
An introduction to Mesh generation

Ph.D. Course:
An Introduction to DG-FEM

for solving partial differential equations

Allan P. Engsig-Karup
Scientific Computing Section

DTU Informatics
Technical University of Denmark

August 14, 2012

1 / 70

Course content

The following topics are covered in the course

1 Introduction & DG-FEM in one spatial dimension

2 Implementation and numerical aspects (1D)

3 Insight through theory

4 Nonlinear problems

5 Extensions to two spatial dimensions

6 Introduction to mesh generation

7 Higher-order operators

8 Problem with three spatial dimensions and other advanced
topics

2 / 70

Numerical solution of PDEs

To construct a numerical method for solving PDEs we need to
consider

! How to represent the solution u(x , t) by an approximate
solution uh(x , t)?

! In which sense will the approximate solution uh(x , t) satisfy
the PDE?

The two choices separate and define the properties of different
numerical methods...

The choice of how to represent the solution is intimately connected
with a need for meshes

3 / 70

Numerical solution of PDEs

From approximation theory (see Chapter 4) we have the general
result

Theorem 4.8. Assume that u ∈ Hp(Dk), p > 1/2, and that uh
represents a piecewise polynomial interpolation of order N. Then

||u − uh||Ω,q,h ≤ C
hσ−q

Np−2q−1/2
|u|Ω,σ,h

for 0 ≤ q ≤ σ, and σ = min(N + 1, p).

! Upper bound for interpolation error depends on element size
h = maxk hk and polynomial order N of local expansions
(implicitly element sizes, shapes and local node distributions)

! Regularity of the solution

4 / 70

Numerical solution of PDEs
For the general case of a hyperbolic system (see Chapter 4)

∂u

∂t
+A

∂u

∂x
= 0

we have obtained Courant-Friedrichs-Levy (CFL) conditions of the
form for explicit schemes

∆t ≤ C
1

max(|λ(A)|)
min
k,i

hk

2
(∆i r)

which shows

! Discrete stability is governed by the mesh size hk and grid
spacing in standard element ∆i r (node distribution), and

! The discrete operator A is dependent on the scaling of
extreme eigenvalues with hk and so is the conditioning.

This highlights that optimal meshes are problem dependent

5 / 70

Numerical solution of PDEs
Recall, results obtained by solving the simple advection equation
on a periodic domain

∂tu − 2π∂xu = 0, x ∈ [0, 2π], u(x , 0) = sin(lx), l = 2π
λ

Errors at final time T = π.

N\ K 2 4 8 16 32 64 Convergence rate
1 - 4.0E-01 9.1E-02 2.3E-02 5.7E-03 1.4E-03 2.0
2 2.0E-01 4.3E-02 6.3E-03 8.0E-04 1.0E-04 1.3E-05 3.0
4 3.3E-03 3.1E-04 9.9E-06 3.2E-07 1.0E-08 3.3E-10 5.0
8 2.1E-07 2.5E-09 4.8E-12 2.2E-13 5.0E-13 6.6E-13 ∼= 9.0

Final time (T) π 10π 100π 1000π 2000π
(N,K)=(2,4) 4.3E-02 7.8E-02 5.6E-01 >1 >1
(N,K)=(4,2) 3.3E-03 4.4E-03 2.8E-02 2.6E-01 4.8E-01
(N,K)=(4,4) 3.1E-04 3.3E-04 3.4E-04 7.7E-04 1.4E-03

Error is seen to behave as

||u − uh||Ω,h ≤ C (T)hN+1 ∼= (c1 + c2T)hN+1

Optimal meshes are dependent on accuracy requirements

6 / 70

Examples: error behavior

Cost measured in terms of CPU time showed,
Time∼= C (T)K (N + 1)2.

N\K 2 4 8 16 32 64
1 1.00 2.19 3.50 8.13 19.6 54.3
2 2.00 3.75 7.31 15.3 38.4 110.
4 4.88 8.94 20.0 45.0 115. 327.
8 15.1 32.0 68.3 163. 665. 1271.
16 57.8 121. 279. 664. 1958. 5256.

N\K 2 4 8 16 32 64 Convergence rate
1 - 4.0E-01 9.1E-02 2.3E-02 5.7E-03 1.4E-03 2.0
2 2.0E-01 4.3E-02 6.3E-03 8.0E-04 1.0E-04 1.3E-05 3.0
4 3.3E-03 3.1E-04 9.9E-06 3.2E-07 1.0E-08 3.3E-10 5.0
8 2.1E-07 2.5E-09 4.8E-12 2.2E-13 5.0E-13 6.6E-13 ∼= 9.0

Optimal meshes achieves balance between accuracy and cost

7 / 70

When do we need a mesh?

A mesh is needed when

! We want to solve a given problem on a computer using a
method which requires a discrete representation of the domain

Two main problems to consider

! Numerical method:
Which numerical method to employ for defining a suitable
solution procedure for the mathematical problem.

