
Fitting Standard Software
to

Customer Needs

Rajesh Veluswamy

LYNGBY 2003
M.Sc. Thesis Project

NR.00/99

IMM

Printed by IMM, DTU

Abstract

There is a given:

• an already existing software A , that does not support some of customer requirements R. Typ-
ically, A is extended with a sizeable software component B, to meet this class of customer
requirements R. The combined system A

⊕
B, is now capable of addressing the class of cus-

tomer needs. The Main Development Centre (MDC) designs and develops A⊕
B.

• Also, each customer currently using A, has his own specific requirements R ′, which are of type
R.

For A⊕
B to be useful to the customer, the Requirements Engineer at the Customer Solution Centre

(CSC), has to fit A⊕
B with R′ to generate a customer-specific A′⊕B′

R.
A CSC Requirements Engineer has a challenge to be able to elicit and specify right customer require-
ments R′ . The question is:

How can the MDC assist a CSC Requirements Engineer to elicit and specify R′ that
would fit A⊕

B to the specific needs of a customer?

This thesis addresses this question. It does so by proposing a Solution Concept that addresses this
problem. The thesis carries out a case-study, with the aim of applying the Solution Concept to an
actual industrial project (Event Management) within Microsoft Business Solutions (MBS).

KEYWORDS: Domain Analysis, Requirements Analysis, Formal Specification, Reuse, Domain-
specific Language.

Preface

This document has been produced as part of a Masters Thesis carried out at Computer Science and
Engineering (CSE) section of the Institute of Informatics and Mathematical Modelling (IMM) at the
Technical University of Denmark (DTU). Work on the thesis has been supervised by Prof. Dines
Bjørner.

I would like to thank Professor Dines Bjørner for his valuable inputs and guidance. I also
would like to thank my colleagues at Microsoft Business Solutions, who have been extremely helpful
in giving me valuable feedback.

Rajesh Veluswamy
Student No. : s010841
DTU Lyngby, 7th April 2003

Typographical Conventions

This section gives an overview of the typographical conventions used in this document.

Normal Text

Normal texts in this document are presented in the font , as used in this sentence.

Emphasized Text

Text which has been emphasised by the author is presented in the font used here.

Quoted Material

Quoted material is presented in one of two forms: Shorter quotations whose contents are directly
integrated in the running text, are presented “inline,such as this”.

Longer quotations whose contents are not necessarily integrated in the running text are
formatted like this paragraph.

Cross-references

As customary, cross-references are usually integrated in the running text, such as: See section 1.1 on
page 25.

Terms and Definitions

Terms whose importance is deemed to be significant are emphasised.

Acronyms

The acronyms which are used in this document have been listed in Appendix A.1.

Special Notation

Special entities which are found throughout the document, like Formal
specification, narratives, domain-specific language are presented in
typewriter style as in this sentence.

Document Structure

This document is divided into five parts. The content of each document parts is briefly described
below.

Part I: Problem Analysis

This part presents the general problem area of Requirements Engineering and the major research
challenges in this field. It highlights the main challenge addressed by this thesis, that of fitting standard
software to specific needs of a customer. This is followed by the problem definitions formulation in
Section 1.3 on page 21.

Part II: Solution Concept

This part presents the Solution Concept for the thesis problem statement. Further an approach, to sys-
tematically create a domain-specific language (DSL) is described. This part also, provides the theoret-
ical background information about Domain-specific languages (DSL) and Domain and Requirements
Analysis, that serve as input for design of DSL.

Part III: Case Study

This part presents the Case-study which was carried out with the thesis with the aim of applying
the Solution Concept to an actual industrial project (Event Management) within Microsoft Business
Solutions (MBS). As part of case-study, Domain analysis, Requirements analysis and Step-wise de-
velopment of different solution approaches is done The result of analysis served as input to design an
Event Management Language.

Part IV: Conclusion

This part provides a discussion of the work done for the thesis, identifies future work, and concludes
by providing a brief summary of the results of the thesis.

Part V: Appendices

This part contains all the listings relevant to the document.

Contents

I Problem Analysis 15

1 Introduction 17
1.1 Requirements Engineering(RE) . 17

1.1.1 Motivation . 17
1.1.2 What is Requirements Engineering? . 17
1.1.3 Requirements Engineering Process . 18
1.1.4 Research Challenges . 18

1.2 Challenge of Fitting Standard Software to Customer Needs 20
1.3 Problem Definition . 21

II Solution Concept 23

2 Solution Concept 25
2.1 Introduction . 25
2.2 Solution Formulation . 26
2.3 Creating DSL . 28

3 Domain Specific Language 31
3.1 Introduction . 31
3.2 Characteristics of a DSL . 31
3.3 Design and Formalisation of DSL . 32

III Case Study 35

4 Case Study Overview 37
4.1 Motivation . 37
4.2 Information Source . 37
4.3 Analysis Overview . 38

5 Introduction to Event Management Solution 41
5.1 Need for EMS . 41
5.2 Business Problem Statement . 42
5.3 Target Market and Customer . 42
5.4 Overall solution concept . 43

8 Contents

6 Domain Analysis 45
6.1 Domain of Events . 45
6.2 What is a Simple Application System? . 46
6.3 Static Analysis of SAS . 47
6.4 Dynamic Analysis of SAS . 48

6.4.1 System Behaviour . 49
6.4.2 User Process behaviour . 50
6.4.3 Application Area behaviour . 51

6.5 Domain Model of SAS . 52

7 Requirements Analysis 55
7.1 Overall Event Management . 55
7.2 Event . 56
7.3 Notification . 58
7.4 Event-Notification Template . 60
7.5 EMS System and State . 60
7.6 Event-Notification Instance . 61
7.7 Event Management Model . 62

