 0).

• Investigate the error behavior at Tfinal = 1 after a full rotation of the
hill using your modified solver. Discuss pros and cons for low-order vs.
high-order, e.g. by considering the behavior of numerical dispersion
and dissipation with choice of discretization paramters.

Enjoy!

Scientific Computing Section, DTU Informatics, Kgs.-Lyngby, Denmark.


