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Summary

In an intuitionistic logic the law of excluded middle is disregarded. However it
is shown that if an intuitionistic logic accepts the axioms of choice and exten-
sionality, then the law of excluded middle can be derived in that very logic. A
logic that accepts these two axioms will therefore always be classical and cannot
be intuitionistic.

In this thesis the intuitionistic higher order logic HOLPro is presented, and it
is shown that this logic turns out classical when adding the axioms of choice
and extensionality to it. It is shown by deriving the law of excluded middle and
Peano arithmetic from HOLPro. The modus ponens rule is needed to use the
axiom of choice to make HOLPro classical, and it is therefore derived in the
logic.

An implementation of the logic has been made in Prolog. The types, terms,
axioms and derived rules of the logic have been implemented to show, how the
deduction rules of HOLPro can be used to validate a formula from one or more
other formulas, which is the purpose of a proof assistant.
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Resume

I en intuitionistisk logik er ”the law of excluded middle” ikke gyldig. Dog kan
det vises, at hvis en intuitionistisk logik accepterer ”axiom of choice” og ”ax-
iom of extensionality”, s̊a kan ”the law of excluded middle” alligevel udledes i
logikken. En logik der accepterer disse to aksiomer vil derfor altid være klassisk
og ikke intuitionistisk.

I denne opgave vil en intuitionistisk højereordenslogik HOLPro blive præsen-
teret, og det vil blive vist, at denne logik er klassisk, n̊ar ”axiom of choice” og
”axiom of extensionality” tilføjes til den. Det er vist ved at udlede ”the law
of excluded middle” og Peano aritmetik fra HOLPro. Modus ponens reglen er
nødvendig for at kunne bruge ”axiom of choice” til at gøre HOLPro klassisk,
og den er derfor ogs̊a udledt fra den opstillede logik.

En implementation af logikken er blevet lavet i Prolog. Typerne, termerne,
aksiomerne og de afledte regler fra logikken er blevet implementeret for at vise,
hvordan inferensreglerne i HOLPro kan blive brugt til at verificere en formel
fra en eller flere andre formler, hvilket er form̊alet for en bevisassistent.
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Chapter 1

Introduction

In classical logic a formula can either be true or false. In intuitionistic logic this
is not taken for granted. In this special kind of logic a formula is only considered
true if a proof of this exists, and a formula is only considered false if a proof of
this exists. Therefore a contradicted proof of falsity cannot be used as a proof
of truth for a formula and vice versa. This view on logic questions some of the
most basic tautologies in classical logic:

• p ∨ ¬p (law of excluded middle)

• ¬(¬p)⇔ p (double-negation)

In intuitionistic logic these formulas cannot be taken as valid. However if the
axioms of choice and extensionality are accepted, it can be shown that the law
of excluded middle is derivable from an intuitionistic logic (and thereby all for-
mulas that are valid in classical logic).

The purpose of this thesis is more of an intellectual kind than oriented towards
a specific problem. The thesis will present an intuitionistic higher order logic
called HOLPro. Typed means that the variables in the logic will have types,
just as in a programming language. This logic will be defined by some basic
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axioms, and derived rules will be deduced from them. From HOLPro it should
be possible to derive the law of excluded middle and Peano arithmetic by ac-
cepting the axioms of choice and extensionality.

Furthermore the logic will be used to implement a proof assistant. A proof assis-
tant is a programme that can assist in proving a theorem. For the implemented
proof assistant this will be done with the axioms and derived rules of HOLPro.
These rules can be used to prove one formula from one or more other formulas.
As an example we will show the modus ponens rule that is ultimately derived
in HOLPro. This rule can be shown formally as

Γ→ p⇒ q ∆→ q

Γ ∪∆→ q
mp

Using this rule it is possible to confirm the validity of the formula Γ ∪∆ → q
from the formulas Γ → p ⇒ q and ∆ → q. When working with classical logic
we often take this rule for granted, but it is an interesting challenge to ver-
ify that the modus ponens rule is also a valid deduction rule in intuitionistic
logic. The purpose of the implementation is to show, that it is possible to make
a proof assistant with an intuitionistic logic that can use the modus ponens rule.

The goal of the thesis is two-fold:

• Implement a proof assistant in Prolog based on an intuitionistic higher
order logic that can use the modus ponens rule.

• Show that the logic used for the proof assistant is classical when the axioms
of choice and extensionality are accepted.

The theory behind HOLPro is described in chapter 2. This includes higher
order logic, intuitionistic logic and deductions in logic.
The deduction rules of HOLPro will be presented in chapter 3. It will be stated
which axioms the logic is based on, which deduction rules can be derived from
the axioms and how the usual logical connectives (for instance conjunction) can
be described in HOLPro.
The implementation in Prolog and tests of HOLPro will be described in chapter
4 and 5. It is shown how the implementation should be understood and used
for deriving formulas from other formulas.
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HOLPro will be discussed in chapter 6. In this chapter it will be discussed how
HOLPro can be used for deriving the law of excluded middle and be turned into
a classical logic. Furthermore Peano arithmetic will be derived from HOLPro.
In the end other subjects will be discussed to investigate if HOLPro could be
axiomatised or implemented in a different and maybe better way.
In the end conclusions from this thesis will be presented in chapter 7.
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Chapter 2

Higher-order logic

Higher-order logic is extended from first-order logic by allowing quantification
on predicate, propositional and function variables. An example could be shown
with the 1-ary predicate p. This predicate takes as argument an individual
variable and gives a boolean value. A formula in first-order logic could then be

∀x.p(x)

Now we introduce a new predicate q. This predicate takes as argument another
predicate and gives a boolean value. A formula with q could then be

∀p∀x.q(p(x))

This is an example of a formula in second-order logic. We can go further and
give a formula in third-order logic

∀q∀p∀x.r(q(p(x)))
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We can continue in this way forever. Therefore we can make arbitrarily high
order logics. The logic which includes all finite-order logics is called omega-order
logic or finite type theory. Any finite-order logic is a subset of this logic. The
reason why it is also called finite type theory is that symbols in the logic are
typed. Just like a variable in a programming language can be of type integer,
real, boolean or something else, a symbol in omega-order logic has a type.
References: [2]

2.1 Intuitionistic logic

Intuitionistic logic can be viewed as a restriction of classical logic. In classical
logic a formula is either true or false, even if no proof of neither of them exists.
In intuitionistic logic, this assumption is not taken. Instead a formula is only
considered true if a proof of this exists and only considered false if a proof of this
exists. If neither exists, the formula is considered to be neither true nor false. In
classical logic validity is defined by recursion over the structure of a formula. For
instance in the formula p ∧ q both p and q have to be true to make the overall
formula true. Again these two formulas might consist of other compounded
formulas that have to be evaluated recursively. In intuitionistic logic provability
is considered essential. A formula in intuitionistic logic is true if and only if there
exists a proof of this. A proof of the different logical connectives are defined as
following:

• ⊥ has no proof.

• A proof of p⇒ q is a rule that can make any proof of p into a proof of q.

• A proof of p ∧ q contains both a proof of p and of q.

• A proof of p∨ q is a proof of either p or q and an indication of which one.

• A proof of ∀x.P [x] is a rule that can prove P [a] for any object a.

• A proof of ∃x.P [x] is a proof of P [a] for an object a.

It is easily seen that provability of a formula in intuitionistic logic has a recur-
sive structure similar to the evaluation of formulas in classical logic. However
some formulas that is considered valid in classical logic cannot be proved in
intuitionistic logic. This is for instance

• ¬(¬p)⇔ p (double-negation)
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• p ∨ ¬p (law of excluded middle)

• p ∨ q ⇔ ¬p⇒ q

These rules’ validity in classical logic is built on the very assumption, that if a
formula is not true, then it must be false and vice versa.
References: [8].

2.2 Deduction trees

The formal proof system that will be presented is built on deduction trees. A
deduction tree is a notation for a rule with premises and a conclusion. The
premises can be viewed as arguments for the rule and the conclusion is the
result. An example of a deduction tree could be

A B
A ∧B conj

This rule says that if A is true and B is true, then A ∧ B is also true. As a
notation for the logical formulas we will use sequents. Sequents are on the form
Γ → ∆, where Γ is the assumptions and ∆ is the consequents. A sequent says
that if its assumptions are true then its consequents are also true. We restrict
∆ to be at most one formula, as this will keep the deductions simpler, but also
make the logic intuitionistic.
References: [8], [1].
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Chapter 3

The system HOLPro

In this chapter the logical principles of the implemented proof assistant will be
presented. First we will look on the formulation of type theory that will be used.
This formulation will be called HOLPro, which is short for ”higher order logic
in Prolog”. We start by defining the type symbols. We use the greek letters
α and β to denote type symbols. Furthermore we introduce functions to the
system. Type symbols in HOLPro are defined as follows:

• ι (iota) denotes the type of individual variables.

• o (omicron) denotes the type of truth values.

• The function which as argument takes a type symbol α and returns a
type symbol β has the type (αβ). This can also be written (α → β) like
functions are in many functional programming languages. α is said to be
the function’s domain and β its range.

By using curring it is possible to restrict the functions of HOLPro to take only
one argument. Curring says that if a function takes more than one argument,
we can split up the function into several functions that take one argument each
and use these functions as arguments themselves. An example could be

f(x, y) = f(g(y))
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Therefore a function f(xα
1
1, . . . , xα

n
n) will have the type (α1(α2 . . . (αnβ))).

In HOLPro a formula will always have a type. Therefore we can write that a
formula is of a special type. The definition of formulas is as follows:

• A variable or constant Aα is of type α. These are the most basic formulas
in HOLPro.

• AαβBβ is of type α. This kind of formula is called an application. The
first part of the formula Aαβ will be called the function and the second
part Bβ will be called the argument.

• λxαBβ is of type (αβ). This kind of formula is called an abstraction.

In an application the function is of type function (as the name indicates) and is
applied to the second formula that can be of any type. It is important that the
types of the first and second formula match. The domain of the first formula
must be the same as the range of the second formula. Whereas an application is
like using a function on an argument, an abstraction is like creating a function.
An abstraction consists of a variable (the binding variable) and another formula,
and the abstraction is said to bind the variable in the formula. When a variable
occurs as the binding variable for an abstraction, it is called a bound variable.
If a variable does not occur as the binding variable in an abstraction, it is called
a free variable. Notice that in the implementation a formula will be called a
term.
References: [2].

3.1 Axioms for HOLPro

In the deduction system of HOLPro we will often work with theorems instead
of terms. Theorems are the implementation of sequents. A theorem is a term
that have an assumption list, which is a list of other terms. If all the terms
in the assumption list are true, then the term is also true. The assumption
list will be called the assumptions, and the term will be called the consequent.
Whereas a term can be made directly from variables, constants, applications
and abstractions, a theorem has to be made from one of the basic or derived
rules. A theorem therefore has to be proved from terms and the deductive rules
to secure that the theorem holds. The consequent t of a theorem that has no
assumptions will always be true, and the theorem will be written like→ t. This
however cannot be guaranteed fully when implemented in Prolog, because it is



3.1 Axioms for HOLPro 11

possible to write anything everywhere in this language.
The deductive system is built around the equality primitive, as this is the only
primitive that will occur in the rules. The first two axioms we will define are
reflexivity and transitivity for equality:

→ t = t
refl

Γ→ s = t ∆→ t = u
Γ ∪∆→ s = u

trans

The refl axiom says, that a theorem can be made by setting any term equal to
itself. Trans says, that if the rhs (right hand side) of the first premise and the
lhs (left hand side) of the second are equal, then the lhs of the first premise and
the rhs of the second premise are equal. In this situation equal means alpha
equal. Alpha equality will be explained later.
Now we will specify two axioms that enable us to make equalities for applications
and abstractions given equalities for the subcomponents. The two axioms are
congruence and abstraction:

Γ→ s = t ∆→ u = v
Γ ∪∆→ s(u) = t(v)

cong

Γ→ s = t
Γ→ (λx.s) = (λx.t)

abs

To be able to use the cong rule s(u) and t(v) must be formulas in the language
of our logic. That is, s has to be of type function and the type of its domain
must be the same as the range for u. This also counts for t and v. In abs we
require that the variable x is not free in any of the terms in Γ.
Now we present the beta axiom and the extensionality axiom. The first one
specifies the inverse of an abstraction and an application. The second one is a
special case where the variable of the abstraction does not occur freely in the
body of it.

→ (λx.t)x = t
beta

→ λx.(tx) = t
eta, x /∈ FV (t)

The beta rule says, that an application consisting of an abstraction and the
bound variable variable (e.g. the abstraction is applied to its binding variable)
equals the body of the abstraction. Eta says that if the binding variable of an
abstraction does not occur freely in the body, then this abstraction will always
be equal to its body, no matter what term it is used on. The constraint of the
binding variable not occuring in the body can more formally be specified like
x /∈ FV (t), where FV denotes the free variables. This eta rule is also known as
η-conversion.
The next axiom is the basic property of a sequent for a term of type boolean:

{po} → po
assume
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The next axiom is a modus ponens-like rule for equality:

Γ→ p = q ∆→ p

Γ ∪∆→ q
eq mp

Now an antisymmetry axiom with theorems will be presented:

Γ→ p ∆→ q

(Γ− {q}) ∪ (∆− {p})→ p = q
deduct antisym

The last rule specifies instantiation of variables. Instantiation is substitution of
all free occurrences of a variable with another term that has the same type as
the variable.

Γ[x1, ..., xn]→ p[x1, ..., xn]

Γ[t1, ..., tn]→ p[t1, ..., tn]
inst

References: The definitions of the axioms are from [8].

3.2 Derived rules

We can develop derived equality rules by combining the axioms of HOLPro.
These derived rules will be presented as derivation trees. The trees are built from
the axioms or derived rules already presented. The first two rules are modified
versions of the cong rule. Whereas cong as arguments takes two equalities, one
for the functions and one for the arguments, the two derived rules cong function
and cong parameter takes respectively only one function and one argument.