8 Solution Approaches 65
8.1 Direct Event Management . 66

8.1.1 Solution concept . 66
8.1.2 Extending SAS with Direct EMS . 66
8.1.3 Benefits and Limitations of Direct EMS . 68
8.1.4 Model of Direct EMS . 68

8.2 Synchronous Event Management . 69
8.2.1 Solution concept . 69
8.2.2 Extending SAS with Synchronous EMS . 69
8.2.3 Benefits and Limitations of Direct EMS . 72
8.2.4 Model of Synchronous EMS . 72

8.3 Asynchronous Event Management . 73
8.3.1 Solution concept . 73
8.3.2 Extending SAS with Asynchronous EMS 74
8.3.3 Model of Asynchronous EMS . 76

8.4 External Asynchronous Event Management . 77
8.4.1 Solution concept . 77
8.4.2 Extending SAS with external Asynchronous EMS 78
8.4.3 Model of External Asynchronous EMS . 80

9 Design of Event Management Language 81
9.1 Language Analysis . 81

9.1.1 Language Requirements . 81
9.1.2 Elements of Design . 81

9.2 EML Syntax . 82
9.2.1 Example EML Specification . 82
9.2.2 EML Specification . 83
9.2.3 Event . 84

Contents 9

9.2.4 Notification . 88
9.2.5 EML Syntax Specification . 90

9.3 EML Semantics . 92
9.3.1 Semantic of EML Specification . 92
9.3.2 Semantic of Event . 92
9.3.3 Semantic of Notification . 93
9.3.4 EML Semantics Specification . 95

9.4 Discussion . 96

10 Guidelines for Requirements Engineers 99
10.1 Exception Management . 99
10.2 Event Based Workflow . 101
10.3 Proactive Info . 104

IV Conclusion 107

11 Conclusion 109
11.1 Summary of Contributions . 109
11.2 Limitations . 109
11.3 Conclusions . 110
11.4 Future Work . 110

V Appendices 111

A Glossary of Key Terms 113
A.1 Acronyms . 113

B EMS Use Cases 115
B.1 Profit margin below limit . 115
B.2 Order Delayed - Production/Sales Activity Control 115
B.3 MRP run error . 116
B.4 Inventory below reorder point . 116
B.5 Collaboration - Sales and shipping notifications . 117
B.6 Create new end item . 117
B.7 Remind supplier of delivery . 118
B.8 Inventory expire date passed . 119
B.9 Output to inventory . 119
B.10 Order/demand canceled . 119

C Domain Model of Simple Application System (SAS) 121

D EMS Requirements Model 123

E SAS with Direct EMS 125

F SAS with Synchronous EMS 129

10 Contents

G SAS with Asynchronous EMS 133

H SAS with External Asynchronous EMS 137

List of Tables

3.2 Example domain-specific languages (Adapted from [19]) 31
3.3 Syntactic, Semantic and Satisfy Relational context 33

5.2 Shipment Workflow as it is, without EMS . 43
5.4 Shipment Workflow with EMS . 44

List of Figures

1.1 Requirements Challenge . 20

2.1 The General Software Engineering Problem (Adapted from [46]) 25
2.2 The Approach . 28

3.1 Syntactic, Semantic and Satisfy Relational context of DSL 33

4.1 Evolution of Domain with EMS System . 38

5.1 Simple Application System(SAS) extended with EMS. 43

6.1 Domain of Event Management Solution . 46
6.2 Informal model of Simple Application System . 46
6.3 A Schematic Diagram: Users, Application areas and Channels 49

7.1 Domain extended with EMS . 56

8.1 Simple Application with Direct Event Management 66
8.2 Simple Application with Synchronous Event Management 69
8.3 Simple Application with Asynchronous Event Management 73
8.4 Simple Application with External Asynchronous Event Management 77

9.1 Workflow to create a new item in SAS . 82
9.2 Example EML-Specification 3 . 85
9.3 Example EML-Specification 4 . 86
9.4 Example EML-Specification 5 . 88
9.5 Example EML-Specification 6 . 89

10.1 Workflow to create a new item in SAS . 101
10.2 Workflow - Sales and Shipment Notifications . 102
10.3 Workflow - Supplier Reminder . 103

Part I

Problem Analysis

15

17

Chapter 1

Introduction

This chapter introduces Requirements Engineering in Section 1.1, as seen from the software engineer-
ing perspective. This is followed by a focus on the challenge of fitting a standard software to customer
needs in Section 1.2 and a clear problem statement formulation in Section 1.3.

1.1 Requirements Engineering(RE)

1.1.1 Motivation

The last 25 years of research in the area of software engineering, has given intense focus towards RE.
This is primarily been motivated by the observation of Bell and Thayer, that inadequate, inconsistent,
incomplete, or ambiguous requirements are numerous and have a critical impact on the quality of the
software [1]. They further concluded that:

“The requirements for a system do not arise naturally; instead, they need to be engi-
neered and have continuing review and revision.”

A survey over 8000 projects undertaken by 350 US companies revealed that one third of the projects
never completed and one half succeeded partially, with major cost overruns and delays [3]. When
asked about the causes of such failure executive managers identified poor requirements as the source
of problems. A similar survey in Europe over 3800 organizations in 17 countries concluded that
most of the perceived software problems are in the area of requirements specification (>50%) and
requirements management [4].

The important conclusion, among many researchers was to improve the quality of requirements,
by adopting an engineering approach [6, 5, 1].

