
Problem Set 1

Ph.D. Course 2012:

Nodal DG-FEM for solving partial differential equations

If you have not already done so, please download all the Matlab codes
from the book from

http://www.nudg.org/

and store and unpack them in a directory you can use with Matlab.

To familarize ourselves with the setup for problems with one spatial
direction (1D), we consider the prototype model for hyperbolic PDEs: the
linear advection equation

∂tu+ a∂xu = 0 (1)

This equation describes translation of some quantity u(x, t) with constant
advection speed a.

Exact solutions to this equation can be shown to be of the form

u(x, t) = f(x− at)

where f(·) is a function that defines the initial condition.
Open the three Matlab scripts Advec1DDriver.m, Advec1D.m and Adve-

cRHS1D.m in your favorite Matlab editor. These scripts can be found in
Codes1D/ and they solve the PDE using a strong DG-FEM formulation
with a Lax-Friedrichs-type flux. The solver is initially setup for a finite
domain x ∈ [0, 2] with a boundary condition imposed at the left boundary
x = 0 in AdvecRHS1D.m such that u(0, t) = g(t) with g(t) defined using the
variable ’uin’ in the script (line 14).

The geometry of the domain, number of domains K and size of domain,
is controlled by the statement (in AdvecDriver1D.m, line 8)

[Nv, VX, K, EToV] = MeshGen1D(0.0, 2.0, 10);

where the first two arguments are the left and right boundary, respectively,
and the last argument is the number of elements.

• Run Advec1DDriver.m and familiarize yourself with the different input
parameters, e.g. number of elements (K), polynomial order (N), time
step size (dt) (found in Advec1D.m, line 16) and initial condition f(x).
Change the code such that the numerical solution uh can be shown on
the fly for visual inspection.

To run the code, make sure that /Codes1D and /ServiceRoutines are
both in your path - use Matlab command addpath.
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• Define a smooth initial function f(·) and describe how the numerical
solution behaves compared to the exact solution in time? For example,
do you observe losses in amplitude? Changes of initial solution profile?
What is the numerical advection speed? Change the numerical flux
type by changing α in AdvecRHS1D.m, line 9. Recall that α = 0 is an
upwind flux and α = 1 is a central flux.

• Define a smooth initial function and compute the global L2-error for
different sets of parameters (N,K) at the final time chosen. What
is the order of accuracy p in the global asymptotic error estimate
||u − uh||Ω,h ≤ Chp for the upwind (α = 0) and central (α = 1)
schemes? Does p depend on the choice of flux? expansion order? To
implement the global L2-norm for the error you may use the code
snippet using matrix-based integration below.

err = ua - u; % compute point-wise error

M = inv(V*V’); % mass matrix

errL2 = zeros(K,1);

for k = 1 : K

errL2(k) = err(:,k)’*diag(J(:,k))*M*err(:,k);

end

errL2 = sqrt(sum(errL2)); % Global L^2-norm of error

• Change the time step in Advec1D.m manually and determine how the
stable time step size scale with the element size h and the polynomial
order N , i.e. What impact does this scaling have on the efficiency of
the scheme?

• To familiarize yourself with the derivation of DG-FEM schemes, derive
analytically a DG-FEM scheme for solving the linear advection equa-
tion and try and compare with the implementation in AdvecRHS1D.m.
What changes would be needed to change the strong formulation to a
weak formulation for solving the same problem?

• Consider what changes are needed in the Advec1Dxxx.m codes to solve
the linear advection equation with variable phase speed a = a(x) and
test it by modifying the code.

• Define a nonsmooth initial function, e.g. a step function, and describe
how the numerical solution behaves compared to the exact solution
in time? (HINT: you will need to adjust the domain size, the initial
function and the definition of the left boundary condition.)

If time permits it

• Show using an Energy Method that solutions to the linear advection
equation conserves energy if u is assumed periodic.
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• Using an energy technique, discuss how many boundary conditions are
needed in a finite domain at each end.
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