→ tm = tm
refl Γ→ u = v

Γ→ tm(u) = tm(v)
cong

Γ→ s = t Γ→ tm = tm
refl

→ s(tm) = t(tm)
cong

Figure 3.1: The first is cong function and the second is cong parameter.

Now beta conversion will be presented. Beta conversion takes as input an appli-
cation consisting of an abstraction (λx.s) and a variable t that the abstraction
is used on. It is the purpose of the beta conversion to apply t to (λx.s). This
is done by first use the beta rule to get (λx.s)x = s. Now x is instantiated to
t. This has no effect on the lhs of the equality as x is bound here, but x will be
substituted by t on the rhs of the equality, yielding (λx.s)t = [x := t]s:
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(λx.s)x = s
beta

(λx.s)t = [x := t]s
inst x → t

Figure 3.2: beta conv.

The next derived rule is symmetry. This rule says that l = r is equal to r = l.
It is shown by using the axioms refl, cong and eq mp. For display purpose the
derivation tree has been split into two. The first tree will derive Γ→ (l = l) =
(r = l), and the second one will use this as a premise for deriving the final
conclusion.

First tree:

→ (=) = (=)
refl Γ→ l = r

Γ→ (l =) = (r =)
cong → l = l

refl

Γ→ (l = l) = (r = l)
cong

Second tree:

Γ→ (l = l) = (r = l) → l = l
refl

Γ→ r = l
eq mp

Figure 3.3: sym.

Now we will present some derived rules used for alpha conversion. The purpose
of alpha conversion is to rename a bound variable in an abstraction. The first
presented alpha rule does the renaming by splitting up an abstraction λx.body
into its binding variable and its body. The binding variable is now renamed,
let us say from x to y, in the body, where it is not bound. In the end a
new abstraction λy.[x := y]body is composed of the renamed variable and the
renamed body.

y
body

[x := y]body
inst x → y

λy.[x := y]body
create abs

Figure 3.4: alpha term.
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For the next derived rule we are going to use the concept alpha convertibility
(also called alpha equality). When two terms are alpha convertible, it means
that an alpha conversion can make the two terms exactly equal. For instance
λx.x is alpha convertible with λy.y. The two terms are the identity function
just written with different variable names. An example of the opposite could
be the terms λx.x and λx.y. The body of the first abstraction contains only
a bound variable, whereas the body of the second abstraction contains only a
free variable. Therefore these terms can never be made equal. Notice that λx.y
and λx.v will not be alpha convertible either, because alpha conversions only
rename bound variables. Therefore y cannot be renamed to v or vice versa.
In other words two terms are alpha convertible if they are the same terms just
with different names for the bound variables. The next derived rule sets two
theorems equal if they are alpha convertible:

Γ→ s = s
refl

∆→ t = t
refl

Γ ∪∆→ s = t
trans

Figure 3.5: alpha equal.

The next derived rule alpha conv puts alpha term and alpha equal together to
make a complete alpha conversion on an abstraction. alpha term v means that
the bound variable will be renamed to v.

λx.s λx.s
λv.[x := v]s

alpha term v

→ λx.s = λv.[x := v]s
alpha equal

Figure 3.6: alpha conv.

Now we can make an alpha conversion on an abstraction. However it will be
convenient to be able to make alpha conversions directly on quantifiers also
(quantifiers will be introduced later). This is done by the next derived rule
gen alpha conv. If the rule is used on an abstraction, it just uses alpha conv.
If the rule is used on an application consisting of a binder and an abstraction,
then following rule is used:
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binder λx.s
→ λx.s = λv.[x := v]s

alpha conv v

binder(λx.s) = binder(λv.[x := v]s)
cong function

Figure 3.7: gen alpha conv.

Later we will need a rule called prove ass. This rule tries to remove an assump-
tion from a theorem by proving it from another theorem. The rule takes two
theorems as premises and make a new theorem. The assumptions of the conclu-
sion is the union of the assumptions of the two premises minus the conclusion
of the first premise. The consequent of the conclusion is the consequent of the
second premise. This rule is only of any value if the consequent of the first
premise is alpha convertible with an assumption of the second premise and the
consequent of the first premise does not occur in its assumptions. It is derived
as follows:

Γ→ tm1 ∆→ tm2

(Γ− {tm2}) ∪ (∆− {tm1} → tm1 = tm2
deduct antisym Γ→ tm1

Γ ∪ (∆− {tm1})→ tm2
eq mp

Figure 3.8: prove ass.

Reference: The definitions of the derived rules are from [9], alpha equality is
from [14].

3.3 Reductions

In lambda calculus there are three kind of reductions:

• α-conversion: This conversion changes the name of bound variables.

• β-reduction: This reduction apply arguments to abstractions.

• η-conversion: This conversion expresses extensionality.

We have already described the α- and η-conversions. It counts for both these
rules that they convert one or more terms into other terms in a one-to-one
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manner. In opposite to this the β-reduction tries to remove one or more terms
by reducing two terms into one. To understand β-reduction, we first have to
introduce a β-redex. A β-redex is a term on the form ((λx.A(x))t), where A(x)
might contain x. A β-reduction can be executed on this kind of terms only. A
term that contains no β-redeces is said to be in beta normal form. A β-reduction
will reduce a beta redex as following:

((λx.A(x))t)→ A(t)

A(t) is the result of substituting x with t in A(x). A derivation tree for beta
reduction can easily be made from beta conversion.

→ (λx.A(x))t = [x := t]A(x)
beta conv Γ→ (λx.A(x))t

Γ→ [x := t]A(x)
eq mp

Figure 3.9: beta red.

When the instantiation is carried out we get [x := t]A(x) → A(t). Thereby
it is derived that a single beta reduction on a beta redex can be performed in
HOLPro.
If a reduction strategy is applied, beta reduction can be implemented to keep
doing beta reductions on the result of a previous beta reduction (or the premise
for the first beta reduction) until the reduction strategy cannot be applied any
longer. A reduction strategy is a way to prioritise which β-redex should be
reduced first if more than one can be reduced. One such strategy is normal order
reduction. The principle of normal order reduction is to reduce the outermost,
leftmost β-redex first. An example is

λx0...λx(i−1).(λxi.(A(xi)))M1M2...Mn → λx0...λx(i−1).A(M1)M2...Mn

When a β-redex is the outermost, leftmost β-redex, then it is said to be in
head position. If a β-redex is not in head position, it is said to be internal.
If a term do not contain any β-redeces in head position, then the term is said
to be in head normal form. This reduction strategy is complete, which means
that the result of applying a β-reduction using this strategy will always be a
term in normal head form. In other words all possible reductions will have been
done. As an example of another reduction strategy we can describe applicative
order reduction. In this reduction strategy the internal redeces are reduced first.
However this strategy is not guaranteed to terminate and therefore not complete.
In HOLPro normal order reduction is used. The beta reduction implemented
will therefore continue until it reaches a term in normal head form.
References: [14].



3.4 Logical connectives 17

3.4 Logical connectives

3.4.1 Definitions of the connectives

If we can define the usual logical connectives by using equality and the earlier
presented rules, we can use these connectives in HOLPro. Notice in the follow-
ing rules that lower case letters like p are used for representing predicates (can
be any kind of formula of (range) type boolean), and upper case letters like P
are used for representing lambda expressions of range type boolean. Further-
more what is implemented as an application with lambda expression P applied
to term t will be written as P (t). Remember that the definitions will be in
intuitionistic logic, which makes them more complicated than if classical logic
was used. First we will define true:

> ≡ (λx.x) = (λx.x) (3.1)

This definition says that an abstraction equals the same abstraction will always
be true.
The next definition is for conjunction:

∧ ≡ λp.λq.(λf.fpq) = (λf.f>>) (3.2)

The definition says that a conjunction is true when an arbitrary function applied
to the two input predicates p and q is equal to the same function applied to two
times true. This implies that p and q must both be true, which is the usual
condition for making a conjunction true.
The next logical constant is implication:

⇒ ≡ λp.λq.p ∧ q = p (3.3)

The definition says that implication is true when p∧ q is equal to p. If p implies
q, then q adds nothing to what we already have, which is p. Therefore p∧ q will
be the same as just p.
Now the universal quantifier will be defined:

∀ ≡ λP.P = λx.> (3.4)

The universal quantifier is true if the input abstraction P is equal to the function
that is always true. Notice that quantifiers are used on abstractions only.
The existential quantifier is defined as follows:

∃ ≡ λP.∀q.(∀x.P (x)⇒ q)⇒ q (3.5)

This definition might be the hardest one to understand. But first look at
(∀x.P (x) ⇒ q). This formula says that if P holds for some element x, then
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q also holds. We can turn this around to state that if q is true, then P holds
for some element x. Therefore if q can be implied from (∀x.P (x)⇒ q), then P
must hold for at least one element x. This holds no matter what q is, why q is
universally quantified.
Disjunction is defined as follows:

∨ ≡ λp.λq.∀r.(p⇒ r)⇒ ((q ⇒ r)⇒ r) (3.6)

If p∨ q ⇒ r, then if both p and q implies r, r will always be implied from p∨ q.
Again no matter what r is, this holds, why r is universally quantified.
False is defined as follows:

⊥ ≡ ∀p.p (3.7)

The definition for false says that if false does not exist, then false is not a boolean
value and ∀p.p will be true. If false does exist, then p will be false at some point
and ∀p.p will be false.
Now we define negation:

¬ ≡ λt.t⇒ ⊥ (3.8)

When λt.t becomes true it implies false.
In the end we define unique existential quantifier. This quantifier is true if and
only if exactly one element makes a formula true.

∃! ≡ λP.∃P ∧ ∀x.∀y.P (x) ∧ P (y)⇒ (x = y) (3.9)

The formula can be split in two parts by the first conjunction. In the first part
it is checked if ∃P is true. This makes sure that at least one element makes P
true. In the second part it is checked that at most one element makes P true.
This part says that if two elements both make P true, then they must be the
same element.
References: [8]

3.4.2 Derived boolean rules

Now that the logical connectives have been defined, they can be used for making
derived boolean rules. Since the derivation trees are large, they will be displayed
on separate flipped pages.
For the truth constant we will make derived rules for proving

• → T from the definition of truth.

• Γ→ tm from Γ→ tm = T . This derived rule eliminates a truth constant
from a theorem.
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• Γ→ tm = T from Γ→ tm. This derived rule introduces a truth constant
from a theorem.

For the conjunction constant we will implement derived rules for proving

• Γ ∪∆→ tm1 ∧ tm2 from Γ→ tm1 and ∆→ tm2. This derived rule says
that a conjunction of two theorems will be true if both the premises are
true.

• Γ → l from Γ → l ∧ r. This derived rule proves that if a conjunction is
true then the left part of the conjunction alone is also true.

• Γ→ r from Γ→ l∧r. This derived rule is the counter part of the previous
for the right part of a conjunction.

The derivation trees for the last two derived rules with conjunction are very
similar. Only the derivation tree for the left part of a conjunction will therefore
be displayed. The counterpart for the right side of a conjunction is easy to get
from this derivation tree. In the derivation tree in 3.19 replace the term at the
star with the term λp.λq.q.
For the implication constant we will implement the regular modus ponens rule.
This rule proves

• Γ ∪∆→ q from Γ→ p⇒ q and ∆→ p.

The regular modus ponens rule (which is implication-based) can be used when
a term just implies another term. In the earlier presented equality-based modus
ponens rule two terms had to be equal. Or in other words: both terms have
to imply the other term. Hence the implication-based modus ponens rule can
be used on weaker logical statements. The derivation tree 3.22 proves that the
implication-based modus ponens rule is valid in HOLPro.
References: [9]
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Derivation trees for the truth connective.

→ T = (λp.p = λp.p)
definition

→ (λp.p = λp.p) = T
sym → λp.p = λp.p

refl

→ T
eq mp

Figure 3.10: Derivation tree for truth is always true (truth).

Γ→ tm = T
Γ→ T = tm

sym → T
truth

Γ→ tm
eq mp

Figure 3.11: Derivation tree for eliminating truth (tt elim).
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{t = T} → t = T
assume

{t = T} → t
tt elim

{t} → t
assume → T

{t} → t = T
deduct antisym

→ t = (t = T )
deduct antisym

Figure 3.12: Derivation tree for introducing truth (tt introtop).

tt introtop

→ tm = (tm = T )
inst t → tm Γ→ tm

Γ→ tm = T
eq mp

Figure 3.13: Derivation tree for introducing truth (tt intro).
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Derivation trees for the conjunction connective.

→ ∧ = (λp.λq.((λf.fpq) = (λf.fTT )))
definition p

→ p∧ = (λp.λq.((λf.fpq) = (λf.fTT ))p)
cong para q

→ p ∧ q = (λp.λq.((λf.fpq) = (λf.fTT ))pq)
cong para

→ p ∧ q = ((λf.fpq) = (λf.fTT ))
beta red

→ ((λf.fpq) = (λf.fTT )) = p ∧ q
sym

Figure 3.14: conj1.