1.1.2 What is Requirements Engineering?

The role of RE in software engineering is clearly captured by Zave [2]:

“Requirements engineering is the branch of software engineering concerned with the real-
world goals for, functions of, and constraints on software systems. It is also concerned
with the relationship of these factors to precise specifications of software behaviour, and
to their evolution over time and across software families.”

18 Chapter 1. Introduction

This definition, highlights that RE should capture the basic need/motivation for the development of
a software system. Secondly, it refers to identification of functions and constraints on the software
system which would meet the goals. Thirdly, it stresses the need of unambiguous specification of
the software behaviour, so that software engineers can implement and test the requirements correctly.
Finally, the definition refers to the changing nature of requirements over time, being driven by the
need of the customer. Also, the need to reuse partial specification for fast development of families of
software.

1.1.3 Requirements Engineering Process

RE involves the following intertwined activities [6, 5]:

• Requirements Acquisition
This activity involves interacting with the customers, end users and analysts to find out about
the application domain. It involves identifying the Stake-holders, interacting with them to find
their main goals and needs, defining the boundaries in terms of problems to be solved. The usual
techniques include questionnaires and surveys, interviews, use cases and scenarios, viewpoint-
oriented elicitation [7] and ethnographic techniques like participant observation. The main
artifacts of this activity are informal documents, that are needed to be further analysed for
software requirements.

• Modelling and analyzing requirements
The main goal of this activity is to create abstract descriptions that are amenable to interpre-
tation [5]. This abstract description, forms the basis for analysis and reasoning. The usual
techniques include Domain Modelling, Enterprise Modelling[15], Data Modeling like Entity-
Relationship-Attribute (ERA), Object-oriented modelling technique, Requirements Modelling
Language [23].

• Specifying requirements
In this activity, the requirements and assumptions are formulated in a precise way. Considerable
effort has been devoted formal methods, supported by automated tools, that enable engineers
to capture and specify the software requirements unambiguously. Considerable effort has been
devoted to design of Formal Methods such as Z specification languages like Z [11], VDM [13],
RAISE [12], CSP [14].

• Validation requirements
This concerns agreeing specified requirements with the Stake-holders. The usual techniques in-
volves carrying out customer site-visits and presenting the requirements, inviting stake-holders
for inspections and reviews. During requirements validation process, different types of checks
are carried out to ensure validity, consistency, completeness in the requirements.

1.1.4 Research Challenges

Given such complexity of the requirements engineering process, some of the major challenges for RE
in the years ahead include [5] :

1. Development of new techniques for formally modelling and analysing properties of the environ-
ment: This would support specification of the expectations that a software component has of its
environment.

Section 1.1 Requirements Engineering(RE) 19

2. Bridging the gap between requirements elicitation approaches based on contextual enquiry and
more formal specification and analysis techniques: Contextual approaches, such as those based
on ethnographic techniques, provide a rich understanding of the organizational context for a
new software system, but do not map well onto existing techniques for formally modelling the
current and desired properties of problem domains.

3. Reuse of requirements models: Requirements within a specific domain are more likely to be
similar than the software components implementing the them [6]. This encourages the devel-
opment of reference models for specifying requirements, for application domains. This would
reduce the effort of developing requirements models from scratch [6, 5]. Work on problem
frames is a preliminary attempt to classify and characterize task patterns [8].

4. Support for requirements practitioners: Requirements engineers are the ones, who apply the
techniques of elicitation, analysis, specification. There is a challenge to find ways to support
the requirement engineers to be able to do these tasks more effectively.

5. Richer models for capturing non-functional requirements: These are requirements which are
attributed to the quality of the software like reliability, scalability, usability, simplicity. [9]

6. Better understanding of the impact of software architectural choices on the prioritisation and
evolution of requirements: While work in software architectures has concentrated on how to
express software architectures and reason about their behaviourial properties, there is still an
open question about how to analyse what impact a particular architectural choice has on the
ability to satisfy current and future requirements, and variations in requirements across a product
family [10].

The main goal of this thesis at a high level, is to contribute to the challenges of:

Supporting requirements practioners by Re-using requirements model.
(Bullets 3 and 4 above)

In order to be more realistic, we have collaborated with Microsoft Business Solutions (MBS) with the
aim:

• To understand a typical Requirements Engineers problem, that is representative in the industry,

• To carry out a case-study.

One of the challenges MBS faces, is to successfully fit a standard software (from MBS) to meet
the specific needs of the customer. This is further clarified in the following sections, by first giving
requirements challenge specific to MBS in Section 1.2, and then formulating a problem definition in
Section 1.3.

20 Chapter 1. Introduction

1.2 Challenge of Fitting Standard Software to Customer Needs

In a typical product development life-cycle at MBS, the requirements elicitation and specification
takes place at two levels as show in Figure 1.1:

Figure 1.1: Requirements Challenge

• Main Development Centre Level
The Main Development Centre (MDC) represents the software development house in MBS,
where the development teams develop a standard software. The Standard software is char-
acterised as generic in functionality, which could scale to a wider market as compared to a
customer-specific software. The development team, typically carries out proper market research,
makes a business case, spends good amount of time to understand the domain of the software
and gather requirements from some representative Customers, Analysts and Customer Solution
Centres (CSC). Typically, structured but informal methods like Use-cases are used to elicit and
specify requirements. This is followed by development and distribution of the standard solution
to a number of its CSCs.

• Customer Solution Centre Level
The Customer Solution Centre (CSC) represents the software development houses, that is re-
sponsible for deploying a customer-specific solution that fits the specific needs of the customer.
A CSC typically consists of consultants (Requirements engineers and Solution developers),
who have a better understanding of the customers domain. They are often constrained with
time (consultancy time) and limited documentation about the standard solution, that makes it a
challenge for the Requirements Engineer:

– To know type of requirements to “seek” from the customer, that could be met/satisfied by
the standard solution.