! Mesh generation:
How to represent the domain of interest for use in our solution
procedure.

8 / 70

When do we need a mesh?

Thus, it is convenient if

! We can independently consider the problem solution

procedure and mesh generation as two distinct problems.

! Proto-type PDE solvers using a component-based setup which
provides the basis for this abstraction.

9 / 70

Domain of interest

Figure: F-15. From www.useme.org

In DG-FEM we have chosen to represent the problem domain Ω by
a partitioning of the domain into a union of K nonoverlapping
local elements Dk , k = 1, ...,K such that

Ω ∼= Ωh =
K
⋃

k=1

Dk

Thus, the local representation of our solution ukh is intimately
connected with the representation in terms of modal/nodal basis
functions on the elements of the mesh.

10 / 70

Terminology

Mesh terminology:

! Structured mesh
Nearly all nodes have the same number of neighbors
(interior vs. boundary nodes).

! Unstructured mesh
Non-obvious number of neighbors for each node in mesh.

! Conformal mesh
Nodes, sides and faces of neighboring elements are perfectly
matched.

! Hanging nodes
Nodes, which are not perfectly matched with a neighboring
element node.

11 / 70

Unstructured Mesh Generation

Motivation for the use of unstructured meshes

! To represent complex geometric features of solution domain.

! To straightforwardly adapt the mesh to features of the
solution via refinement/de-refinement.

For the generation of unstructured meshes it is standard to follow

! In 2D: Triangulation (fx. DistMesh in Matlab),
Quadrilaterals (few free options and no immediate options in
Matlab?).

! Simple automatic Tet-to-Quad conversion an option.

! Fix mesh.

! Post processing to assess and possibly improve initial mesh
quality.

12 / 70

What defines a mesh? I

! A mesh is completely defined in terms of a set of (unique)
vertices and defined connections among these.

! coordinate tables, VX and VY (unique vertices)
! mesh element table, EToV (triangulation/quadrilaterals/etc.)

! In addition it is customary to define types of boundaries for
specifying boundary conditions where needed.

! a boundary type table, BCType (element face types)

13 / 70

Mesh data

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Simple square mesh

1 2

34

D1

f1

f2f3
D2

f1

f2

f3

From our favorite mesh generator we obtain
! Basic mesh data tables, i.e. VX, VY and EToV

VX = [-1 1 1 -1];

VY = [-1 -1 1 1];

EToV = [1 2 4;

2 3 4];

14 / 70

What defines a mesh? I

! Very simple meshes can be created manually by hand.
! Automatic mesh generation is generally faster and more

efficient
! Some user input for accurately describing the geometry and

desired (initial) mesh resolution may be required.

! Note: Mesh data can be stored for reuse several times
- not necessary to generate every time!

15 / 70

Mesh generators available

! Lots of standard open source or commercial mesh generation
tools available!

! Test and pick you own favorite!
! Disadvantage: may require a translation script to be created

for use with your own solver (e.g. in Matlab).

! Important properties of mesh generators
! Grid quality (e.g. aspect ratio and element angles)
! Efficiency
! Features for handling BCs, adaptivity, etc.

! An example of a free software distribution package for
generating unstructured triangular meshes is DistMesh for
Matlab.

16 / 70

Unstructured Mesh Generation in Matlab with DistMesh

Figure: Figures are from
http://persson.berkeley.edu/distmesh/gallery_images.html.

! Persson, P.-O. and Strang, G. 2004 A simple mesh generator
in Matlab. SIAM Review. Download scripts at:
http://persson.berkeley.edu/distmesh/

! A simple algorithm that combines a physical principle of force
equilibrium in a truss structure with a mathematical
representation of the geometry using signed distance
functions.

! Can generate meshes in 1D, 2D and 3D with few lines of code.
17 / 70

Introduction to DistMesh for Matlab

! Algorithm (Conceptual):
1. Define a domain using signed distance functions.
2. Distribute a set of nodes interior to the domain.
3. Move interior nodes to obtain force equilibrium.
4. Apply terminate criterion when all nodes are (nearly) fixed in

space.

! Post-processing steps (Preparation):
(Note: not done by DistMesh)
5. Validate final output!
6. Reorder element vertices to be defined counter-clockwise

(standard convention).
7. Setup boundary table.
8. Store mesh for reuse.

18 / 70

Introduction to DistMesh for Matlab
Definition: A signed distance function, d(x)

d(x) =







< 0 , x ∈ Ω (interior)
0 , x ∈ ∂Ω (boundary)
> 0 , x /∈ Ω (exterior)

Define metric using an appropriate norm, e.g. the Euclidian metric.

Ω
d < 0

d = 0
∂Ω

d > 0

Figure: Example of a signed distance function for a circle.