{p} → p
assume

{p} → p = T
tt intro

{p} → fp = fT
cong func

{q} → q
assume

{q} → q = T
tt intro

{p} ∪ {q} → fpq = fTT
cong

{p} ∪ {q} → (λf.fpq) = (λf.fTT )
abs ’f’

Figure 3.15: conj2.
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∆→ tm2

Γ→ tm1

conj1 conj2
{p} ∪ {q} → p ∧ q

eq mp

{tm1} ∪ {tm2} → tm1 ∧ tm2
inst p → tm1, q → tm2

Γ ∪ {tm2} → tm1 ∧ tm2
prove ass

Γ ∪∆→ tm1 ∧ tm2
prove ass

Figure 3.16: Derivation tree for making a conjunction from two theorems (conj).
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→ ∧ = (λp.λq.(λf.fpq) = (λf.fTT )) P

→ P∧ = (λp.λq.(λf.fpq) = (λf.fTT ))P
cong para

→ P∧ = (λq.(λf.fPq) = (λf.fTT ))
beta red Q

→ P ∧Q = (λq.(λf.fPq) = (λf.fTT ))Q
cong para

→ P ∧Q = ((λf.fPQ) = (λf.fTT ))
beta red

Figure 3.17: conj lefttop1

conj lefttop1 {P ∧Q} → P ∧Q
assume

{P ∧Q} → (λf.fPQ) = (λf.fTT )
eq mp λp.λq.p∗

{P ∧Q} → (λf.fPQ)(λp.λq.p) = (λf.fTT )(λp.λq.p)
cong para

{P ∧Q} → P = T
beta red

{P ∧Q} → P
tt elim

Figure 3.18: conj lefttop2

Γ→ l ∧ r
conj lefttop2

{l ∧ r} → l
inst P → l, Q → r

Γ→ l
prove ass

Figure 3.19: Derivation tree for proving the left side of a conjunction (conj left)
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Derivation trees for the implication connective.

→⇒= (λp.λq.p ∧ q = p) p

→ p⇒= (λp.λq.p ∧ q = p)p
cong para q

→ p⇒ q = (λp.λq.p ∧ q = p)pq
cong para

→ p⇒ q = (p ∧ q = p)
beta red

{p⇒ q} → p⇒ q
assume

{p⇒ q} → p ∧ q = p
eq mp

Figure 3.20: mptop1

mptop1

{p⇒ q} → p = p ∧ q
sym

{p} → p
assume

{p⇒ q} ∪ {p} → p ∧ q
eq mp

{p⇒ q, p} → q
conj right

Figure 3.21: mptop2
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∆→ ant

Γ→ ant⇒ con
mptop2

{ant⇒ con, ant} → con
inst p → ant, q → con

(Γ ∪ {ant})→ con
prove ass

∆→ con
prove ass

Figure 3.22: Derivation tree for the regular modus ponens rule (mp).



Chapter 4

Implementation

In this chapter it is explained how the proof assistant has been implemented.
The chapter does not contain a complete walk through of the code, but gives a
brief overview of the implementation. The implementation is in SWI-Prolog.

4.1 Design

The implementation has been split into several files. Each file contains the func-
tionality for a part of the HOLPro formal proof system. On 4.1 it is shown
which main predicates have been implemented for each file in the implementa-
tion of HOLPro. By main predicate is meant a predicate that performs some
key functionality described in the presentation of the system. Often these predi-
cates have helper predicates to help perform the desired functionality, but these
predicates are not shown here to give a better overview of the system.
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4.2 Data structures for terms

In this section the chosen data structures and basic predicates for terms will be
presented. Terms are similar to formulas in the theory chapter. In the higher-
order logic used, a term can have three types: boolean, individual and function.
In the implementation this is defined as

% Types: booleans, individuals and functions

type(bool).

type(ind).

type(fun(X,Y)) :- type(X),type(Y).

The recursive definition for a function makes a term able to be of an arbitrary
function. This means that the domain and range of a function can be booleans
and individuals as well as other functions or a mixture.
When working with the function type in the code, it is beneficial to have some
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helper predicates that can do often-used-operations. Four predicates for these
have been implemented.

%Predicates to work with functions

create_fun(S,T,fun(S,T)).

dest_fun(fun(S,T),S,T).

domaintype(F,T) :- dest_fun(F,T,_).

rangetype(F,T) :- dest_fun(F,_,T).

The first two predicates respectively creates a function and breaks one down
into its domain type and range type. The last two predicates find the domain
or the range type.
There are four kind of terms: constant, variable, application and abstraction.
This leads to the following definition of a term:

% Terms: constants, variables, applications and abstractions

term(const(S,X)) :- atom(S), type(X).

term(var(S,X)) :- atom(S), type(X).

term(app(T1,T2)) :- term(T1), term(T2).

term(abs(var(_ ,_ ),T2)) :- term(T2).

const(S,X) models a constant S with the type X. var(S,X) models a variable
S with the type X. app(T1, T2) models an application with the term T1 applied
to the term T2. abs(var( , ), T2) represents an abstraction with a variable and
the term T2. For all the definitions it is checked whether the given input is
valid. This is done by the predicates atom (for a variable name), type (for a
type) and term (for a term).
Just as there are helper predicates for types, there are also defined some helper
predicates for working with terms. There is one for finding the type of a term,
one for creating a term and one for breaking it down into its subcomponents.

%Gives the type of a term
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type_of(const(_,X),X).

type_of(var(_,X),X).

type_of(app(S,_),Ty) :-

type_of(S,Z),

rangetype(Z,Ty).

type_of(abs(S,T),Ty) :-

type_of(S,TyS),

type_of(T,TyT),

create_fun(TyS,TyT,Ty).

%Otherwise it’s a logical constant

type_of(_,bool).

%Creates a term

create_const(S,Ty,Z) :-

Z=const(S,Ty),

term(Z).

create_var(S,Ty,Z) :-

Z=var(S,Ty),

term(Z).

create_app(S,T,Z) :-

Z=app(S,T),

term(Z),

type_of(S,TyS),

type_of(T,TyT),

domaintype(TyS,DomS),

TyT=DomS.

create_abs(S,T,Z) :-

Z=abs(S,T),

term(Z).

%Destroys a term

dest_const(const(S,Ty),S,Ty).

dest_var(var(S,Ty),S,Ty).

dest_app(app(S,T),S,T).

dest_abs(abs(S,T),S,T).

4.3 Implementation of the functionality

Besides the already shown functionality for terms we will implement:
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• Alpha convertibility.

• Search for the free variables of a term.

• Renaming of a variable. This is needed for instantiation to avoid a free
variable becoming bound.

• Instantiation of a variable with an arbitrary term. This is done recursively
over the structure of a term.

• Constructor and destroyer for equalities. This will be convenient, since the
axioms of HOLPro are built up around equality, and equalities therefore
are used a lot.

The next in the implementation is to define the axioms and derived rules that is
the backbone of the deductive system in HOLPro. Since theorems are used a
lot, a special data structure for them has been implemented with a constructor
and a destroyer.

create_theorem(Assumptions,Term,theorem(Assumptions,Term)).

dest_theorem(theorem(Assumptions,Term),Assumptions,Term).

First the axioms are implemented. Then they can be used to implement the
derived rules of HOLPro.
Next step is to implement the usual logical connectives from the deductive
system implemented so far. In general the logical connectives are implemented
like constants with the following types:

• o for true and false

• oo for unary operators and binders.

• ooo for binary operators

Notice that a binder has to be used on an abstraction with the range type
boolean. For each logical connective except true and false a constructor has been
implemented that makes a term consisting of the logical connective and the argu-
ments given. For instance for conjunction the predicate create conj(P,Q,Result)
will give as result the term P ∧Q. Some of the logical connectives are used for
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implementing more derived rules. For instance is implication used for imple-
menting the ordinary modus ponens rule. Unlike the modus ponens rule used
so far (eq mp) this one is not based on equality but implication.

4.4 Pretty printer

The main task for the pretty printer is to print the types and terms in a more
readable way than just printing the internal structure as it is implemented. The
pretty printer outputs the different terms in the following way:

term print
const(tm,type) const tm type
var(tm,type) tm type
application(tm1,tm2) tm1 tm2
abstraction(v,tm) (\v.tm)

Notice that the type of the constants and variables will be printed after a
(underscore) of the term itself. The types will be printed in the following way:

type print
bool ’bool’
ind ’ind’
fun(X,Y) X Y

Furthermore the printer will recognize the logical connectives. Their prints will
be:

constant print
> tt
⊥ ff
¬tm ∼ tm
tm1 ∧ tm2 (tm1/\tm2)
tm1 ∨ tm2 (tm1\/tm2)
tm1 ⇒ tm2 (tm1 ==> tm2)
∀abs(v, tm) (!v.tm)
∃abs(v, tm) (?v.tm)
∃!abs(v, tm) (?!v.tm)
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Tests

To test the implemented formal proof system of HOLPro structural tests or
white-box tests have been used. Structural testing requires that every little
part of the system is tested. Therefore tests for all predicates but the simplest
ones have been implemented. The tests are grouped according to the design of
HOLPro as shown in 4.1.
In the following results from running the tests will be shown. The tests are
formatted like the following:

Testing predicates in [file f1]

Testing [predicate p1]
[Test t1]
[Test t2]
...
[Test tn]

A single test is formatted like

Testing [predicate p1]



34 Tests

Input: [argument a1]
[argument a2]
...
[argument an]

Result: [result from p1]

When the tests for a file is displayed, it is at the top written, which file is being
tested. After this each predicate is tested. Some predicates are only tested once
while others are tested several times. The test of a predicate is displayed by
first stating the arguments given to the predicate. If more than one argument is
needed for a test, the arguments will be split by linebreaks. After the arguments
have been displayed, the result is displayed. If special types of arguments are
required to test a predicate (for instance the instantiation of a theorem need a
theorem to instantiate and a mapping), it is written which argument is what.
For instance the tests of instantiation of a theorem is displayed like

Testing instantiation

Input: Mapping: (y_ind-->x_ind),(z_ind-->u_ind)

Theorem: [x_ind]-->(\x_ind.y_ind) z_ind

Result: [x3_ind]-->(\x3_ind.x_ind) u_ind

Input: Mapping: (x_ind-->y_ind),(z_ind-->u_ind)

Theorem: [x_ind]-->(\x_ind.x_ind) z_ind

Result: [x_ind]-->(\x_ind.x_ind) u_ind

The purpose of the implementation was to show the validity of the modus ponens
rule. To give an example of how the tests should be understood, we therefore
consider this rule. The test of the modus ponens rule is displayed like

Testing modus ponens

Input: [a_ind]-->(p_bool==>q_bool)

[b_ind]-->p_bool

Result: [a_ind,b_ind]-->q_bool

As arguments we give a→ p⇒ q and b→ p. From this using the modus ponens
rule we can conclude a ∪ b → q. The predicate for the modus ponens rule is



35

therefore considered correctly implemented, though we can never be completely
sure of this. Note that the comma in the test results should be understood as
the union set operator.
To view the results of all the implemented tests would be a long and trivial
reading. Hence it is only the test results for the most important predicates that
will be shown. All the predicates are not tested directly below, but the ones that
are not tested are used by other predicates that are. In this way all predicates
are tested below, while keeping the tests needed to a minimum.

Testing predicates in term.pl

Testing alpha convertibility

Input: (\x_ind.x_ind)

(\y_ind.y_ind)

Result: succes

Input: (\x_ind.x_ind)

(\y_ind.z_ind)

Result: fail

Testing for free variables

Input: (\x_ind.y_ind)

Result: y_ind

Input: (\x_ind.x_ind)

Result:

Input: (\x_ind.x_ind) y_ind

Result: y_ind

Testing renaming of variables

Input: x_ind

Result: x13_ind

Testing instantiation of terms

Input: Mapping: (z_bool_bool-->a_bool_bool),(y_ind-->x_ind)

Term: (\x_ind.z_bool_bool const_c_ind_bool y_ind)

Result: (\x14_ind.a_bool_bool const_c_ind_bool x_ind)

Input: Mapping: (x_ind-->y_ind),

Term: (\x_ind.x_ind)

Result: (\x_ind.x_ind)

Testing predicates in theorem.pl

Testing refl
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Input: x_ind

Result: []-->(x_ind=x_ind)

Testing trans

Input: [a_ind]-->(t_ind=u_ind)

Result: [a_ind]-->(s_ind=u_ind)

Testing cong

Input: [a_ind]-->(s_ind_ind=t_ind_ind)

[b_ind]-->(u_ind=v_ind)

Result: [a_ind,b_ind]-->(s_ind_ind u_ind=t_ind_ind v_ind)

Testing abs

Input: Bound var: x_ind

Theorem: [a_ind]-->(s_ind=t_ind)

Result: [a_ind]-->((\x_ind.s_ind)=(\x_ind.t_ind))

Testing beta

Input: (\x_ind.t_ind) x_ind

Result: []-->((\x_ind.t_ind) x_ind=t_ind)

Testing eta

Input: Bound var: x_ind

Term: t_ind_ind

Result: []-->((\x_ind.t_ind_ind x_ind)=t_ind_ind)

Testing assume

Input: p_bool

Result: [p_bool]-->p_bool

Testing eq_mp

Input: [a_ind]-->(s_ind=t_ind)

[b_ind]-->s_ind

Result: [a_ind,b_ind]-->t_ind

Testing deduct_antisym

Input: [t_ind]-->s_ind

[s_ind]-->t_ind

Result: []-->(s_ind=t_ind)

Testing instantiation

Input: Mapping: (y_ind-->x_ind),(z_ind-->u_ind)

Theorem: [x_ind]-->(\x_ind.y_ind) z_ind

Result: [x15_ind]-->(\x15_ind.x_ind) u_ind



37

Input: Mapping: (x_ind-->y_ind),(z_ind-->u_ind)

Theorem: [x_ind]-->(\x_ind.x_ind) z_ind

Result: [x_ind]-->(\x_ind.x_ind) u_ind

Testing predicates in derived_rules.pl

Testing cong_function

Input: Function: f_ind_ind

Equality: [a_ind]-->(u_ind=v_ind)

Result: [a_ind]-->(f_ind_ind u_ind=f_ind_ind v_ind)

Testing cong_parameter

Input: Equality: [a_ind]-->(f_ind_ind=g_ind_ind)

Argument: u_ind

Result: [a_ind]-->(f_ind_ind u_ind=g_ind_ind u_ind)