Section 1.3 Problem Definition 21

– To capture these requirements and effectively communicate with both the customer and
the CSC Solution developer.

1.3 Problem Definition

Given the above challenge, we shall now define the Thesis problem more precisely.

Problem Context

There is a given:

• an already existing software A , that does not support some of customer requirements R. Typ-
ically, A is extended with a sizeable software component B, to meet this class of customer
requirements R. The combined system A

⊕
B, is now capable of addressing the class of cus-

tomer needs. The Main Development Centre (MDC) designs and develops A⊕
B.

• Also, each customer currently using A, has his own specific requirements R ′, which are of type
R.

For A⊕
B to be useful to the customer, the Requirements Engineer at the Customer Solution Centre

(CSC), has to fit A⊕
B with R′ to generate a customer-specific A′⊕B′

R.
A CSC Requirements Engineer has a challenge to be able to elicit and specify right customer require-
ments R′ .

Problem Statement

The question is:

How can the MDC assist a CSC Requirements Engineer to elicit and specify R′ that
would fit A⊕

B to the specific needs of a customer?

Thesis Objectives

The main objectives of this thesis document are:

1. To propose a solution concept, that addresses the problem statement above. This is further
elaborated in Part II on page 23.

2. To carry out a case-study, with the aim to apply the solution concept on a industrial project
(Event Management) offered by Microsoft Business Solutions. This is further described in
chapters of Part III on page 35.

Part II

Solution Concept

23

25

Chapter 2

Solution Concept

In this chapter, we first develop an understanding of the basic concepts in 7.3. This is followed by a
Solution Formulation for the Problem Statement (Section 1.3) in 2.2.

2.1 Introduction

Figure 2.1 shows the general software development problem as presented by Jackson in [46]. Below
we define the terms, base on which the solution concept is formulated.

Figure 2.1: The General Software Engineering Problem (Adapted from [46])

Domain

Domain refers to the application domain where there are some requirements to be met.
For example: Domain of Railways, Banking, Postal Service, Transportation, Sales and Purchase etc.

Requirement

We refer to requirement as some condition that needs to be met in the domain in order to meet some
goals in the domain.
For example: Within Sales domain, it is a requirement that, after an order has been released, the
customer must be notified with the delivery details.

Machine

A general purpose computer specialised with a Software Program. Machine interacts with a domain
in order to ensure that, requirements in the domain are met. For the machine to control the domain
(to solve domain problems), it has to have the knowledge of the domain as it is. That is, it should
continuously maintains a representation (model) of the domain aspects. In other words, the machine
has to keep an internal version of things that is going on in the domain or a model of the domain.

26 Chapter 2. Solution Concept

Challenge of Software Engineer

The challenge for a software engineer is to provide a prescription, that instructs a general-purpose
computer, on how to interact with the domain to fulfill the requirements.

Software Program

A prescription, that instructs a general-purpose computer to a) capture the essential domain phe-
nomenon b) enforce the desired conditions, and thereby fulfill the requirements in the domain.

Software Language

It is a language, that provides, syntax and semantics, to describe a prescription (software program) for
the machine.

Specific Software Program -> Specific Machine

A prescription, that captures the essentials phenomenon of a customer- specific domain and enforces
the desired conditions in order to meet the requirements specific to the customer domain.

Generic Software Program -> Many Specific Machines

A prescription, that captures the essentials phenomenon of a class of customer domain and is capable
of enforcing the desired conditions in order to meet the requirements of a particular class of customer
domains. This is normally called Standard Software. We are able to create a generic software program
by identifying common basic phenomenon from the similar domains by abstraction.
For each customer, a specific machine could be generated by initialising the Standard Software with
customers specific domain phenomenon and requirements.

2.2 Solution Formulation

In light of above concepts, we could infer that:

• A Standard Software A
⊕
B , is a prescription to meet a specific class of requirements R of

different customers.

• A Customer-specific software, can be instantiated from a Standard Software by augmenting it
with customer-specific requirements R′.

• Customer-specific requirements R′ that could be met by the Standard Software A
⊕
B, are of

type R.

For Example:
Microsoft has developed MS Office as a Standard Software A

⊕
B, that addresses a class of require-

ments R (at a high-level):

• Document Management using Word, Excel

• Presentation using PowerPoint etc.

Section 2.2 Solution Formulation 27

One customer might have a Documentation requirement R1 only, and his specific MS Office installa-
tion would need only MS Word. Another customer might have a requirement for both documentation
and presentation R2, and his specific MS Office installation would need MS Word and Powerpoint.
These customers specific requirements R1 and R2are of type R.

The above suggests that, we could assist a CSC Requirements Engineer to elicit customer-specific
requirements R′, by making him available with the Standard Software requirements R, which are
already found by the Main Development Centre. In other words, Reuse R. With this approach, the
Problem Statement (Section 1.3), could be refined as:

How can we help a CSC Requirements Engineer to effectively reuse the Standard Soft-
ware requirements found by the MDC ?

Typically the Standard Software requirements are specified informally in Natural Language or as
Use-cases. These Use-cases could be handed over to a CSC Requirements Engineer for reuse, as a
first step. They serve as an excellent example of usage of a Standard Software, which would help a
CSC Requirements Engineer to seek for similar usage in the customers specific domain. Two main
concerns related to using Use-cases as a reuse tool are:

• An informal nature of Natural language specification and Use-cases, makes it open for different
interpretation (with reference to its initial intent) and hence ambiguous.