19 / 70

Introduction to DistMesh for Matlab

Combine and create geometries defined by distance functions using
the Union, difference and intersection operations of sets

20 / 70

Introduction to DistMesh for Matlab
Example 1. Create a nonuniform mesh in 1D with local refinement
near center.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

x

h(
x)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Using DistMesh (in Matlab) only 3 lines of code needed:

>> d=inline(’sqrt(sum(p.^2,2))-1’,’p’);
>> h=inline(’sqrt(sum(p.^2,2))+1’,’p’);
>> [p,t]=distmeshnd(d,h,0.1,[-1;1],[]);

Weight function h measures distance from origo and adds a unit to
the measure.

21 / 70

Introduction to DistMesh for Matlab

Example 1. Create a uniform mesh for a square with hole.

Using DistMesh (in Matlab) only 3 lines of code needed:

>> fd=inline(’ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.4))’,’p’);
>> pfix = [-1,-1;-1,1;1,-1;1,1];
>> [p,t] = distmesh2d(fd,@huniform,0.125,[-1,-1;1,1],pfix);

22 / 70

Introduction to DistMesh for Matlab
Example 2. A refined mesh for a square with hole.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
1

1.5

2

2.5

x

Element size function

y

Si
ze

/h
0

Using DistMesh (in Matlab) only 4 lines of code needed:

>> fd = inline(’ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.4))’,’p’);
>> pfix = [-1,-1;-1,1;1,-1;1,1];
>> fh = inline([’min(sqrt(p(:,1).^2 + p(:,2).^2) , 1)’],’p’);
>> [p,t] = distmesh2d(fd,fh,0.125/2.5,[-1,-1;1,1],pfix);

! Size function fh defines relative sizes of elements (fh constant result in a
uniform mesh distribution)

! The initial characteristic size of the elements is h0.
! In final triangulation, the characteristic size of the smallest elements will

be approx. h0.

23 / 70

Introduction to DistMesh for Matlab

DistMesh output in two tables;
p Unique vertice coordinates
t Element to Vertice table

(random element orientations by DistMesh)

From these tables we can determine, e.g.

>> K=size(t,1); % Number of elements
>> Nv=size(p,1); % Number of vertices in mesh
>> Nfaces=size(t,2); % Number of faces/element
>> VX = p(:,1); % Vertice x-coordinates
>> VY = p(:,2); % Vertice y-coordinates
>> EToV = t; % Element to Vertice table

To ensure same element node orientations use DistMesh function

>> [p,t]=fixmesh(p,t); % remove duplicate nodes and orientate

24 / 70

Introduction to DistMesh for Matlab
Example 3. Selecting boundary nodes for a square with hole.

(a) Inner boundary nodes (b) Outer boundary nodes

Nodes can be selected using distance functions; |d | = 0 or |d | <tol.

>> fdInner = inline(dcircle(p,0,0,0.4),p);
>> nodesInner = find(abs(fdInner([p]))<1e-3);
>> fdOuter = inline(drectangle(p,-1,1,-1,1),p);
>> nodesOuter = find(abs(fdOuter([p]))<1e-3);
>> nodesB = find(abs(fd([p]))<1e-3);

25 / 70

Introduction to DistMesh for Matlab

Example 4. Uniform mesh for a unit ball (3D).

>> fh = @huniform;
>> fd=inline(’sqrt(sum(p.^2,2))-1’,’p’); % ball
>> Bbox = [-1 -1 -1; 1 1 1]; % cube
>> Fix = [-1 -1 -1; 1 -1 -1; 1 1 -1; -1 1 -1;...

-1 -1 1; 1 -1 1; 1 1 1; -1 1 1];
>> [Vert,EToV]=distmeshnd(fd,fh,h0,Bbox, Fix);

26 / 70

Visualization

MATLAB commands for visualization:

% 2-D Triangular plot (also works for quadrilaterals!)

>> triplot(t,p(:,1),p(:,2),’k’)

% 3-D Visualization of solution

>> trimesh(t,p(:,1),p(:,2),u)

% 3-D Visualization of solution

>> trisurf(t,p(:,1),p(:,2),u)

% 3-D Visualization of part of solution
>> trisurf(t(idxlist,:),p(:,1),p(:,2),u)

% Visualization of node connections in matrix

>> gplot(A,p)

27 / 70

Computing geometric information
We seek to determine outward pointing normal vectors for an
element edge of a straight-sided polygon.

Assume that the order of element vertices is counter-clockwise,
then for an boundary edge defined from (x1, y1) to (x2, y2) we find

∆x = x2 − x1, ∆y = y2 − y1

and thus a tangential vector becomes

t = (t1, t2)
T = (∆x ,∆y)T

which should be orthogonal to the normal vector. Hence an
outward pointing normalized vector is given as

n = (n1, n2)
T = (t2,−t1)

T/
√

t21 + t22

Normal vectors useful for imposing boundary conditions.