Testing sym

Input: [a_ind]-->(l_ind=r_ind)

Result: [a_ind]-->(r_ind=l_ind)

Testing alpha conversion

Input: New name for the bound variable: y_bool

Term: (\x_bool.x_bool)

Result: []-->((\x_bool.x_bool)=(\y_bool.y_bool))

Input: New name for the bound variable: y_bool

Term: (!x_bool.x_bool)

Result: []-->((!x_bool.x_bool)=(!y_bool.y_bool))

Testing prove assumption

Input: [a_ind]-->t1_ind

[t1_ind]-->t2_ind

Result: [a_ind]-->t2_ind

Input: [a_ind]-->t1_ind

[b_ind]-->t2_ind

Result: [b_ind]-->t2_ind

Testing beta reduction

Input: [a_ind]-->(\x_ind.x_ind) y_ind

Result: [a_ind]-->y_ind

Input: [a_ind]-->(\p_bool.(\q_bool.(

\f_bool_bool_bool.f_bool_bool_bool p_bool q_bool))) s_bool t_bool

Result: [a_ind]-->(\f_bool_bool_bool.f_bool_bool_bool s_bool t_bool)

Testing predicates in logical_connectives.pl
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Testing prove of truth

Result: []-->tt

Testing elimination of truth

Input: [a_ind]-->(p_bool=tt)

Result: [a_ind]-->p_bool

Testing introduction of truth

Input: [a_ind]-->p_bool

Result: [a_ind]-->(p_bool=tt)

Testing conj

Input: [a_ind]-->s_bool

[b_ind]-->t_bool

Result: [a_ind,b_ind]-->(s_bool/\t_bool)

Testing conj_left

Input: [assumption_bool]-->(l_bool/\r_bool)

Result: [assumption_bool]-->l_bool

Testing conj_right

Input: [assumption_bool]-->(l_bool/\r_bool)

Result: [assumption_bool]-->r_bool

Testing modus ponens

Input: [a_ind]-->(p_bool==>q_bool)

[b_ind]-->p_bool

Result: [a_ind,b_ind]-->q_bool

All the implemented tests can be seen in appendix B.
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Discussion

6.1 From intuitionistic to classical logic

So far we have been working with intuitionistic logic. To make the logic classical
we need two axioms: eta-conversion and the axiom of choice. Eta-conversion
can be described as

λx.(fx) = f, x /∈ FV (f) (6.1)

where FV (f) is the set of free variables in the term f . This axiom is the same
as the axiom eta and therefore already present in HOLPro.
To help explain the axiom of choice we define a choice function f . This function
is defined on a set C of nonempty sets. For every set s ∈ C, f selects an element
in s. f(s) is therefore an element in s. The axiom of choice says that for every
set C of nonempty sets, there exists such a choice function f defined on C. In
an analogy we could imagine having a set of nonempty buckets (can be infinite)
containing balls. Then the axiom of choice says that we can select exactly one
ball from each bucket using the choice function for each bucket. We can define
the axiom of choice using this choice function and the implication connective.
The axiom is defined as

∀P.∀x.P (x)⇒ P (f(P )) (6.2)

The axiom says that if any element x is contained in the set P , then it is possible
to select an element in P . In the implementation a set P will be an abstraction
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with boolean values as its range domain, and the elements contained in P are
those that make P true. Then the axiom of choice says, that if an element x
makes P true, then we can select an element contained in P that makes P true
using the choice function.
Reference: [3]

6.1.1 Law of excluded middle

The implementation chapter ends with the derivation of the regular modus
ponens rule. This might seem as an arbitrary place to stop the implementation.
Why do we not continue deriving rules for the different logical connectives? The
answer is the law of excluded middle. In intuitionistic logic the law of excluded
middle is disregarded. However it can be shown that if the axiom of choice
is accepted, then the law of excluded middle can be derived in intuitionistic
logic using the modus ponens rule and the eta axiom. The proof of this goes as
follows. First we consider two sets A and B containing a term t. t can be any
formula as defined in HOLPro. The purpose of the proof will be to show that
t is either true or false. The two sets are defined like this:

A = {x|(x = ⊥) ∨ t)} (6.3)

B = {x|(x = >) ∨ t} (6.4)

From this we can conclude that ⊥ ∈ A and > ∈ B no matter what t is. Since we
now know that both A and B contain at least one element, they are nonempty.
Therefore the following formula must be true

∀s.s ∈ {A,B} ⇒ ∃y.y ∈ s (6.5)

This equation says that if s is either A or B, then an element exists in the set.
But how do we get this element? This is where the axiom of choice becomes
useful. We can use it to define a choice function f

f = λs.∃y.y ∈ s (6.6)

By inserting 6.6 into 6.5 we get

∀s.s ∈ {A,B} ⇒ f(s) ∈ s (6.7)

From 6.7 we can see that f(A) ∈ A and f(B) ∈ B. Together with 6.4 this gives
us

(f(A) = ⊥ ∨ t) ∧ (f(B) = > ∨ t)⇔
t ∨ (f(A) = ⊥ ∧ f(B) = >)⇒

t ∨ f(A) 6= f(B)

(6.8)
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We can see from 6.4 that if t is true then A = B. Hence we got

t⇒ (∀x.A(x) = B(x)) (6.9)

To get further with the proof extensionality is needed. From the eta axiom we
can get the formula

∀X.∀Y.∀F.(∀x.X(x) = Y (x))⇒ (f(X) = f(Y )) (6.10)

6.10 is known as extensionality of functions. It says that if two predicates
always give the same result when they are applied to the same argument, then a
function F will give the same result when applied to the two predicates. When
6.10 is applied to the sets A and B it says that if the two sets are equal, then
f(A) = f(B). Using the law of contraposition we get

f(A) 6= f(B)⇒ ¬t (6.11)

Note that the law of contraposition is only accepted in one direction in intu-
itionistic logic: (p ⇒ q) ⇒ (¬q ⇒ ¬p). By insertion of 6.11 into 6.8 and use of
the modus ponens rule we get

t ∨ ¬t (6.12)

Which is the law of excluded middle.
References: The proof procedure is from [5] and [3]

6.1.2 Redefining the logical connectives

With the law of excluded middle derived, classical reasoning can be used. This
means that the logical connectives defined after implication can be redefined in
classical logic. The benefit of defining the logical connectives in classical logic
is, that the definitions are simpler for the connectives that have an opposite
connective (for instance > and ⊥), because these connectives can be defined in
terms of the counterpart. To do this however, we need to define the connectives
in a different order, as negation will be a much used connective in the new
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definitions. The definitions in classical logic are

> ≡ (λx.x) = (λx.x) (6.13)

∧ ≡ λp.λq.(λf.fpq) = (λf.f>>) (6.14)

⇒ ≡ λp.λq.p ∧ q = p (6.15)

¬ ≡ λt.t⇒ ⊥ (6.16)

∀ ≡ λP.P = λx.> (6.17)

∃ ≡ λP.¬(∀¬P ) (6.18)

∨ ≡ λp.λq.¬(¬p ∧ ¬q) (6.19)

⊥ ≡ ¬> (6.20)

∃! ≡ λP.∃P ∧ ∀x.∀y.P (x) ∧ P (y)⇒ (x = y) (6.21)

It is only ∃, ∨ and ⊥ that have their definitions changed. When comparing with
the intuitionistic definitions it is also the three connectives that are hardest to
define using intuitionistic logic. Note that ∨ can be defined in a less intuitive
but simpler formulation that only contains implication:

∨ ≡ λp.λq.(p⇒ q)⇒ q (6.22)

All the classical definitions can be verified by truth tables.

6.2 The natural numbers

In HOLPro the natural numbers will be defined as an infinite set. Hence to get
the natural numbers we need to add the axiom of infinity. The axiom expresses
two properties:

• The one-to-one property: a function F exists that has to be a one-to-one
function. This means that one value in the domain maps to one value in
the range and vice versa.

• The onto property: There exists a value y that is not contained in the
range of the function F . This means that no matter what x is in F (x),
F (x) = y can never be true.

Based on these two properties the axiom of infinity is defined as

∃F.(∀x.∀y.F (x) = F (y)⇒ x = y) ∧ (∃y.∀x.y 6= F (x)) (6.23)

The axiom of infinity can be instantiated with a successor function S(x) for
F . The result of S(x) is one number higher than x and will be noted x′. For
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instance S(0) = 1. The successor function meets the two properties expressed
by the axiom of infinity. The function maps in a one-to-one style and 0 is not
in the range of S. Now we know that an infinite set exists that contain natural
numbers. But we do not know if the set contains all the natural numbers. To
know this we need the axiom of induction:

(F (0) ∧ (∀x.(F (x)⇒ F (x′)))⇒ ∀x.F (x) (6.24)

x′ is the successor of x. The axiom of induction says that F (x) holds for all x if

• F (0) is true. This is the base case.

• F (x′) can be proven true if F (x) is true. This is the induction step.

To show that S can be used to produce all natural numbers, we must show the
base case and induction step. The base case can be shown by

S(0) = 1 (6.25)

Now to the induction step. We assume S(x) = x′ and have to show S(x′) = x′′.
However this follows from the definition of S:

S(x′) = x′′ (6.26)

It is thereby shown that ∀x.S(x) = x′. If x ∈ N then 0 has to be a natural
number and the natural numbers have to be closed under S. This is guaranteed
through the axioms:

0 ∈ N (6.27)

(x ∈ N) ∧ (S(x) = x′)⇒ (x′ ∈ N) (6.28)

We can now conclude that S(x) = x′ is true for all natural numbers and there-
fore can produce all natural numbers.

With the introduction of the natural numbers we get Heyting arithmetic if we
disregard the law of excluded middle (and thereby the axiom of choice). If we
accept the law of excluded middle then we get Peano arithmetic. In Peano
arithmetic we can define the arithmetic operators as functions. For instance
addition can be defined as the function +ιιι with the definition:

x+ 0 = x

x+ S(y) = S(x+ y)
(6.29)

References: The axiom of infinity and definition of the natural numbers is from
[11] and [9]. Peano arithmetic is from [13].
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6.3 Reducing the number of axioms

HOLPro is built on ten axioms that are assumed valid without a proof. However
this number can be reduced, as it is possible to derive some of the axioms from
other axioms. This can be shown for the axioms trans and refl. The derivation
tree for refl is quite intuitive. First a theorem is made which conclusion is t = t.
Then the assumptions can be removed. This is shown in 6.1.

{t} → t
assume

{t} → t
assume

→ t = t
deduct antisym

Figure 6.1: The derivation tree for a derived refl.

Trans is not as intuitive to derive as refl was, but it is still possible. 6.3 shows
this. The derivation tree has been split into two to fit the page.

(=) = (=)
refl

Γ→ s = t
Γ→ t = s

sym

(t =) = (s =)
cong ∆→ t = u

Γ ∪∆→ (t = t) = (s = u)
cong

Figure 6.2: transtop

transtop → t = t
refl

Γ ∪∆→ s = u
deduct antisym

Figure 6.3: The derivation tree for a derived trans.

In the derivation of trans the derived rule sym is used. This is not an axiom but
is used for convenience. It can be replaced with the basic rules in its derivation
tree (3.3). The only factor that can make the use of sym invalid in the derivation
tree for trans, is if trans itself is used in the derivation tree for sym. Then the
derivation tree for trans would be infinitely large. However this is not the case,
why sym can be used as an abbreviation for a special combination of axioms.
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6.4 Data structure for terms

A possibility to enhance the data structure for terms would be to use de Bruijn
indexes. When using de Bruijn indexes a variable is represented by a number
instead of a string name. The number is decided by which bound variable it
refers to. If it is the bound variable of the innermost abstraction it is represented
by a 1. For instance the identity function λx.x would be λ1, as the variable
refers to the bound variable closest to it. If it is the bound variable of the
second innermost abstraction then it would be represented by a 2 and so on.
If a variable is represented by a number higher than the number of embedded
abstractions, then it is a free variable. Some examples are

• λx.λy.yx would be λλ1 2.

• λx.(λy.y)x would be λ(λ1)1.

• λx.y would be λ2.

A benefit from using de Bruijn indexes is that α-conversion is not needed, be-
cause two α-convertible terms would actually be exactly the same terms. There-
fore α-equality would be reduced to just normal equality. Furthermore the fear
of binding free variables during a substitution would be gone. However if only a
number is used to represent a variable, it can not have any type. If a number is
used to represent just the name of a variable, then the user-friendliness would
be lessened significantly, as a variable would not be possible to name. A user
would therefore not know, what a variable’s purpose is.
The above issue can be handled in two ways. Either a parser can be imple-
mented for parsing a named expression to a nameless one and back, or a mix-
ture of named and nameless variables can be used. Implementing a parser would
maintain the full advantages of using de Bruijn indexes, while still having some
degree of user-friendliness. The question is how much? When the parser goes
from a nameless expression to a named one, it does not know which names for
the variables would give sense. Therefore a named expression generated by a
parser from a nameless expression can be just an incomprehensible as the name-
less expression itself.
The other possibility is mixing string names and de Bruijn indexes. When a
variable is free, we do not use the number it is represented by for anything but
knowing that it is free. Therefore a free variable can be represented by a string
while α-equality is still reduced to normal equality, and there will be no fear of
binding free variables. This principle is called the locally nameless approach.
This approach also requires a parser from a named expression and back again.
However as the parser translates a named expression to a locally nameless ex-
pression instead of a completely nameless expression, a program would save the
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names for the free variables. These names can be used when parsing from a lo-
cally nameless expression to a named expression, reducing the user-friendliness
with as little as possible while still having the advantages of using de Bruijn
indexes. This approach would be a possibility to implement if future work on
this project is done.
References: De Bruijn indexes is from [4], Locally named expressions is from
[10].