• Use-cases fail to provide the link of requirements to the Standard Software components and
specifications, that are formal.

The above disadvantages could be approached by using a Domain-specific language (DSL), which is
descriptive in nature, specific to the domain and have a formal syntax and semantics.
Based on the above analysis, we suggest that the MDC can assist a CSC Requirements Engineer:

1. By providing guidelines and examples of usage of the Standard Software as Scenarios (of Use-
case) along with a clear specification of requirements in DSL. That would help the CSC Re-
quirements Engineer to elicit similar requirements from the customer’s specific domain. In
Section 2.3, we describe our suggestion of an approach to create a domain-specific language.

2. By providing DSL itself with its clear syntax and semantics description, which could be used
to specify customer-specific requirements.

28 Chapter 2. Solution Concept

2.3 Creating DSL

Figure 2.2, shows the process (along with the artifacts) we have considered to create a domain-specific
language.

Figure 2.2: The Approach

Below is a description of the four major stages of the process, along with the description of the
tools and techniques used and the artifacts:

• Domain Acquisition
The main goal of this activity is to get to know a domain as it is. Elicitation techniques like
Interviews, Site-visits, Use-cases/scenarios, View-point oriented analysis could be used. The
information results in informal description of domain phenomenon. At this stage, we are not
at all concerned with the requirements. The informal descriptions could be further structured
using techniques like, Use Cases, Structured Natural Languages. The result of this activity is
used for domain analysis.

Section 2.3 Creating DSL 29

• Domain Analysis
In this activity, the informal domain information is analysed with the aim to identify basic
domain aspects. Abstraction along with Formal Methods, is used as the base technique during
Domain Analysis. This activity results in a informal and formal domain model.

• Requirements Analysis
Once we have a better understanding of the domain, both informally and formally, we are in a
position to seek requirements and create a requirements model by specifying them formally.

• Develop Solution Approaches:
In this phase, we carry out step-wise development of different solution models, to get a better
understanding of how the requirements could be met in the domain.

• Develop Domain-specific Language
This activity involves developing a language, which could be used to express the link between,
informal customer domain(and its requirements) and the formal Standard Software. The main
advantage of a domain-specific language is that it is small, focused to solution domain, is de-
scriptive and hence easily accessible to CSC Requirements Engineers. Further, it makes it
possible to specify the customer specific requirements within the context of the Standard Solu-
tion, and more importantly, specify them unambiguously. An introduction to Domain-specific
language is given in Chapter 3.

31

Chapter 3

Domain Specific Language

This chapter gives an introduction to domain-specific language, its characteristics, use and formalisa-
tion aspects.

3.1 Introduction

According to Scoot [21]:

A Domain-specific language is a specification language that is restricted/focused to a
particular application domain.

It is restricted or specific, in the sense that, it has a vocabulary and construct which caters to a specific
application domain. Some well known domain-specific languages along with there domain is listed in
Table 3.2 . For instance, LATEX is a language with a vocabulary and rules to typeset a document.

DSL Application Domain
VHDL Hardware Design
SQL Database queries

LATEX Typesetting
GAL Video Device Drivers
BNF Syntax

HTML Hypertext web pages

Table 3.2: Example domain-specific languages (Adapted from [19])

They are also called Little Languages and Application-specific languages. In contrast to a general
purpose language, a domain-specific language (DSL) is expressive uniquely over the specific features
of programs in a given problem domain [22].

3.2 Characteristics of a DSL

Below is a list of characteristics common among existing DSLs:

32 Chapter 3. Domain Specific Language

• DSLs are usually small: They have a restricted vocabulary and rules. And are just large enough
to express the basic abstractions and behaviour in the domain of concern.

• DSLs are usually declarative: In contrast to imperative languages that specify explicit sequence
of steps to produce a result, DSLs describe the relationships.

• DSLs are less expressive power: Compared to a imperative language, DSL are less expres-
sive due to its restricted focus. It has features clearly focused to express the specific domain
requirements only.

• DSLs provide built-in abstractions:

For example the make command in Unix. It is a utility to automatically determine which pieces of a
large program need to be recompiled, and issues the commands to recompile them. The language of
makefiles is small and mainly declarative. Its expressive power is limited to updating task dependen-
cies. It hides implementation details like file last-modification time and provides domain abstractions
such as file suffixes and implicit compilation rules. As a result, the user may concisely and precisely
express update dependencies.
The declarative nature of DSL, makes is highly suitable as a specification language.

3.3 Design and Formalisation of DSL

The results of Domain analysis, Requirement analysis and Step-wise development of Solution Ap-
proaches, provide the necessary inputs for designing a Domain-specific language. A formal specifi-
cation language ,according to Guttag et al [47]:

Definition: A formal specification language is a triple, < Syn, Sem,Sat >, where Syn and Sem are sets
and is a Sat ⊆ Syn × Sem relation between them. Syn is called the language’s syntactic domain; Sem,
its semantic domain; and Sat, its satisfies relation.

Definition: Given a specification language, < Syn, Sem, Sat >, if Sat(syn, sem) then syn is a specifica-
tion of sem, and sem is a specificand of syn.

Definition: Given a specification language, < Syn, Sem,Sat >, the specificand syn in Syn is the set of
all specificands sem in Sem such that Sat(syn, sem).

Informally, a formal specification language provides a notation(its syntactic domain), a universe of
objects (its semantic domain), and a precise rule defining which objects specify each specification.
A specification is a sentence written in terms of the elements of the syntactic domain. It denotes a
specificand set, a subset of the semantic domain. A specificand is an object satisfying a specification.
The satisfies relation provides the meaning, or interpretation , for the syntactic elements.
In the context of above definitions, Figure 3.1 on page 33 is intended to show how a domain-specific
language fits-in to specify requirements by the CSC Requirements Engineer.