28 / 70

Local vertice ordering

To make sure that the vertices are ordered in an counter-clockwise
fashion, the following metric can be used

D =

(

x1 − x3

y1 − y3

)

·

(

y2 − y3

−(x2 − x3)

)

= t̂31 · n̂32

If D < 0 then ordering is clockwise and if D > 0 counter-clockwise.

function [EToV] = Reorder(EToV,VX,VY)
% Purpose: Reorder elements to ensure counter clockwise orientation
x1 = VX(EToV(:,1)); y1 = VY(EToV(:,1));
x2 = VX(EToV(:,2)); y2 = VY(EToV(:,2));
x3 = VX(EToV(:,3)); y3 = VY(EToV(:,3));
D = (x1-x3).*(y2-y3)-(x2-x3).*(y1-y3);
i = find(D<0);
EToV(i,:) = EToV(i,[1 3 2]); % reorder

29 / 70

Creating special index maps I

For imposing boundary conditions or extracting information from
the solution it can be useful to create special index maps.

Having already created a mesh, create a new boundary table of
size K × Nfaces for all element faces

>> BCType = int8(not(EToE)); % initialization

This table can then be used to store information about different
types of boundaries, e.g. Inflow/Outflow, West/East, etc.

30 / 70

Creating special index maps I

To create different index maps for imposing special types of
boundary conditions, e.g. Dirichlet and Neumann BC’s on all or
selected boundaries

% for selecting all outer boundaries
>> x1 = -1; x2 = 1; y1 = -1; y2 = 1;
>> fd = @(p) drectangle(p,x1,x2,y1,y2);
>> BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fd,AllBoundaries);

% for selecting south and west boundaries
>> fd = @(p) drectangle(p,-1,2,-1,2);
>> BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fd,Dirichlet);

% select north and east boundaries
>> fd = @(p) drectangle(p,-2,1,-2,1);
>> BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fd,Neumann);

Note: new version v2 of CorrectBCTable in ServiceRoutintes/

31 / 70

Creating special index maps I
Then, using the BCType table we can create our special index
maps

% face maps
>> mapB = ConstructMap(BCType,AllBoundaries);
>> mapD = ConstructMap(BCType,Dirichlet);
>> mapN = ConstructMap(BCType,Neumann);

% volume maps
>> vmapB = vmapM(mapB);
>> vmapN = vmapM(mapN);
>> vmapD = vmapM(mapD);

Remember to validate the created index maps

For example

% visual check of boundary volume map
>> triplot(EToV,VX,VY,’k’);
>> hold on;
>> plot(x(vmapB),y(vmapB),’ro’);
% or via precomputed face coordinate arrays
>> plot(Fx(mapB),Fx(mapB),’b*’);

32 / 70

Creating special index maps
In problems with periodic boundaries the standard indexmaps can
be modified systematically in the following way

1 Create and modify a BCType table to hold information about
boundary types
- ServiceRoutines/CorrectBCTable_v2

2 For simple opposing boundaries that are conforming create a
distance function for generating a sorted list of face center
distances

3 From the sorted list, create indexmaps for each boundary
- ConstructPeriodicMap

4 Modify volume-to-face index map vmapP to account for
periodicity.

5 Validate implementation!

Let’s consider a square mesh Ωh([−1, 1]2)...

33 / 70

Creating special index maps

Step 1: Create and modify a BCType table

BCType = int16(not(EToE));

fdW = @(p) drectangle(p,-1,2,-2,2);
fdE = @(p) drectangle(p,-2,1,-2,2);

BCcodeW = 1; BCcodeE = 2;

BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fdW,BCcodeW);
BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fdE,BCcodeE);

fdS = @(p) drectangle(p,-2,2,-1,2);
fdN = @(p) drectangle(p,-2,2,-2,1);

BCcodeS = 3; BCcodeN = 4;

BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fdS,BCcodeS);
BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fdN,BCcodeN);

34 / 70

Creating special index maps

Step 2: Create a distance function useful for sorting opposing face
centers

pv = [-1 1; 1 -1;];
% dsegment is a signed distance function for a line
% provided in DistMesh package
fd = @(p) dsegment(p,pv); % line segment from (-1,1) to (1,-1)

Step 3: Create indexmaps for each periodic boundary

[mapW,mapE] = ConstructPeriodicMap(EToV,VX,VY,BCType,BCcodeW,BCcodeE,fd);
[mapS,mapN] = ConstructPeriodicMap(EToV,VX,VY,BCType,BCcodeS,BCcodeN,fd);

Step 4: Modify exterior vmapP to be periodic with vmapM

vmapP(mapW) = vmapM(mapW);
vmapP(mapE) = vmapM(mapE);
vmapP(mapS) = vmapM(mapS);
vmapP(mapN) = vmapM(mapN);

35 / 70

Creating special index maps

Step 5: Validation!