6.5 Choice of language

The implementation of the proof assistant was done in SWI-Prolog. It was a part
of the project that the implementation should be in first order Prolog. However
if the implementaion could have been in any language, some good alternative
exist. In this section the pros and cons of different programming languages will
be discussed.

SWI-Prolog is well fitted for working with logic. But this is the only benefit of
SWI-Prolog. It is not possible to implement any security in SWI-Prolog. A pro-
grammer can write whatever is wanted whenever. Because of this a programmer
can create data structures without using its constructor. Furthermore the only
way offered by SWI-Prolog to structure a programme is to put it in different
files. This is not a problem when implementing small algorithmic procedures,
but it becomes a big problem when implementing a project on the scale of
this bachelor thesis. The development environment for SWI-Prolog is basically
notepad++. It gives no help or hints during the implementation, which forces
the programmer to remember all predicates by heart or find the definition of it,
every time the predicate is used.

The most used programming language in the domain of theorem provers is ML
(often in the shape of OCaml or SML). ML handles some of Prolog’s disad-
vantages. It is possible to create a constructor for a data structure that must
be used when an instance of the data structure is made. This makes sure that
no invalid instances of a data structure is created, and could have been very
helpful for the implementation of types, terms and theorems. Furthermore it is
well-suited for implementing algorithmic procedures and can give functions as
arguments for other functions (which first order Prolog cannot). For the mat-
ter of structures, it can encapsulate functions and data structures in modules,
thereby avoiding illegal use of functions. If F# (Microsoft’s implementation of a
functional language) is used, the programmer even get IntelliSense. IntelliSense
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makes the programmer able to see what functions and data structures have been
implemented so far and what arguments they have. F# could therefore be a
good option when deciding on the programming language.

If more structure is wanted an object-oriented language like Java is a good op-
tion. Being able to implement objects gives security for data structures and
functions. If a data structure is implemented as an object, its constructor has
to be used to create an instance of this data structure. This is also possible
in ML, but an object-oriented programming language gives the opportunity of
abstracting data structures and functions into objects. Functions for special
data structures can be implemented together in an object, and some of the
functions and data structures can be hidden for parts of the implementation,
if they are not relevant for this part. Furthermore an object-oriented program-
ming language often has predefined types like integers and booleans, making
it unnecessary to implement them, and object-oriented languages often come
with an integrated developing environment (IDE), that gives IntelliSense. On
the other hand an object-oriented language is more fitted for large-scale systems
like an administration system, and creating data structures are often more cum-
bersome than in ML. However an object-oriented language is still a good option.

So far we have only mentioned first order Prolog. A language called λProlog
takes up the idea of a higher order Prolog. Instead of only having first order
unification, λProlog uses higher order unification and quantification over func-
tions and predicates. Using this language would allow us to pass functions as
arguments for other functions just as in ML. Therefore using λProlog instead
of SWI-Prolog for the implementation might give some benefits.

Furthermore Isar (intelligible semi-automated reasoning) could be considered.
Isar does not seek to be a programming language but is more a language for
writing proofs. Isar can be viewed as a language for pretty printing. It tries to
build bridge from a user of a theorem prover (see appendix C) to its internal
structure by giving a declarative interface to the user. When Isar is used, instead
of showing the proof of a theorem as internal structures of the theorem prover,
Isar is a translation of these internal structures in a format more readable for
humans. However HOLPro is far too simple to get any benefit of using Isar. A
pretty printer is implemented that does the job just fine for now.
References: λProlog is from [12], Isar is from [15].
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Chapter 7

Conclusion

In chapter 2 some of the underlying theory for the thesis has been presented.
HOLPro is a higher order logic, in which it is possible to quantify over not only
individual variables but also predicates and function variables. Furthermore
HOLPro is intuitionistic which is opposite to classical logic. In intuitionistic
logic a formula is only accepted as true or false if a direct proof of this exists.
Proofs by contradiction are not accepted as proofs in intuitionistic logic. In
intuitionistic logic the law of excluded middle is unprovable and therefore false.

In chapter 3 the logic HOLPro is presented. First the ten axioms that the
logic is build on were shown. Then other deduction rules were derived from the
axioms. The rules for symmetry, alpha conversion and beta reduction among
others were derived. In the end of the chapter the logical connectives were de-
fined. They were later used for deriving rules themselves. The most important
of these rules were the proof that the truth connective is indeed always true,
the creation of a conjunction from two valid formulas and the regular modus
ponens rule (based on implication and not equality).

In chapter 4 and 5 the implementation of the proof assistant is explained briefly
and tested. The overall design and structure of the implementation were shown.
The implementation is split into files, each file implementing the necessary data
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structures and functionality for its subject. For instance in the file theorem.pl a
data structure for a theorem together with the axioms have been implemented.
After this the implementation was tested by showing that it could perform the
main functionality described in the design. The modus ponens rule was imple-
mented as the final step and tested.

In chapter 6 HOLPro and the implementation of the proof assistant were dis-
cussed. It was shown that the law of excluded middle could be derived from the
implemented HOLPro by accepting the axiom of choice. Furthermore Peano
arithmetic could also be derived by accepting the axioms of infinity and induc-
tion and assuming that 0 is contained in the set of the natural numbers and that
the natural numbers are closed under a successor function. In the chapter it was
also explained how the number of axioms could be lowered from ten to eight
without changing the logic, because two of the axioms can actually be derived
from the other axioms. The data structure for lambda expressions was also dis-
cussed. If de Bruijn indexes had been used it would be possible to avoid alpha
conversion, and we would not have to worry about binding free variables, when
making a substitution. However it is less user-friendly than noting variables by
string names. On the other hand, this could be partly solved by letting free
variables keep their string names. In the end different programming languages
were discussed. The choice of the programming language was decided as a part
of the thesis to be Prolog. However ML or an object-oriented programming
language might had been more suited for the implementation.

In the end it can be concluded that the purpose of the thesis was achieved. A
proof assistant based on the intuitionistic higher order logic HOLPro has been
implemented in Prolog. In HOLPro it was possible to derive the law of excluded
middle and Peano arithmetic. It has therefore been shown that if the axiom of
choice is accepted in an intuitionistic logic, it is not intuitionistic anymore.
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Source code

Terms

%Types: booleans, individuals and functions

type(bool).

type(ind).

type(fun(X,Y)) :- type(X),type(Y).

%Functors to work with functions

create_fun(S,T,fun(S,T)).

dest_fun(fun(S,T),S,T).

domaintype(F,T) :- dest_fun(F,T,_).

rangetype(F,T) :- dest_fun(F,_,T).

rangetype_rec(Ty,Result) :-

Ty = fun(_,Ran),

rangetype_rec(Ran,Result).

rangetype_rec(Ty,Ty).
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%Terms: constants, variables, applications and abstractions

term(const(S,X)) :- atom(S), type(X).

term(var(S,X)) :- atom(S), type(X).

term(app(T1,T2)) :- term(T1), term(T2).

term(abs(var(_,_),T2)) :- term(T2).

%Gives the type of a term

type_of(const(_,X),X).

type_of(var(_,X),X).

type_of(app(S,_),Ty) :-

type_of(S,Z),

rangetype(Z,Ty).

type_of(abs(S,T),Ty) :-

type_of(S,TyS),

type_of(T,TyT),

create_fun(TyS,TyT,Ty).

%Creates a term

create_const(S,Ty,Z) :-

Z=const(S,Ty),

term(Z).

create_var(S,Ty,Z) :-

Z=var(S,Ty),

term(Z).

create_app(S,T,Z) :-

Z=app(S,T),

term(Z),

type_of(S,TyS),

type_of(T,TyT),

domaintype(TyS,DomS),

rangetype_rec(TyT,RanT),

RanT=DomS.

create_abs(S,T,Z) :-

Z=abs(S,T),

term(Z).

%Destroys a term

dest_const(const(S,Ty),S,Ty).

dest_var(var(S,Ty),S,Ty).

dest_app(app(S,T),S,T).

dest_abs(abs(S,T),S,T).

%Helper functor for alpha convertibility.



53

%Succeeds if two variables are alpha convertible.

aconv_var([],V1,V2) :-

V1 = V2.

aconv_var([(Bound1,Bound2)|_],V1,V2) :-

Bound1 = V1,

Bound2 = V2.

aconv_var([(Bound1,Bound2)|Rest],V1,V2) :-

Bound1 \= V1,

Bound2 \= V2,

aconv_var(Rest,V1,V2).

%Helper functor for alpha convertibility.

%Goes recursivily through terms.

%The environment (bound variables) is saved in a list.

aconv_rec(Env,var(V1,Ty1),var(V2,Ty2)) :-

aconv_var(Env,var(V1,Ty1),var(V2,Ty2)).

aconv_rec(_,const(C1,Ty1),const(C2,Ty2)) :-

const(C1,Ty1) = const(C2,Ty2).

aconv_rec(Env,app(S1,T1),app(S2,T2)) :-

aconv_rec(Env,S1,S2),

aconv_rec(Env,T1,T2).

aconv_rec(Env,abs(var(V1,Ty1),Body1),abs(var(V2,Ty2),Body2)) :-

Ty1 = Ty2,

append([(var(V1,Ty1),var(V2,Ty2))],Env,Newenv),

aconv_rec(Newenv,Body1,Body2).

%Checks for alpha convertibility

alphac(Tm1,Tm2) :-

aconv_rec([],Tm1,Tm2).

aconv_in_list(_,[]) :- fail.

aconv_in_list(Tm,[A|_]) :- alphac(Tm,A).

aconv_in_list(Tm,[_|Rest]) :- aconv_in_list(Tm,Rest).

%Finds free variables in a term

frees(const(_,_),[]).

frees(var(S,T),[var(S,T)]).

frees(app(S,T),Z) :-

frees(S,L1),

frees(T,L2),

union(L1,L2,Z).

frees(abs(S,T),Z) :-

frees(T,L),

subtract(L,[S],Z).
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%Checks if a given variable is free in a term

is_free(Var,Tm) :-

frees(Tm,F),

(\+ member(Var,F)).

%Functors for renaming a variable

rename_var(var(Oldvar,T),var(Newvar,T)) :-

retract(var_name(Oldvar,N1)),!,

N2 is N1+1,

assert(var_name(Oldvar,N2)),

atom_concat(Oldvar,N2,Newvar).

rename_var(var(Oldvar,T),var(Newvar,T)) :-

assert(var_name(Oldvar,1)),

atom_concat(Oldvar,1,Newvar).

reset_var :- retractall(var_name(_,_)).

rename_check(Oldvar,Avoid,Newvar) :-

member(Oldvar,Avoid),!,

rename_var(Oldvar,Newvar).

rename_check(Oldvar,_,Oldvar).

%For getting a map from a variable to a term

get_value(_,[],_) :- !,fail.

get_value(Var,[(Var,Value)|_],Value).

get_value(Var,[_|Rest],Value) :- get_value(Var,Rest,Value).

%Succeeds if a variable occurs freely in a mapping

collision(_,[]) :- !,fail.

collision(S,[(_,Sub)|_]) :- frees(Sub,F),member(S,F).

collision(T,[_|Rest]) :- collision(T,Rest).

%Instantiation

%For variable

inst(var(Name,Ty),Mapping,Value,Mapping) :-

get_value(var(Name,Ty),Mapping,Value).

inst(var(Name,Ty),Mapping,var(Name,Ty),Mapping).

%For application

inst(app(S,T),Mapping,app(S2,T2),NewM) :-

inst(S,Mapping,S2,NewM1),

inst(T,Mapping,T2,NewM2),
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union(NewM1,NewM2,NewM).

%For abstraction

inst(abs(S,T),Mapping,abs(S2,T2),NewM) :-

collision(S,Mapping),

rename_var(S,S2),

inst(T,[(S,S2)|Mapping],T2,NewM).

inst(abs(S,T),Mapping,abs(S,T2),NewM) :-

inst(T,[(S,S)|Mapping],T2,NewM).

%For constant

inst(T,_,T,_).

%For checking if types match in a mapping

type_check([]).

type_check([(S,T)]) :-

type_of(S,Ty),

type_of(T,Ty).

type_check([(S,T)|Rest]) :-

type_of(S,Ty),

type_of(T,Ty),

type_check(Rest).

%The final instantiate method

instantiate(T,Mapping,Result,NewM) :-

type_check(Mapping),

inst(T,Mapping,Result,NewM).

instantiate(T,_,T,_) :-

write(’Invalid mapping: types do not match.’),

nl,fail.

%Equality

create_eq(S,T,Z) :-

type_of(S,TyS),

type_of(T,TyT),

create_const(’=’,fun(TyS,fun(TyT,bool)),Eq),

create_app(Eq,S,Z1),

create_app(Z1,T,Z).

dest_eq(app(app(const(=,_),S),T),S,T).
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Basic deductive system

:- ensure_loaded(’term.pl’).

%Axioms with theorems

create_theorem(Assumptions,Term,theorem(Assumptions,Term)).

dest_theorem(theorem(Assumptions,Term),Assumptions,Term).

%Prints an error message and will fail

write_invalid(I) :-

write(’Theorems for ’),

write(I),write(’ are invalid.’),

nl,fail.

%Refl

refl(T,Result) :-

create_eq(T,T,E),

create_theorem([],E,Result).

%Trans

trans(theorem(A1,T1),theorem(A2,T2),Result) :-

dest_eq(T1,L1,R1),

dest_eq(T2,L2,R2),

alphac(R1,L2),

union(A1,A2,A),

create_eq(L1,R2,E),

create_theorem(A,E,Result).

trans(_,_,_) :- write_invalid(’trans’).