Section 3.3 Design and Formalisation of DSL 33

Figure 3.1: Syntactic, Semantic and Satisfy Relational context of DSL

From the figure we can observe the different syntactic Syn, semantic Sem domains and the satis-
fying relation Sat among them as listed in Table 3.3:

Language Satisfy Rela-
tion

Syntactic Domain Semantic Domain

RSL, Z etc. Specifies Informal
Requirements

Formal Requirements Specifica-
tion

High-level
Programming Language Implements Formal Requirements

Specification
Program

Low-level
programming language Compiles Program Machine Code
Domain-specific language Specifies Informal Requirements Requirements Specification in

domain-specific language

Table 3.3: Syntactic, Semantic and Satisfy Relational context

It is to be noticed that, the main users of a domain-specific language is the CSC Requirements
Engineer and the CSC Solution Developers. This is in contrast to the specification languages like
RSL, Z etc, to be used by the development team at the Main Development Centre (MDC).

Part III

Case Study

35

37

Chapter 4

Case Study Overview

This case study involves application of the approach mentioned in Chapter 2, to an industrial-scale
project. We have used the Event Management (EM) project at Microsoft Business Solution(MBS),
Denmark, for the same. A Standard Solution of EM is being developed at MBS on top of an existing
Simple Application System (SAS), that will be distributed to its Customer Solution Centres (CSCs).
The CSCs in turn sell and fit the solution to the end customers needs.

4.1 Motivation

The choice of the EM project was motivated by the following:

• From Thesis point of view
The Event Management project was in the initial stages of development process involving re-
quirements gathering and specification. This gave us a great opportunity to utilize the domain
knowledge being gathered and apply the domain modelling techniques.

• From MBS point of view
Since the Standard EM Software was intended to be built on top of an existing Standard Soft-
ware (SAS) (that is already in the market), the work on the Thesis could provide some inputs
for the company to help CSC Requirements engineers to later deploy the Event Management
Software.

4.2 Information Source

The information gathered during our investigation came from the following sources:

• On-Site Interviews
We visited Microsoft Business Solutions, located in Copenhagen, regularly during the period of
this thesis. Informal interviews were conducted with the team members of Event Management
project. Interviews involved Product Manager, Program Manager, Developers, Tester, Usability
Experts and Documentation engineers. Interview sessions were approximately two hours.

• Documentation
We reviewed business and technical documents describing the business case, scope, use cases,
prototype descriptions for the Event Management System. A list of Use Cases that were con-
sidered for this thesis are listed in Appendix B.

38 Chapter 4. Case Study Overview

• Reviews by EMS Team
To evaluate the usefulness of the results of our approach, particularly, the domain-specific lan-
guage, we had the review of the same with the EMS team members.

Nevertheless, since the development of EMS was in progress, it posed a challenge to get enough and
complete information. Further, because of confidentiality agreement, the Event Management Project
documentation is not part of this document.

4.3 Analysis Overview

The goal of this section is to give an overview of the analysis and to give pointers to specific chapters
that addresses the details.
Figure 4.1 on page 38 shows, how the domain of standard solution , is expected to evolve (from
as it-is now to as it is intended to-be), as some of the requirements are met by the proposed Event
Management Solution.

Figure 4.1: Evolution of Domain with EMS System

The following could be observed from the diagram:

• Current Customer Domain
The current customer domain consists of the Simple Application System (SAS), its users and
other external systems.

• Evolution of Domain
The Requirements Engineer at a CSC has to identify the customer specific requirements for
determining how to fit the proposed EMS to meet the needs of the customer. He is able to
do that by capturing and specifying the requirements using an Event Management Language
(EML) and a methodology to use it.

• Future Customer Domain
The future customer domain would mean extending the current domain with Event Management
System.

Given the above very high level overview of EMS solution with respect to the domain, we organise
the chapters as below:

Section 4.3 Analysis Overview 39

1. Introduction to Event Management Project
A short introduction to the Event Management Project is given in Chapter 5 on page 41.

2. Domain Analysis
In order to understand the requirements in the current domain, we need to first analyse different
facets of the domain that constitute the need for Event Management System. See Chapter 6 on
page 45 , for further details on the domain analysis of EMS.

3. Requirements Analysis
Identify requirements that needs to be met by the proposed EMS. This is further detailed Chap-
ter 7 on page 55.

4. Solution Approaches
Stepwise analysis of four different solution approaches, in order to understand the EMS require-
ments better. Further details on different solution approaches for EMS, is given in Chapter 8 on
page 65 .

5. Design of Event Management Language
Results of Domain Analysis, Requirements analysis and Step-wise development of Solution
Approaches, serve to define the syntax and semantics of a domain-specific language for EMS.
This is elaborated in Chapter 9 on page 81.

6. Guidelines for Requirements Engineer
This chapter provides overall guidelines and example usage scenarios and its specification in
EML. This is further elaborated in Chapter 10 on page 99.

41

Chapter 5

Introduction to Event Management
Solution

This section gives an overview of the proposed Event Management System in terms of its Need,
Business problem statement, Target customer and a High level solution concept.

5.1 Need for EMS

The Simple Application System (SAS) as it is now, is not event-based. SAS tend to be information
storages and interactive with the user to carry out a specific task. It assists the application users to
maintain data, retrieve data and carry out some functions. The users make the choices to gather the
information and carry out the tasks. Some of the common problems, expressed by the customers of
SAS are:

• Slow and ineffective information flows between people and systems

• Problems in detecting events and exceptions leading to disruptions to production, deliveries and
cash flow in general

• Difficulties in making decisions due to missing information or problems in reaching a person
who can make the decision.