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−0.5

0

0.5

x

time = 1.00

y

u

! Periodic initial condition uh(x , y , 0)

! Constant advection speed vector arbitrary c = (cx , cy)T

! Upwind flux gives as expected ideal convergence O(hN+1)

36 / 70

Creating special index maps

function [rhsu] = AdvecRHS2DupwindPeriodic(u, timelocal, cx, cy, alpha)

% function [rhsu] = AdvecRHS2D(u, timelocal, a, alpha)
% Purpose : Evaluate RHS flux in 2D advection equation
% using upwinding

Globals2D;

% Define flux differences at faces
df = zeros(Nfp*Nfaces,K);

% phase speed in normal directions
cn = cx*nx(:) + cy*ny(:);

% upwinding according to characteristics
ustar = 0.5*(cn+abs(cn)).*u(vmapM) + 0.5*(cn-abs(cn)).*u(vmapP);
df(:) = cn.*u(vmapM) - ustar;

% local derivatives of fields
[ux,uy] = Grad2D(u);

% compute right hand sides of the PDE’s
rhsu = -(cx.*ux + cy.*uy) + LIFT*(Fscale.*df);
return

37 / 70

What defines a ”good” mesh?
To define a ”good” mesh (cf. Shewshuk ref.) we are usually
concerned about

! accuracy in representation of the (usually) unknown
solution(!)

! minimal cost in solution process for a given numerical
accuracy requirement, recall for DG-FEM

CPU ∝ C (T)K (N + 1)2, ||u − uh||2,Ωh
∝ O(hp)

! approximating the right geometry of the problem(!)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x/a

y/
a

2 3 4 5 6 7
10−6

10−5

10−4

10−3

10−2

10−1

Poly. order, P

Er
ro

r

p−convergence

Linear
Curvilinear

38 / 70

Three general rules for ”good” meshes

There are three general rules of thumb dictated by error analysis;

! very large and small element angles should be avoided
- this suggest that equilateral triangles are optimal

! elements should be placed most densely in regions where the
solution of the problem and its derivatives are expected to
vary rapidly,

! high accuracy requires a fine mesh or many nodes per element
(the latter conditions yields high accuracy, however, only if the
solution is sufficiently smooth).

As a user, it is always a good idea to visualize the mesh and to
check if these criteria are met.

! To improve mesh quality, it can be beneficial to apply some
mesh smoothing procedure
Fx. use smoothmesh.m from Mesh2D v23, Matlab Central
Exchange.

39 / 70

A simple measure of mesh quality

The mesh quality measure described by Persson & Strang (2004) is
adopted in the following.

A common mesh quality measure is the following ratio

q = 2
rin
rout

where rin is the radius of the largest inscribed circle and rout is the
smallest circumscribed circle.

! Equilateral triangles has q = 1

! Degenerate triangles has q = 0 (bad elements)

! ”Good triangles” we define as having q > 0.5 (rule of thumb)

40 / 70

On Mesh quality metrics

As proposed by P. M. Knupp (2007) 1

Mesh quality concerns the characteristics of a mesh that

permit a particular numerical PDE simulation to be

efficiently performed, with fidelity to the underlying

physics, and with the accuracy required for the problem.

In short: Mesh quality cannot be defined solely in terms of element
shapes. Problem characteristics and requirements needs to be of
concern in the assessment.

1P. M. Knupp (2007) Remarks on Mesh Quality. 45th AIAA Aerospace
Sciences Meeting and Exhibit, 7-10 January, 2007. Reno, NV.

41 / 70

Laplacian smoothing

To improve the mesh quality, we can apply a simple Laplacian
smoothing procedure

x
[k+1]
i =

1

Ni ,connect

Ni,connect
∑

j=1

αix
[k]
j , ∀i : xi /∈ ∂Ωh

with αj weight factors and Ni ,connect the number of nodes
connected to the i ’th node dictated by the mesh structure.

There are a few pitfalls

! Mesh tangling can occur near reentrant corners and needs
special treatment.

! Local mesh adaption (anisotropic mesh density) can be
reduced in the process.

42 / 70

Mesh quality

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Simple square mesh

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

Bad elements
detected!

Mesh quality

Pe
rc

en
ta

ge
 o

f e
le

m
en

ts

fd = inline(’drectangle(p,-1,1,-1,1)’,’p’,’param’);
fh = @huniform;
h0 = 0.35;
Bbox = [-1 -1; 1 1];
pfix = [-1 -1; 1 -1; 1 1; -1 1];
param = [];

% Call distmesh
[Vert,EToV]=distmesh2d(fd,fh,h0,Bbox,pfix,param);
[q] = MeshQuality(EToV,VX,VY);

43 / 70

Mesh quality

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Simple square mesh

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Smootened mesh

Remark: Degenerated triangle fixed by Laplacian smoothing.