%Cong

cong(theorem(A1,T1),theorem(A2,T2),Result) :-

dest_eq(T1,F,G),

dest_eq(T2,X,Y),

create_app(F,X,FX),

create_app(G,Y,GY),

create_eq(FX,GY,FXGY),

union(A1,A2,A),

create_theorem(A,FXGY,Result).

cong(_,_,_) :- write_invalid(’cong’).
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%Abs

abs(X,theorem(A1,_),_) :-

collision(X,A1),

write(’abs: there is a free variable.’),nl.

abs(X,theorem(A,E),Result) :-

dest_eq(E,S,T),

create_abs(X,S,XS),

create_abs(X,T,XT),

create_eq(XS,XT,XSXT),

create_theorem(A,XSXT,Result).

abs(_,_,_) :- write_invalid(’abs’).

%Beta

beta(T,Result) :-

dest_app(T,F,X1),

dest_abs(F,X2,T2),

X1=X2,

create_eq(T,T2,E),

create_theorem([],E,Result).

beta(_,_) :- write_invalid(’beta’).

%Eta

eta(X,T,_) :-

frees(T,F),

member(X,F),

write(’eta: the bound variable occurs freely’),

nl,!,fail.

eta(X,T,Result) :-

create_app(T,X,TX),

create_abs(X,TX,XTX),

create_eq(XTX,T,E),

create_theorem([],E,Result).

eta(_,_,_) :- write_invalid(’eta’).

%Assume

assume(T,Result) :-

type_of(T,bool),

create_theorem([T],T,Result).

assume(_,_) :- write_invalid(’assume’).

%Eq_mp

eq_mp(theorem(A1,T1),theorem(A2,T2),Result) :-

dest_eq(T1,Left,Right),

alphac(Left,T2),
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union(A1,A2,A),

create_theorem(A,Right,Result).

eq_mp(_,_,_) :- write_invalid(’eq_mp’).

%Subtract from list if alpha convertible.

subtract_alpha([],_,[]).

subtract_alpha([E|Rest],Term,Result) :-

alphac(E,Term),

Result = Rest.

subtract_alpha([E|Rest],Term,Result) :-

subtract_alpha(Rest,Term,L),

append([E],L,Result).

%Deduct_antisym

deduct_antisym(theorem(A1,T1),theorem(A2,T2),Result) :-

create_eq(T1,T2,E),

subtract_alpha(A2,T1,B2),

subtract_alpha(A1,T2,B1),

union(B1,B2,A),

create_theorem(A,E,Result).

%Instantiate

inst_assumptions(_,[],[]).

inst_assumptions(Mapping,[T|Rest],Result) :-

inst_assumptions(Mapping,Rest,Rest2),

instantiate(T,Mapping,T2,_),

append([T2],Rest2,Result).

% The final instantiation rule

inst_rule(Mapping,theorem(A,T),Result) :-

instantiate(T,Mapping,T2,NewM),

inst_assumptions(NewM,A,A2),

create_theorem(A2,T2,Result).

Derived rules

:- ensure_loaded(’theorem’).
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%Implementation of the derived rules.

%cong function: special cong with only one function that is

%given as a term.

%cong_function(+term/function,+theorem/parameters,-result)

cong_function(Tm,E,Result) :-

refl(Tm,Refl_Tm),

cong(Refl_Tm,E,Result).

%cong parameter: special cong with only one parameter that is

%given as a term

%cong_parameter(+theorem/functions,+term/parameter,-result)

cong_parameter(E,Tm,Result) :-

refl(Tm,Refl_Tm),

cong(E,Refl_Tm,Result).

%Beta-conversion

beta_conv(Tm,Result) :-

dest_app(Tm,F,T),

dest_abs(F,X,_),

create_app(F,X,FX),

beta(FX,FX2),

inst_rule([(X,T)],FX2,Result).

%Symmetri

sym(theorem(A,T),Result) :-

dest_app(T,Eq_left,_),

dest_app(Eq_left,Eq,Left),

refl(Eq,Refl_eq),

cong(Refl_eq,theorem(A,T),Cong1),

refl(Left,Refl_left),

cong(Cong1,Refl_left,Cong2),

eq_mp(Cong2,Refl_left,Result).

%Alpha for term: renames a bound variable

alpha_term(Var,Tm,Tm) :-

dest_abs(Tm,Var0,_),

Var = Var0.

alpha_term(Var,Tm,Result) :-

dest_abs(Tm,Var0,Body),

type_of(Var,Ty),

type_of(Var0,Ty0),

Ty=Ty0,

create_theorem([],Body,Thm),



60 Source code

inst_rule([(Var0,Var)],Thm,theorem(_,Renamed_Body)),

create_abs(Var,Renamed_Body,Result).

%Alpha equal: Makes an equal with two theorems if they are equal

alpha_equal(Tm1,Tm2,Result) :-

refl(Tm1,Refl1),

refl(Tm2,Refl2),

trans(Refl1,Refl2,Result).

%Alpha conversion: renames the bound variable in an anbstraction

%and sets it equal to the original term

alpha_conv(Var,Tm,Result) :-

alpha_term(Var,Tm,Tm2),

alpha_equal(Tm,Tm2,Result).

% Genereic alpha conversion: alpha conversion for expressions with

% quantifiers

gen_alpha_conv(Var,abs(S,T),Result) :-

alpha_conv(Var,abs(S,T),Result).

gen_alpha_conv(Var,app(Binder,Tm),Result) :-

alpha_conv(Var,Tm,Renamed),

cong_function(Binder,Renamed,Result).

% Creates a new theorem with the union of the two input theorems’

% assumptions minus the consequent of the first

% theorem as the new assumptions and the consequent of the second

% theorem as the new consequent.

prove_ass(Th1,Th2,Result) :-

dest_theorem(Th1,_,Tm1),

dest_theorem(Th2,A2,_),

aconv_in_list(Tm1,A2),

deduct_antisym(Th1,Th2,Z),

eq_mp(Z,Th1,Result).

prove_ass(_,Th2,Th2).

% Beta reduction: Reduces an application consisting of

% an abstraction and an arbitrary term.

% Uses normal order reduction.

% Case of an application and an abstraction

beta_red(T,Result) :-

T = app(abs(_,_),_),

beta_conv(T,BetaTh),

dest_theorem(BetaTh,_,BetaTm),
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create_theorem([],BetaTm,Th1),

eq_mp(Th1,theorem([],T),Th),

dest_theorem(Th,_,Result).

% Case of an abstraction

beta_red(T,Result) :-

T = abs(X,Tm),

beta_red(Tm,BetaTm),

create_abs(X,BetaTm,Result).

% Case of an application

beta_red(T,Result) :-

T = app(Tm1,Tm2),

beta_red(Tm1,BetaTm1),

Tm1 \= BetaTm1,

create_app(BetaTm1,Tm2,Result).

beta_red(T,Result) :-

T = app(Tm1,Tm2),

beta_red(Tm2,BetaTm2),

create_app(Tm1,BetaTm2,Result).

% Other cases

beta_red(T,T).

% Wrapper for beta reduction

beta_reduction(Th,Result) :-

dest_theorem(Th,A,Tm),

beta_red(Tm,BetaTm),

Tm \= BetaTm,

create_theorem(A,BetaTm,NewTh),

beta_reduction(NewTh,Result).

beta_reduction(Th,Result) :-

dest_theorem(Th,A,Tm),

beta_red(Tm,BetaTm),

create_theorem(A,BetaTm,Result).
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Definitions of logical connectives

:- ensure_loaded(’derived_rules’).

% Implementation of the logical constants and predicates

% associated with them.

%Creates a binary operator

create_binary(String,Tm1,Tm2,Result) :-

create_const(String,fun(bool,fun(bool,bool)),C),

create_app(C,Tm1,App),

create_app(App,Tm2,Result).

%Creates a binder

create_binder(String,Abs,Result) :-

dest_abs(Abs,_,_), %Abs must be a lambda expression

type_of(Abs,Ty),

rangetype_rec(Ty,bool),

create_const(String,fun(bool,bool),Binder),

create_app(Binder,Abs,Result).

%True

truth_def(Result) :-

create_const(’tt’,bool,T),

create_var(’p’,bool,P),

create_abs(P,P,Abs),

create_eq(Abs,Abs,Eq),

create_eq(T,Eq,Tm),

create_theorem([],Tm,Result).

truth(Result) :-

create_var(’p’,bool,P),

create_abs(P,P,Abs),

refl(Abs,R),

truth_def(Tdef),

sym(Tdef,S),

eq_mp(S,R,Result).

truth_elim(Th,Result) :-

truth(T),

sym(Th,Sym),
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eq_mp(Sym,T,Result).

truth_intro(Th,Result) :-

create_var(’t’,bool,T),

assume(T,T2),

truth(Truth),

deduct_antisym(T2,Truth,T3),

dest_theorem(T3,_,Tm3),

assume(Tm3,T4),

truth_elim(T4,T5),

deduct_antisym(T5,T3,T6),

dest_theorem(Th,_,Tm),

inst_rule([(T,Tm)],T6,Inst),

eq_mp(Inst,Th,Result).

%Conjunction

create_conj(Tm1,Tm2,Result) :-

create_binary(’/\\’,Tm1,Tm2,Result).

conj_def(Result) :-

create_const(’/\\’,fun(bool,fun(bool,bool)),C),

create_var(’f’,fun(bool,fun(bool,bool)),F),

create_var(’p’,bool,P),

create_var(’q’,bool,Q),

create_app(F,P,FP),

create_app(FP,Q,FPQ),

create_abs(F,FPQ,Left_abs),

truth(TT),

dest_theorem(TT,_,T),

create_app(F,T,FT),

create_app(FT,T,FTT),

create_abs(F,FTT,Right_abs),

create_eq(Left_abs,Right_abs,E),

create_abs(Q,E,QE),

create_abs(P,QE,PQE),

create_eq(C,PQE,Conj),

create_theorem([],Conj,Result).

%conj(+lhs,+rhs,-conjunction)

conj(Tm1,Tm2) :-

(term(Tm1);term(Tm2)),

write(’conj takes theorems as arguments.’).
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conj(Th1,Th2,Result) :-

create_var(’p’,bool,P),

create_var(’q’,bool,Q),

create_var(’f’,fun(bool,fun(bool,bool)),F),

assume(P,AxiomP),

truth_intro(AxiomP,PTruth),

cong_function(F,PTruth,CongFP),

assume(Q,AxiomQ),

truth_intro(AxiomQ,QTruth),

cong(CongFP,QTruth,CongFPQ),

abs(F,CongFPQ,AbsFPQ),

conj_def(Conjunction),

cong_parameter(Conjunction,P,CongConP),

cong_parameter(CongConP,Q,CongConPQ),

beta_reduction(CongConPQ,ConjQ),

beta_reduction(ConjQ,Conj),

sym(Conj,SymConj),

eq_mp(SymConj,AbsFPQ,ConjPQ),

dest_theorem(Th1,_,Tm1),

dest_theorem(Th2,_,Tm2),

inst_rule([(P,Tm1),(Q,Tm2)],ConjPQ,InstConj),

prove_ass(Th1,InstConj,ProveTh1),

prove_ass(Th2,ProveTh1,Result).

dest_conj(app(app(const(’/\\’,fun(bool,fun(bool,bool))),P),Q),P,Q).

% For extracting one literal of a conjunction.

% Var should be var(’left’,bool) or var(’right’,bool)

% for any effect, otherwise the result will be meaningless.

conj_extract(Th,Var,Result) :-

dest_theorem(Th,_,Tm),

dest_conj(Tm,L,R),

create_var(’p’,bool,P),

create_theorem([],P,ThP),

create_var(’q’,bool,Q),

create_theorem([],Q,ThQ),

conj_def(Conj),

cong_parameter(Conj,P,ConjP),

beta_reduction(ConjP,Beta),

cong_parameter(Beta,Q,BetaQ),

beta_reduction(BetaQ,Beta2),

conj(ThP,ThQ,PandQ),



65

dest_theorem(PandQ,_,TmPQ),

assume(TmPQ,ThPQ),

eq_mp(Beta2,ThPQ,EpMp),

create_var(’left’,bool,Left),

create_var(’right’,bool,Right),

create_abs(Right,Var,RV),

create_abs(Left,RV,LRV),

cong_parameter(EpMp,LRV,CongPara),

beta_reduction(CongPara,Beta3),

truth_elim(Beta3,TElim),

inst_rule([(P,L),(Q,R)],TElim,Inst),

prove_ass(Th,Inst,Result).

% Extracts the lhs of a conjunction

conj_left(Th,Result) :-

create_var(’left’,bool,Left),

conj_extract(Th,Left,Result).

% Extracts the rhs of a conjunction

conj_right(Th,Result) :-

create_var(’right’,bool,Right),

conj_extract(Th,Right,Result).

% Extracts both the lhs and rhs of a conjunction

conj_pair(Th,Lhs,Rhs) :-

conj_left(Th,Lhs),

conj_right(Th,Rhs).

%Implication

create_impl(Tm_left,Tm_right,Result) :-

create_binary(’==>’,Tm_left,Tm_right,Result).

dest_impl(app(app(const(’==>’,

fun(bool,fun(bool,bool))),P),Q),P,Q).

impl_def(Result) :-

create_const(’==>’,fun(bool,fun(bool,bool)),C),

create_var(’p’,bool,P),

create_var(’q’,bool,Q),

create_conj(P,Q,And),

create_eq(And,P,E),
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create_abs(Q,E,Abs1),

create_abs(P,Abs1,Abs2),

create_eq(C,Abs2,E2),

create_theorem([],E2,Result).

%Modus ponens

mp(Ith,Th,Result) :-

create_var(’p’,bool,P),

impl_def(Imp),

cong_parameter(Imp,P,Cong1),

create_var(’q’,bool,Q),

cong_parameter(Cong1,Q,Cong2),

beta_reduction(Cong2,Beta1),

create_impl(P,Q,Impl2),

assume(Impl2,Axiom1),

eq_mp(Beta1,Axiom1,EqMp1),

sym(EqMp1,Sym1),

assume(P,Axiom2),

eq_mp(Sym1,Axiom2,EqMp2),

conj_right(EqMp2,Conj1),

dest_theorem(Ith,_,Impl3),

dest_impl(Impl3,Ant,Con),

dest_theorem(Th,_,Tm),

alphac(Ant,Tm),

inst_rule([(P,Ant),(Q,Con)],Conj1,Inst1),

prove_ass(Ith,Inst1,ProveHyp1),

prove_ass(Th,ProveHyp1,Result).