• Difficulties in providing the right and flexible information to customers or partners on time and
in the right quality

• A lot of time spend on manual checks via reports

Here is an example that highlights the need.
As it is today, whenever a Salesperson enters a Sales Order in SAS, and if there is not enough credit
for the customer, the user is warned about the credit problem. This may do well at an initial level.
However, this situation requires many more people to act:

• Customer department responsible, may need to check with the bank whether the order is safe to
confirm.

• The Manager needs to know, in certain situations, to ensure a dollar limit for that check.

42 Chapter 5. Introduction to Event Management Solution

• Bank may need information on the customer for approval.

SAS as it is now, deals with none of these flows. SAS shows a credit limit warning on the order and
leaves it open to the choice of the Salesperson. The remainder is not supported. This is exactly where
an Event Management Solution comes in. An Event Management System, would act on changes like
completion of an activity or an occurrence of an exception, by notifying concerned user or application
about the same. That is, an EMS is supposed to communicate extraordinary things between people
and applications. And it is supposed to help information flow better than what is offered by SAS. The
above problems translates to the following high-level needs or goals for the software system (EMS
system):

• To be able to streamline existing business processes in order to run the business fast and lean.

• To increase the productivity of the employees by pushing relevant information to the employees:

– By providing every employee the facility, to have access to relevant information in the
easiest way.

• To provide timely and accurate information about exceptional situations, to be able to make the
right decisions

• To improve the response time for the customers

5.2 Business Problem Statement

With more and more customer using transactions based systems (like SAS) to carry out the business
tasks, it is getting harder to find out which tasks are complete and which are due. Further, the user has
to analyse lot of transacted data, to figure out if an exception has occurred. In short, more and more
communication is going on between the employees and the IT system rather than between employees
as in the old days. This has resulted in the IT systems having most business information and a lack of
visibility for an employee about the overall state of the company.
On a day to day basis, the users needs to be pro-actively notified of changes, exceptions, task com-
pletions, early warnings etc. in order to act fast. For the employees in the company to communicate
more effectively between departments, would also require them communicate between applications.

5.3 Target Market and Customer

EMS is a new standard solution for the existing and new MBS customers.

• New Customers: Customers in this segment include companies that are purchasing a Simple
Application System and in the offering want to include the Event Management functionality.

• Upgrade Customers: This segment includes existing customers on an older Simple Application
System,who want to upgrade to include EMS.

Section 5.4 Overall solution concept 43

5.4 Overall solution concept

Figure 5.1, shows the overall solution concept of the EMS with respect to the existing application
areas of the standard solution.

Figure 5.1: Simple Application System(SAS) extended with EMS.

We observe that, EMS has to serve as an application area that spans across all the specific appli-
cation areas like Sales and Receivable, Manufacturing, General Ledger and others. It is intended to
provide the flexible and pro active link between users of these application areas.
For Example:
Consider the scenario of a typical Shipment Workflow. Table 5.2 on page 43, shows the steps of the
shipment workflow as it is done now without EMS.

Step Description
1 Sales Order is released by a Salesperson.
2 The Shipment manager manually checks for requests for creating new Shipment Order..
3 Shipment manager creates a Shipment Order.
4 Shipment manager creates a Pick document and prints it.
5 Warehouse employee picks the items according to the Pick document.
6 Warehouse employee registers the Pick document.
7 Shipment manager posts the Shipment Order.
8 Sales person invoices the Sales Order.

Table 5.2: Shipment Workflow as it is, without EMS

Now consider Table 5.4 on page 44, which shows the same shipment workflow as envisaged with
the EMS solution.

44 Chapter 5. Introduction to Event Management Solution

Step Description
1 Sales Order is released by a Salesperson.
2 The Shipment manager is notified by Email to create a new Shipment Order.
3 Shipment manager creates a Shipment Order.
4 Shipment manager creates a Pick document and prints it.
5 Warehouse employee is notified to do a pick.
6 Warehouse employee picks the items according to the Pick document.
7 Warehouse employee registers the Pick document.
8 The Shipment manager is notified to post the Shipment Order.
9 Shipment manager posts the Shipment Order.
10 The Salesperson is notified to invoice the Sales Order.
11 Sales person creates an invoices related to the Sales Order.

Table 5.4: Shipment Workflow with EMS

Note that, the EMS proactively notifies the necessary information to users for a more effective
workflow. For instance in this case, in step 2, the Shipment Manager is now actively notified by an
Email about the release of a Sales Order, further, informing him to create a Shipment Order.

45

Chapter 6

Domain Analysis

In this chapter we shall analyse the application domain, which the Event Management System is envi-
sioned to support. Domain of EMS is that part of customer domain, where the Events are happening
or rather where Events are generated. Following methodical approach towards domain analysis is
taken:

• First, an informal description of different aspects of the domain that participate in Event gener-
ation is given in Section 6.1.

• Then the Simple Application System (SAS) is identified as the main domain area of interest for
analysis. A detailed static and dynamic analysis of is given in Sections 6.2, 6.3 and 6.4.

• The above leads to a complete model of Simple Application System in Section 6.5.

6.1 Domain of Events

The domain of Event Management System, is the application area where EMS is supposed to be
deployed to meet the customers need. Figure 6.1 shows a representative domain for the EMS solution.
It is typically a business house consisting of :

• Departments like Sales, Purchase, Accounts, Manufacturing etc.

• Employees working in these departments.