% Call distmesh
[Vert,EToV]=distmesh2d(fd,fh,h0,Bbox,pfix,param);

% Call Mesh2d v23 function
maxit = 100; tol = 1e-10;
[p,EToV] = smoothmesh([VX’ VY’],EToV,maxit,tol);
VX = p(:,1)’; VY = p(:,2)’;

44 / 70

Mesh quality

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Smootened mesh

0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

Mesh quality

Pe
rc

en
ta

ge
 o

f e
le

m
en

ts

45 / 70

Mapping a straight-sided quadrilateral
In practice, a map between a straight-sided quadrilateral D and a
reference domain I

I = {r = (r , s)|(r , s) ∈ [−1, 1]2}

is useful. D is defined in terms of four vertices {vj}4j=1 defined by

coordinates pairs {xj}4j=1 in physical space and typically ordered
anti-clockwise.

y

x

D

 v1

 v2

 v3

 v4

I

(−1,−1) (1,−1)

(1,1)(−1,1)

s

r

 x=! (r)

 r=!−1(x)

−" s

" r

" s

−" r

Figure: Notation for the mapping between two straight-sided
quadrilaterals.

46 / 70

Mapping a straight-sided quadrilateral
An explicit linear mapping Ψ which takes a general quadrilateral,
x ∈ D, to the straight-sided reference quadrilateral I can be
defined as

Ψ(r , s) =
1

4

[

x1(1− r)(1− s) + x2(r + 1)(1 − s)

+x3(r + 1)(s + 1) + x4(1− r)(s + 1)
]

Thus given the four corner points (vertices) of a straight-sided
quadrilateral in physical space we can map any point in the
computational domain to the corresponding physical coordinate.
The mapping can be expressed compactly as

x = λ1v1 + λ2v2 + λ3v3 + λ4v4 = Ψ(r), vi =

(

xi

y i

)

where the generalized barycentric coordinates λi are defined as

λ1 = (1−r)(1−s)
4 , λ2 = (r+1)(1−s)

4 , λ3 = (r+1)(s+1)
4 , λ4 = (1−r)(s+1)

4

47 / 70

Transformation of Equations under Mappings
The introduction of coordinate mappings between physical and
computational spaces implies transformation of differential
equations as well.
The effect of a mapping can be determined using the chain rule.
Given a map x = Ψ(r) derivatives of a function u(x , y) transform
according to

∂u

∂x
=

∂u

∂r

∂r

∂x
+

∂u

∂s

∂s

∂x
∂u

∂y
=

∂u

∂r

∂r

∂y
+

∂u

∂s

∂s

∂y

which can be expressed in matrix-vector form as

[∂u
∂x
∂u
∂y

]

=

[

rx sx
ry sy

] [

∂u
∂r
∂u
∂s

]

having introduced a compact notation for the coordinate
derivatives.

48 / 70

Metric coefficients of mapping in 2D
The constant metrics of the linear affine mapping can be found by
the bijective property

∂x

∂r

∂r

∂x
=

[

xr xs
yr ys

] [

rx ry
sx sy

]

=

[

1 0
0 1

]

From which we can deduce the following metric relationships

rx = 1
J
ys , ry = − 1

J
xs , J = xrys − xsyr ,

sx = − 1
J yr , sy = 1

J xr

For any two straight-sided quadrilaterals connected through Ψ(r)

xr =
s−1
4 v1 + 1−s

4 v2 + s+1
4 v3 − s+1

4 v4,

xs =
r−1
4 v1 − r+1

4 v2 + r+1
4 v3 − 1−r

4 v4

with the Jacobian J expressed in terms of these coefficients.
It is possible to show that J > 0 for quadrilaterals with vertices
ordered counter-clockwise.

49 / 70

Metric coefficients of mapping in 2D
Boundary normal vectors are often needed for evaluating boundary
contributions and conditions. These can be determined by making
use of the directional transformation obtained via the chain rule

[

∂x
∂y

]

=

[

rx sx
ry sy

] [

∂r
∂s

]

=
[

∇r ∇s
]

[

∂r
∂s

]

which is equivalent to the action of stretching and rotation
operations on the directional vector.
The normal vectors which are either parallel or orthogonal to the
coordinate lines in the reference domain are

n1 =

(

0
−1

)

⇒ n̂1 = − ∇s
||∇s||

n2 =

(

1
0

)

⇒ n̂2 =
∇r

||∇r ||

n3 =

(

−1
0

)

⇒ n̂3 = − ∇r
||∇r ||

n4 =

(

0
1

)

⇒ n̂4 =
∇s

||∇s||
50 / 70

Local approximations in 2D on quads

On quadrilaterals we can construct the reference basis as a tensor
product between 1D basis functions

ψm(r) = P̃
(0,0)
i (r)P̃(0,0)

j (s)

where P̃
(α,β)
n is the n’th order normalized Jacobi polynomial.

This makes it possible to exploit the orthogonal properties of the
one-dimensional basis functions on the reference quadrilateral.