%Universal quantifier

create_forall(P,Result) :-

create_binder(’!’,P,Result).

forall_def(Result) :-

create_var(’x’,ind,X),

truth(Th),

dest_theorem(Th,_,T),

create_abs(X,T,XT),

create_var(’p’,fun(ind,bool),P),

create_eq(P,XT,E),

create_abs(P,E,Abs),

create_const(’!’,fun(bool,bool),C),

create_eq(C,Abs,E2),
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create_theorem([],E2,Result).

%Existential quantifier

create_exists(P,Result) :-

create_binder(’?’,P,Result).

exists_def(Result) :-

create_const(’?’,fun(bool,bool),C),

create_var(’p’,fun(ind,bool),P),

create_var(’x’,ind,X),

create_var(’q’,bool,Q),

create_app(P,X,PX),

create_impl(PX,Q,Impl),

create_abs(X,Impl,A1),

create_forall(A1,Forall),

create_impl(Forall,Q,Impl2),

create_abs(Q,Impl2,A2),

create_forall(A2,Forall2),

create_abs(P,Forall2,Abs),

create_eq(C,Abs,E),

create_theorem([],E,Result).

%Disjunction

create_disj(Tm1,Tm2,Result) :-

create_binary(’\\/’,Tm1,Tm2,Result).

disj_def(Result) :-

create_const(’\\/’,fun(bool,fun(bool,bool)),C),

create_var(’p’,bool,P),

create_var(’q’,bool,Q),

create_var(’r’,bool,R),

create_impl(P,R,PR),

create_impl(Q,R,QR),

create_impl(QR,R,QRR),

create_impl(PR,QRR,PRQRR),

create_abs(R,PRQRR,A),

create_forall(A,Forall),

create_abs(Q,Forall,Abs1),

create_abs(P,Abs1,Abs2),

create_eq(C,Abs2,E),

create_theorem([],E,Result).
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%Falsity

false_def(Result) :-

create_const(’ff’,bool,F),

create_var(’p’,bool,P),

create_abs(P,P,PP),

create_forall(PP,Forall),

create_eq(F,Forall,E),

create_theorem([],E,Result).

%Negation

neg_def(Result) :-

create_const(’~’,fun(bool,bool),C),

create_const(’ff’,bool,F),

create_var(’p’,bool,P),

create_impl(P,F,Impl),

create_abs(P,Impl,Abs),

create_eq(C,Abs,E),

create_theorem([],E,Result).

create_neg(P,Result) :-

type_of(P,bool),

create_const(’~’,fun(bool,bool),Neg),

create_app(Neg,P,Result).

%Unique existential quantifier

uexists_def(Result) :-

create_const(’?!’,fun(bool,bool),C),

create_var(’x’,ind,X),

create_var(’y’,ind,Y),

create_var(’p’,fun(ind,bool),P),

create_eq(X,Y,XY),

create_app(P,X,PX),

create_app(P,Y,PY),

create_conj(PX,PY,PXPY),

create_impl(PXPY,XY,Impl),

create_abs(Y,Impl,Abs_y),

create_forall(Abs_y,Forall),

create_abs(X,Forall,Abs_x),

create_forall(Abs_x,Part2),

create_abs(X,PX,Abs_x2),

create_exists(Abs_x2,Part1),
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create_conj(Part1,Part2,Conj),

create_abs(P,Conj,Abs1),

create_eq(C,Abs1,E),

create_theorem([],E,Result).

create_uexists(P,Result) :-

type_of(P,Ty),

Ty = fun(_,bool),

create_const(’?!’,fun(Ty,bool),Uexists),

create_app(Uexists,P,Result).

Pretty printer

:- ensure_loaded(’classic’).

%Pretty printer

%Types

pretty_print(bool) :- write(’bool’).

pretty_print(ind) :- write(’ind’).

pretty_print(fun(X,Y)) :-

write(X),

write(’_’),

pretty_print(Y).

%Special constants

%For true

pretty_print(const(’tt’,bool)) :-

write(’tt’).

%For false

pretty_print(const(’ff’,bool)) :-

write(’ff’).

%For binary operators

pretty_print(app(app(const(’=’,_),S),T)) :-

write(’(’),pretty_print(S),

write(’=’),pretty_print(T),

write(’)’).

pretty_print(app(app(const(’/\\’,_),S),T)) :-
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write(’(’),pretty_print(S),

write(’/\\’),

pretty_print(T),

write(’)’).

pretty_print(app(app(const(’\\/’,_),S),T)) :-

write(’(’),pretty_print(S),

write(’\\/’),

pretty_print(T),

write(’)’).

pretty_print(app(app(const(’==>’,_),S),T)) :-

write(’(’),

pretty_print(S),

write(’==>’),

pretty_print(T),

write(’)’).

%For select operator

pretty_print(app(const(’@’,_),Tm)) :-

write(’((’),

write(’@’),

write(’) ’),

pretty_print(Tm),

write(’)’).

%For binders

pretty_print(app(const(’!’,_),abs(S,T))) :-

write(’(’),

write(’!’),

pretty_print(S),

write(’.’),

pretty_print(T),

write(’)’).

pretty_print(app(const(’?’,_),abs(S,T))) :-

write(’(’),

write(’?’),

pretty_print(S),

write(’.’),

pretty_print(T),

write(’)’).

pretty_print(app(const(’?!’,_),abs(S,T))) :-

write(’(’),

write(’?!’),

pretty_print(S),

write(’.’),

pretty_print(T),

write(’)’).
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%For negation

pretty_print(app(const(’~’,_),P)) :-

write(’~’),

pretty_print(P).

%Basic terms

pretty_print(const(S,X)) :-

write(’const_’),

write(S),

write(’_’),

pretty_print(X).

pretty_print(var(S,X)) :-

write(S),

write(’_’),

pretty_print(X).

pretty_print(app(T1,T2)) :-

pretty_print(T1),

write(’ ’),

pretty_print(T2).

pretty_print(abs(S,X)) :-

write(’(\\’),

pretty_print(S),

write(’.’),

pretty_print(X),

write(’)’).

%Instantiation list

pretty_print([(X,Y)]) :-

write(’(’),

pretty_print(X),

write(’-->’),

pretty_print(Y),

write(’)’).

pretty_print([(X,Y)|Rest]) :-

write(’(’),

pretty_print(X),

write(’-->’),

pretty_print(Y),

write(’),’),

pretty_print(Rest).

%Assumption list

pretty_print([]).

pretty_print([Tm]) :-
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pretty_print(Tm).

pretty_print([Tm|Rest]) :-

pretty_print(Tm),

write(’,’),

pretty_print(Rest).

%For printing a theorem

pretty_print(theorem(A,Tm)) :-

write(’[’),

pretty_print(A),

write(’]-->’),

pretty_print(Tm).
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Tests

:- ensure_loaded(’pp’).

%Tests for terms

test_funvar(Name,S,T,X) :-

create_fun(S,T,F),

create_var(Name,F,X).

test_create_term(X) :-

create_var(’x’,ind,S),

create_fun(ind,bool,F),

create_const(’c’,F,T),

create_var(’y’,ind,Y),

create_app(T,Y,U),

create_fun(bool,bool,F2),

create_var(’z’,F2,Z),

create_app(Z,U,ZU),

create_abs(S,ZU,X).

test_alphac_succes :-

create_var(’x’,ind,X),
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create_var(’y’,ind,Y),

create_abs(X,X,XX),

create_abs(Y,Y,YY),

write(’Input: ’),

pretty_print(XX),nl,

write(’ ’),

pretty_print(YY),nl,

alphac(XX,YY).

test_alphac_fail :-

create_var(’x’,ind,X),

create_var(’y’,ind,Y),

create_var(’z’,ind,Z),

create_abs(X,X,XX),

create_abs(Y,Z,YZ),

write(’Input: ’),

pretty_print(XX),nl,

write(’ ’),

pretty_print(YZ),nl,

alphac(XX,YZ).

test_mapping([(Z,T1),(Y,T2)]) :-

create_var(’z’,fun(bool,bool),Z),

create_var(’a’,fun(bool,bool),T1),

create_var(’y’,ind,Y),

create_var(’x’,ind,T2).

test_frees1 :-

create_var(’x’,ind,X),

create_var(’y’,ind,Y),

create_abs(X,Y,Abs),

write(’Input: ’),

pretty_print(Abs),nl,

frees(Abs,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_frees2 :-

create_var(’x’,ind,X),

create_abs(X,X,XX),

write(’Input: ’),

pretty_print(XX),nl,

frees(XX,Result),

write(’Result: ’),
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pretty_print(Result),nl.

test_frees3 :-

create_var(’x’,ind,X),

create_abs(X,X,XX),

create_var(’y’,ind,Y),

create_app(XX,Y,XXY),

write(’Input: ’),

pretty_print(XXY),nl,

frees(XXY,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_rename_var :-

create_var(’x’,ind,X),

write(’Input: ’),

pretty_print(X),nl,

rename_var(X,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_inst1 :-

test_create_term(Oldterm),

test_mapping(M),

write(’Input: ’),

write(’Mapping: ’),

pretty_print(M),nl,

write(’ Term: ’),

pretty_print(Oldterm),nl,

instantiate(Oldterm,M,Result,_),

write(’Result: ’),

pretty_print(Result),nl.

test_inst2 :-

create_var(’x’,ind,X),

create_abs(X,X,XX),

create_var(’y’,ind,Y),

M = [(X,Y)],

write(’Input: ’),

write(’Mapping: ’),

pretty_print(M),nl,

write(’ Term: ’),

pretty_print(XX),nl,

instantiate(XX,M,Result,_),
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write(’Result: ’),

pretty_print(Result),nl.

test_create_eq(X) :- create_eq(var(’s’,ind),var(’t’,ind),X).

test_dest_eq(X1,X2) :- test_create_eq(Y),dest_eq(Y,X1,X2).

%Tests for axioms/basic rules

test_theorem(X) :-

test_create_eq(T),

create_var(’a’,ind,Ass),

create_theorem([Ass],T,X).

test_refl :-

create_var(’x’,ind,T),

write(’Input: ’),

pretty_print(T),nl,

refl(T,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_trans :-

test_theorem(T1),

create_eq(var(’t’,ind),var(’u’,ind),E),

create_var(’a’,ind,Ass),

create_theorem([Ass],E,T2),

write(’Input: ’),

pretty_print(T2),nl,

trans(T1,T2,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_cong :-

test_funvar(’s’,ind,ind,S),

test_funvar(’t’,ind,ind,T),

create_eq(S,T,E1),

create_var(’a’,ind,Ass1),

create_theorem([Ass1],E1,T1),

create_var(’u’,ind,U),

create_var(’v’,ind,V),

create_eq(U,V,E2),

create_var(’b’,ind,Ass2),

create_theorem([Ass2],E2,T2),
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write(’Input: ’),

pretty_print(T1),nl,

write(’ ’),

pretty_print(T2),nl,

cong(T1,T2,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_abs :-

test_theorem(T),

create_var(’x’,ind,V),

write(’Input: ’),

write(’Bound var: ’),

pretty_print(V),nl,

write(’ ’),

write(’Theorem: ’),

pretty_print(T),nl,

abs(V,T,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_beta :-

create_var(’x’,ind,S),

create_var(’t’,ind,T),

create_abs(S,T,ST),

create_app(ST,S,STS),

write(’Input: ’),

pretty_print(STS),nl,

beta(STS,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_eta :-

create_var(’x’,ind,S),

create_var(’t’,fun(ind,ind),T),

write(’Input: ’),

write(’Bound var: ’),

pretty_print(S),nl,

write(’ ’),

write(’Term: ’),

pretty_print(T),nl,

eta(S,T,Result),

write(’Result: ’),

pretty_print(Result),nl.
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test_assume :-

create_var(’p’,bool,P),

write(’Input: ’),

pretty_print(P),nl,

assume(P,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_eq_mp :-

test_create_eq(E),

create_var(’a’,ind,Ass1),

create_theorem([Ass1],E,T1),

create_var(’s’,ind,S),

create_var(’b’,ind,Ass2),

create_theorem([Ass2],S,T2),

write(’Input: ’),

pretty_print(T1),nl,

write(’ ’),

pretty_print(T2),nl,

eq_mp(T1,T2,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_subtract_alpha :-

create_var(’x’,ind,X),

create_var(’y’,ind,Y),

create_abs(X,X,XX),

create_abs(Y,Y,YY),

subtract_alpha([X,YY],XX,Result),

pretty_print(Result).

test_deduct_antisym :-

create_var(’s’,ind,S),

create_var(’t’,ind,T),

create_theorem([T],S,S2),

create_theorem([S],T,T2),

write(’Input: ’),

pretty_print(S2),nl,

write(’ ’),

pretty_print(T2),nl,

deduct_antisym(S2,T2,Result),

write(’Result: ’),

pretty_print(Result),nl.
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test_inst_rule1 :-

create_var(’x’,ind,X),

create_var(’y’,ind,Y),

create_var(’z’,ind,Z),

create_var(’u’,ind,U),

create_abs(X,Y,Abs),

create_app(Abs,Z,AbsZ),

create_theorem([X],AbsZ,T),

M = [(Y,X),(Z,U)],

write(’Input: ’),

write(’Mapping: ’),

pretty_print(M),nl,

write(’ ’),

write(’Theorem: ’),

pretty_print(T),nl,

inst_rule(M,T,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_inst_rule2 :-

create_var(’x’,ind,X),

create_var(’y’,ind,Y),

create_var(’z’,ind,Z),

create_var(’u’,ind,U),

create_abs(X,X,Abs),

create_app(Abs,Z,AbsZ),

create_theorem([X],AbsZ,T),

M = [(X,Y),(Z,U)],

write(’Input: ’),

write(’Mapping: ’),

pretty_print(M),nl,

write(’ ’),

write(’Theorem: ’),

pretty_print(T),nl,

inst_rule(M,T,Result),

write(’Result: ’),

pretty_print(Result),nl.