For the interpolations on the quadrilaterals to be well-behaved we
use the optimal lobatto-gauss node positions identified in 1D.
These node distributions are also used in gaussian cubature rules.

Construction of discrete operators is similar to earlier approaches.
See Startup2DQuad.m

51 / 70

Discrete operations in 2D
The approximation of metric terms can be computed for each of
the collocation points through the discrete operations

xr = Drx, ys = Dsy

yr = Dry, ys = Dsy

J = xr " yr − xs " yr

The differentiation matrices for use in reference domain are

Dr = V−1Vr , Ds = V−1Vs

With these, we are in position to determine the discrete directional
mappings derived from the chain rule

Dx = diag(rx)Dr + diag(sx)Ds

Dy = diag(ry)Dr + diag(sy)Ds

Thus, when mappings are employed we can substitute the physical
spatial derivative operations with these in numerical schemes.

52 / 70

Unstructured Mesh Conversion (conforming elements)
It is possible to efficiently convert triangles to quadrilaterals in a
mesh using a single iteration of the Catmull-Clark subdivision
algorithm. Work complexity is O(K) with K number of elements.
Each triangle in the mesh is subdivided to consist of three
quadrilaterals according to the following subdivision template

(a) Before subdivision (b) After subdivision

For use with PDE solvers, it is standard to use anti-clockwise
vertice orderings in EToV.

53 / 70

Unstructured Mesh Generation in Matlab

>> fd=inline(’ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.5))’,’p’);
>> fh=inline(’min(4*sqrt(sum(p.^2,2))-1,2)’,’p’); % Mesh grading
>> [p,EToV]=distmesh2d(fd,fh,0.14,[-1,-1;1,1],[-1,-1;-1,1;1,-1;1,1]);
>> [p,EToV]=fixmesh(p,EToV); % Remove duplicate nodes, reorder vertices
>> VX = p(:,1); VY = p(:,2);
>> [Nv, VX, VY, K, EToV] = CatmullClarkSubdivision(VX,VY,EToV);

(c) Before subdivision (Triangles) (d) After subdivision (Quads)

54 / 70

Enhancing mesh quality by Laplace smoothening
In a post-processing step node locations can be adjusted while
maintaining element connectivitites.

xi =
1

Nconnect

Nconnect
∑

i=1

xc(i)

>> [VX,VY] = MeshSmoothingQuadMesh(EToV,VX,VY,20);

(e) Before smoothening (f) After smoothening

55 / 70

Enhancing mesh quality by removing high valence nodes
Node valence is defined as the number of edges attached to a node.

Figure: Templates for removing high valence nodes in quad meshes by
inserting an element. Top row: Meshes with one high valence node.
Bottom row: Meshes with high valence node removed.

56 / 70

Enhancing mesh quality by removing high valence nodes

>> for q = 1:2
for Valence = [8:-1:6]

[EToV,VX,VY,K,Nv] = RemovalHighValenceNodes(EToV,VX,VY,Valence);
[VX,VY] = MeshSmoothingQuadMesh(EToV,VX,VY,20);

end
end

(a) Before node removal (b) After node removal and
smoothening

57 / 70

Mesh quality

To try and improve initial mesh quality a number of mesh
post-processing and cleanup techniques are often used

! Mesh cleanup or improvement techniques
(node/edge swapping, point removal/insertion, etc.)

! Mesh smoothing
(move vertices to improve mesh quality)

! Mesh coarsening and improvement
(doublet removal, edge rotation, diagonal collapse, etc.)

! Feature preserving techniques
(no change of boundary shapes, aligned interior mesh
interfaces, etc.)

To support assessment of the quality of meshes it is useful to
introduce some metrics for characterizing mesh properties.
Remark: In fact, the quality of any mesh depends on the true
solution of the physical problem.

58 / 70

Mesh quality metrics

For assessment of mesh quality and automatic detection of bad
elements (not always visible!) it is useful to introduce mesh quality
metrics.
Simple metric. A simple metric can be based on the internal
angles θi measured at the vertices at the inside of the
quadrilateral, i = 1, 2, 3, 4, of the quadrilateral in the form

q =
4
∏

i=1

(

1−

∣

∣

∣

∣

π
2 − θi

π
2

∣

∣

∣

∣

)

, 0 ≤ q ≤ 1

This quality indicator is not taking into account the aspect ratio,
which may also be important. At the extremities, the metric can
detect rectangles (q = 1) and quadrilaterals which have been
distorted to triangles (q = 0).

59 / 70

Mesh quality metrics

>> [q] = MeshQualityQuads(EToV,VX,VY);

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

7

Quadrilateral Mesh quality

Pe
rc

en
ta

ge
 o

f e
le

m
en

ts

(c) Metric statistics. (d) Quad mesh just after
Tet→Quad conversion. Bad
elements detected in red.

Remark: Threshold for automatically detecting good and bad
elements is somewhat arbitrary as it is based entirely on element
shape without any consideration of the solution.

60 / 70

Mesh for discretization
The elements of a final mesh can be equipped with nodes through
transfinite mappings based on tensorproducts of grid points as
illustrated.

(e) Before transfinite interpolation
of nodes.

(f) After transfinite interpolation of
nodes (N = 4 and LGL).

High-order basis functions can alleviate the ”pain” in mesh
generation...”

61 / 70

Mesh for discretization

Grid lines are local to the elements as illustrated.

(g) Grid lines of final mesh (h) Corner zoom.

62 / 70

Mesh quality metrics

>> [q] = MeshQualityQuads(EToV,VX,VY);

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

Quadrilateral Mesh quality

Pe
rc

en
ta

ge
 o

f e
le

m
en

ts

(i) Metric statistics. (j) Quad mesh after Tet→Quad
conversion, node removal and
smoothening. Bad elements de-
tected in red.

Some improvements, however, we need to play more tricks to
improve further...

63 / 70

Open source mesh generation software

Unstructured mesh generation software

! DistMesh (http://www-math.mit.edu/~persson/mesh/)

! Triangle
(http://www.cs.cmu.edu/~quake/triangle.html)

! Mesh2D (http://www.mathworks.com/matlabcentral/)

! Gmsh (http://www.geuz.org/gmsh/)

Note: list is not exhaustive.

Do you have a favorite?

64 / 70

References

Mesh generation software

! Owen, J. S. (1999) A Survey of unstructured mesh generation
technology.
A Meshing Software Survey (from 1999?) can be found at
http://www.andrew.cmu.edu/user/sowen/softsurv.html.

On the use of Mesh Quality Metrics

! Field, D. A. (2000) Qualitative Measures for Initial Meshes.
International Journal for Numerical Methods in Engineering
47:887906.

! Shewchuk, J. R. What is a Good Linear Element?
Interpolation, Conditioning, and Quality Measures. Preprint.

! Knupp, P. M. (2007) Remarks on Mesh Quality.

65 / 70

Putting the pieces together in a 2D code
Consider the linear advection equation in 2D

∂tu + cx∂xu + cy∂yu = 0, (x , y) ∈ [−1, 1]2

with IC and BC conditions defined using exact solution

u(x , y , t) = sin (π(x − cx t)) sin (π(y − cy t))

Decomposition of domain in terms of quadrilaterals or triangles
can be done as

66 / 70

Putting the pieces together in a 2D code

dukh
dt

= −(cxD
k
x + cyD

k
y)u

k
h + (Mk)−1

∮

∂Dk

n̂ · (f k − f ∗)h(x)dxk

f ∗(u−, u+) = κcu− + (1− κ)cu+, κ = 1
2

(

1 +
n̂ · c

|n̂ · c|

)

function [rhsu] = AdvecRHS2Dupwind(u, timelocal, cx, cy)
% Purpose : Evaluate RHS flux in 2D advection equation by upwinding
Globals2D;
% Define flux differences at faces
df = zeros(Nfp*Nfaces,K);
cn = cx*nx(:) + cy*ny(:); % normalized phase speed in normal direction
kappa = 0.5*(1+cn./abs(cn)); % if kappa=1 then outflow => pick uM, if kappa=0 then inflow => pick uP
ustar = (kappa .* u(vmapM) + (1-kappa) .* u(vmapP));
df(:) = u(vmapM) - ustar;

% Impose boundary conditions at inflow
Lx = 2; Ly = 2; uexact = sin(2*pi/Lx*(Fx-cx*timelocal)).*sin(2*pi/Ly*(Fy-cy*timelocal));
uin = uexact(mapD);
uM = u(vmapD);
df(mapD) = uM - (kappa(mapD) .* uM(:) + (1-kappa(mapD)) .* uin(:));
df(:) = cn.*df(:);

% compute right hand sides of the PDE’s
[ux,uy] = Grad2D(u);
rhsu = -(cx*ux + cy*uy) + LIFT*(Fscale.*df);
return

67 / 70

2D Advection equation

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−0.5

0

0.5

x

time = 1.00

y
u

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
time = 1.00

x

y

Figure: a) Snapshot of Computed solution using quadrilateral mesh. b)
Top view of computed solution. No. elements K = 57 and poly. order
N = 3. (cx , cy) = (1, 0.3).

68 / 70

2D Advection equation

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−0.5

0

0.5

x

time = 1.00

y

u

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
time = 1.00

x

y

Figure: a) Snapshot of Computed solution using triangle mesh. b) Top
view of computed solution. No. elements K = 65 and poly. order N = 3.
(cx , cy) = (1, 0.3).

Remark: Same solver used for both quad and tri meshes.
69 / 70

Rotating Hill Problem (2D)

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

x

time = 1.00

y

u

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Simple L−shaped mesh

Figure: a) Snapshot of Computed solution using triangle mesh. b)
L-shaped domain.

70 / 70