%Test derived rules

test_beta_conv(Result) :-

create_var(’x’,ind,X),

create_var(’s’,ind,S),

create_var(’t’,ind,T),
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create_abs(X,S,XS),

create_app(XS,T,XST),

beta_conv(XST,Result).

test_sym :-

create_var(’l’,ind,S),

create_var(’r’,ind,T),

create_eq(S,T,ST),

create_var(’a’,ind,Ass),

create_theorem([Ass],ST,Th),

write(’Input: ’),

pretty_print(Th),nl,

sym(Th,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_cong_function :-

create_var(’f’,fun(ind,ind),F),

create_var(’u’,ind,U),

create_var(’v’,ind,V),

create_eq(U,V,E),

create_var(’a’,ind,Ass),

create_theorem([Ass],E,Thm),

write(’Input: ’),

write(’Function: ’),

pretty_print(F),nl,

write(’ ’),

write(’Equality: ’),

pretty_print(Thm),nl,

cong_function(F,Thm,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_cong_parameter :-

create_var(’f’,fun(ind,ind),F),

create_var(’g’,fun(ind,ind),G),

create_var(’u’,ind,U),

create_eq(F,G,E),

create_var(’a’,ind,Ass),

create_theorem([Ass],E,Thm),

write(’Input: ’),

write(’Equality: ’),

pretty_print(Thm),nl,

write(’ ’),
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write(’Argument: ’),

pretty_print(U),nl,

cong_parameter(Thm,U,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_alpha_term(Result) :-

create_var(’y’,ind,Y),

create_var(’x’,ind,X),

create_abs(X,X,XX),

alpha_term(Y,XX,Result).

test_alpha_equal(Result) :-

create_var(’s’,ind,S),

alpha_equal(S,S,Result).

test_alpha_conv(Result) :-

create_var(’y’,bool,Y),

create_var(’x’,bool,X),

create_abs(X,X,XX),

alpha_conv(Y,XX,Result).

test_gen_alpha_conv1 :-

create_var(’y’,bool,Y),

create_var(’x’,bool,X),

create_abs(X,X,XX),

write(’Input: ’),

write(’New name for the bound variable: ’),

pretty_print(Y),nl,

write(’ ’),

write(’Term: ’),

pretty_print(XX),nl,

gen_alpha_conv(Y,XX,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_gen_alpha_conv2 :-

create_var(’y’,bool,Y),

create_var(’x’,bool,X),

create_abs(X,X,XX),

create_forall(XX,Forall),

write(’Input: ’),

write(’New name for the bound variable: ’),

pretty_print(Y),nl,
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write(’ ’),

write(’Term: ’),

pretty_print(Forall),nl,

gen_alpha_conv(Y,Forall,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_prove_ass1 :-

create_var(’a’,ind,A),

create_var(’t1’,ind,T1),

create_var(’t2’,ind,T2),

create_theorem([A],T1,Th1),

create_theorem([T1],T2,Th2),

write(’Input: ’),

pretty_print(Th1),nl,

write(’ ’),

pretty_print(Th2),nl,

prove_ass(Th1,Th2,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_prove_ass2 :-

create_var(’a’,ind,A),

create_var(’b’,ind,B),

create_var(’t1’,ind,T1),

create_var(’t2’,ind,T2),

create_theorem([A],T1,Th1),

create_theorem([B],T2,Th2),

write(’Input: ’),

pretty_print(Th1),nl,

write(’ ’),

pretty_print(Th2),nl,

prove_ass(Th1,Th2,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_beta_red1 :-

create_var(’x’,ind,X),

create_var(’y’,ind,Y),

create_abs(X,X,XX),

create_app(XX,Y,XXY),

create_var(’a’,ind,Ass),

create_theorem([Ass],XXY,Th),

write(’Input: ’),
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pretty_print(Th),nl,

beta_reduction(Th,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_beta_red2 :-

create_var(’p’,bool,P),

create_var(’q’,bool,Q),

create_var(’s’,bool,S),

create_var(’t’,bool,T),

create_var(’f’,fun(bool,fun(bool,bool)),F),

create_app(F,P,FP),

create_app(FP,Q,FPQ),

create_abs(F,FPQ,FFPQ),

create_abs(Q,FFPQ,QFFPQ),

create_abs(P,QFFPQ,PQFFPQ),

create_app(PQFFPQ,S,PQFFPQS),

create_app(PQFFPQS,T,PQFFPQPST),

create_var(’a’,ind,Ass),

create_theorem([Ass],PQFFPQPST,Th),

write(’Input: ’),

pretty_print(Th),nl,

beta_reduction(Th,Result),

write(’Result: ’),

pretty_print(Result),nl.

%Test logical constants

test_create_binary(Result) :-

create_var(’p’,bool,P),

create_var(’q’,bool,Q),

create_binary(’/\\’,P,Q,Result),

pretty_print(Result).

%Truth

test_truth_def(Result) :-

truth_def(Result),

pretty_print(Result).

test_truth :-

truth(Result),

write(’Result: ’),

pretty_print(Result),nl.
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test_truth_elim :-

truth(T),

dest_theorem(T,_,Tm),

create_var(’p’,bool,P),

create_eq(P,Tm,Eq),

create_var(’a’,ind,Ass),

create_theorem([Ass],Eq,Th),

write(’Input: ’),

pretty_print(Th),nl,

truth_elim(Th,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_truth_intro :-

create_var(’p’,bool,P),

create_var(’a’,ind,Ass),

create_theorem([Ass],P,Th),

write(’Input: ’),

pretty_print(Th),nl,

truth_intro(Th,Result),

write(’Result: ’),

pretty_print(Result),nl.

%Conjunction

test_create_conj :-

create_var(’p’,bool,P),

create_var(’q’,bool,Q),

write(’Input: ’),

pretty_print(P),nl,

write(’ ’),

pretty_print(Q),nl,

create_conj(P,Q,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_conj_def(Result) :-

conj_def(Result),

pretty_print(Result).

test_conj :-

create_var(’s’,bool,S),

create_var(’a’,ind,Ass1),

create_theorem([Ass1],S,ThS),
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create_var(’t’,bool,T),

create_var(’b’,ind,Ass2),

create_theorem([Ass2],T,ThT),

write(’Input: ’),

pretty_print(ThS),nl,

write(’ ’),

pretty_print(ThT),nl,

conj(ThS,ThT,Result),

write(’Result: ’),

pretty_print(Result),nl.

testhelper_conj(Result) :-

create_var(’l’,bool,L),

create_theorem([],L,Th1),

create_var(’r’,bool,R),

create_var(’assumption’,bool,A),

create_theorem([A],R,Th2),

conj(Th1,Th2,Result).

test_conj_left :-

testhelper_conj(Conj),

write(’Input: ’),

pretty_print(Conj),nl,

conj_left(Conj,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_conj_right :-

testhelper_conj(Conj),

write(’Input: ’),

pretty_print(Conj),nl,

conj_right(Conj,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_conj_pair(L,R) :-

testhelper_conj(Conj),

conj_pair(Conj,L,R),

pretty_print(L),

pretty_print(R).

%Implication
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test_create_impl :-

create_var(’p’,bool,P),

create_var(’q’,bool,Q),

write(’Input: ’),

pretty_print(P),nl,

write(’ ’),

pretty_print(Q),nl,

create_impl(P,Q,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_impl_def(Result) :-

impl_def(Result),

pretty_print(Result).

test_mp :-

create_var(’p’,bool,P),

create_var(’q’,bool,Q),

create_impl(P,Q,Impl),

create_var(’a’,ind,Ass1),

create_var(’b’,ind,Ass2),

create_theorem([Ass1],Impl,I),

create_theorem([Ass2],P,Th),

write(’Input: ’),

pretty_print(I),nl,

write(’ ’),

pretty_print(Th),nl,

mp(I,Th,Result),

write(’Result: ’),

pretty_print(Result),nl.

%Universal quantifier

test_create_forall :-

create_var(’p’,bool,P),

create_abs(P,P,Abs),

write(’Input: ’),

pretty_print(Abs),nl,

create_forall(Abs,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_forall_def(Result) :-

forall_def(Result),
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pretty_print(Result).

%Existential quantifier

test_create_exists :-

create_var(’p’,bool,P),

create_abs(P,P,Abs),

write(’Input: ’),

pretty_print(Abs),nl,

create_exists(Abs,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_exists_def(Result) :-

exists_def(Result),

pretty_print(Result).

%Disjunction

test_create_disj :-

create_var(’p’,bool,P),

create_var(’q’,bool,Q),

write(’Input: ’),

pretty_print(P),nl,

write(’ ’),

pretty_print(Q),nl,

create_disj(P,Q,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_disj_def(Result) :-

disj_def(Result),

pretty_print(Result).

%False

test_false_def :-

false_def(Result),

write(’Result: ’),

pretty_print(Result),nl.

%Negation

test_create_neg(Result) :-
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create_var(’p’,bool,P),

write(’Input: ’),

pretty_print(P),nl,

create_neg(P,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_neg_def(Result) :-

neg_def(Result),

pretty_print(Result).

%Unique existential quantifier

test_create_uexists(Result) :-

create_var(’p’,bool,P),

create_abs(P,P,Abs),

write(’Input: ’),

pretty_print(Abs),nl,

create_uexists(Abs,Result),

write(’Result: ’),

pretty_print(Result),nl.

test_uexists_def(Result) :-

uexists_def(Result),

pretty_print(Result).

%Overall tests

test_term :-

write(’Testing predicates in term.pl’),

nl,nl,

write(’Testing alpha convertibility’),nl,

test_alphac_succes,

write(’Result: succes’),nl,

\+ test_alphac_fail,

write(’Result: fail’),nl,

nl,

write(’Testing for free variables’),nl,

test_frees1,

test_frees2,

test_frees3,

nl,

write(’Testing renaming of variables’),nl,
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test_rename_var,

nl,

write(’Testing instantiation of terms’),nl,

test_inst1,

test_inst2,

nl.

test_theorem :-

write(’Testing predicates in theorem.pl’),

nl,nl,

write(’Testing refl’),nl,

test_refl,

nl,

write(’Testing trans’),nl,

test_trans,

nl,

write(’Testing cong’),nl,

test_cong,

nl,

write(’Testing abs’),nl,

test_abs,

nl,

write(’Testing beta’),nl,

test_beta,

nl,

write(’Testing eta’),nl,

test_eta,

nl,

write(’Testing assume’),nl,

test_assume,

nl,

write(’Testing eq_mp’),nl,

test_eq_mp,

nl,

write(’Testing deduct_antisym’),nl,

test_deduct_antisym,

nl,

write(’Testing instantiation’),nl,

test_inst_rule1,

test_inst_rule2,

nl.

test_derived_rules :-

write(’Testing predicates in derived_rules.pl’),
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nl,nl,

write(’Testing cong_function’),nl,

test_cong_function,

nl,

write(’Testing cong_parameter’),nl,

test_cong_parameter,

nl,

write(’Testing sym’),nl,

test_sym,

nl,

write(’Testing alpha conversion’),nl,

test_gen_alpha_conv1,

test_gen_alpha_conv2,

nl,

write(’Testing prove assumption’),nl,

test_prove_ass1,

test_prove_ass2,

nl,

write(’Testing beta reduction’),nl,

test_beta_red1,

test_beta_red2,

nl.

test_logical_connectives :-

write(’Testing predicates in logical_connectives.pl’),

nl,nl,

write(’Testing prove of truth’),nl,

test_truth,

nl,

write(’Testing elimination of truth’),nl,

test_truth_elim,

nl,

write(’Testing introduction of truth’),nl,

test_truth_intro,

nl,

write(’Testing conj’),nl,

test_conj,

nl,

write(’Testing conj_left’),nl,

test_conj_left,

nl,

write(’Testing conj_right’),nl,

test_conj_right,

nl,
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write(’Testing modus ponens’),nl,

test_mp,

nl.

test_all :-

test_term,

test_theorem,

test_derived_rules,

test_logical_connectives.
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Appendix C

HOL Light

The proof assistant of this thesis is built on the logic of the theorem prover HOL
Light. HOL Light also sets up an intuitionistic higher order logic that turns out
to be classical when accepting the axioms of choice and extentionality. The HOL
Light project has therefore served as a guideline for this thesis. The purpose
of a theorem prover is to prove a statement from the logic that the theorem
prover is based on. Which statements depend on the application of the theorem
prover. The applications are mostly in the areas of

• Verifying mathematical theorems.

• Verifying software and hardware.

In particular HOL Light is used for verifying floating point algorithms for hard-
ware at Intel. Among these floating-point algorithms are algorithms for division
and square root. Furthermore HOL Light has been used for proving error bounds
in transcendental functions. Transcendental functions are functions which can-
not be expressed by a finite sequence of the usual algebraic functions addition,
multiplication and root operations (for instance square root). Therefore an ap-
proximation of these functions must be used. Some examples of transcendental
functions are logarithm, sine and cosine.
Besides being used at Intel, HOL Light is also used for formalising mathematical
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theorems. The theorems can be simple ones like the irrationality of the square
root of two and the Pythagorean theorem. However more complex theorems can
also be verified by HOL Light. At the moment the Flyspeck project is trying to
verify the proof of Kepler conjecture using HOL Light.
References: [6],[7].
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