• Employees use Simple Application Software (SAS) software product, to carry out there daily
activities like “Entering a new Sales Order”, “Printing Invoices”, “Registering receipt of goods
from the Supplier” etc.

• They interact with customers, vendors, banks and other external partners and institutions.

Employees

Employees of the domain have different roles depending on the type of tasks they are doing. It can be
observed that employees carry out there tasks in the following ways:

• Manually doing the tasks like making a phone call, giving a presentation etc

46 Chapter 6. Domain Analysis

Figure 6.1: Domain of Event Management Solution

• Interacting with SAS and using the functionality offered by SAS.

• Use other systems like IT systems(Email), Mobile, Fax etc to carry out there tasks.

By analysing the Use Cases (Chapter B) and some of informal requirements of the proposed EMS so-
lution, we found that most of them are around the activities involving Employees and their interaction
with SAS software to do there daily tasks. This motivated us to explore the interaction and activities
between the user and SAS.

6.2 What is a Simple Application System?

This refers to the standard solution from Microsoft Business Solution, that is already being used, by
the customers in their specific domains. Figure 6.2 on page 46 shows an informal abstract model of
Simple Application System (SAS).

Figure 6.2: Informal model of Simple Application System

Following could be observed from the diagram:

Section 6.3 Static Analysis of SAS 47

• SAS supports the employees in the customer domain, to carry out tasks in different application
areas like Manufacturing, Sales & Receivables, General Ledger etc. Each of the application
area, provides specific business functionalities for its users to do his daily tasks.
For example:
A Salesperson interacts with Sales & Receivable application area to “Create Sales Order”, “Cre-
ate Sales Invoice”, “Maintain Customer Addresses” etc.

• Employee of different departments use different application areas.
For example:
Salesperson, Sales Manager, Campaign manager normally use Sales & Receivables application
area of SAS.

• Each application area in SAS supports the user to carry out following kinds of tasks:

– To Register Data
These are functionalities that provide a user, to maintain (Create, Update, Delete) basic
information about the entities in the real world.
For example: “Create Customer ”,“Create Sales Order”, “Setup Salespeople”, “Setup
Shipment methods” etc.

– To do Lookups
These are functionalities that provide a user, to lookup for some information in order for
doing his daily tasks.
For example: “Check Sales Order Status for a Customer ”,“Get a Sales Statistics report”,
“Get a Customer Order Summary report”, “Check if an order has been shipped” etc.

– To execute some Operations
These are functionalities that provide a user some sort of automated processing.
For example

∗ Perform some operations on the data registered - “Release a Sales Order”, “Run
MRP”, “Cancel an order” etc

∗ Perform some calculations/operations: ”Implement price changes”, “Calculate in-
voice discounts” etc.

6.3 Static Analysis of SAS

Below we abstract the static aspects from the above informal descriptions and state it more formally.
The results below are described by a concise narrative, followed by a formal specification in RSL
(Section ??), and then an example instantiation.

• Application System
The Simple Application System A consists of one or more, separately invocable application
areas AP.
Formal Specification

A = AP-set

Example:
{General Ledger, Manufacturing, Sales & Receivables,..., Customer
Relationship Management}

48 Chapter 6. Domain Analysis

• Application Area

Each application area AP offers one or more services S to its users. The services are of types:
Register, Lookup and Execute.
Formal Specification

type APS = AP −→
m S-set

value obs_ servType: S → RegisterService | LookupService

|ExecuteService

Example:
[Sales & Receivable 7→ {”Create Customer”, “Post Sales Order”, “Cancel
a Sales Order”,...}]

• Application User

– Each application area AP has its own associated users U .
Formal Specification

type APU = AP −→
m U-set

Example:
[Sales & Receivable 7→ {Salesperson, Sales Manager}, Purchase & Payable 7→{Purchaser}
....]

– A user U(u) can interact/communicate with different application areas A(a) through a
specific channel to the application area:
Formal Specification

channel {cua[u,a]:(R|V)|u:UIdx,a:AIdx}

Annotations

∗ For a in the index AIdx set of n indices, corresponding to n application areas.

∗ For u in the index UIdx set of m indices, corresponding to m application users.

∗ R and V designate, the requests and values respectively.

Example:
A Salesperson uses different User-interfaces to create a Sales Order and to create a Cam-
paign.

6.4 Dynamic Analysis of SAS

In this section, we we shall analyse the dynamic behaviour of the Simple Application System and its
Users as a system.

Section 6.4 Dynamic Analysis of SAS 49

6.4.1 System Behaviour

The system Sys can be modeled as a main process consisting of:

• a Simple Application system (SAS). SAS in turn consists of, n separately invocable application
areas A(a) .

• Application user processes, U(u) running in parallel.

Formal Specification

Sys: Unit → Unit

Sys() ≡ {U(u)|u:UIdx} ‖ {A(a)|a:AIdx}

Figure 6.3 on page 49, schematically shows the complex of channels and processes. In the figure:

• U(u) and A(a) designates the user and application area processes respectively.

• The communication between the user and an application area is through the channel cua[u,a]
. The user can both send and receive information through this channel.

• The communication between two application areas is through the channel caa[a,a’] .

Figure 6.3: A Schematic Diagram: Users, Application areas and Channels

50 Chapter 6. Domain Analysis

6.4.2 User Process behaviour

The user interacts with an application area, by making service-requests and receiving the results back.

Narrative

1. User U(u) makes a service request r to an application area ap:AP , through the communica-
tion channel cua[u,a] .

2. User waits for the response v to the request on the same channel cua[u,a].

3. User while waiting for a response from a previous request(s), could send another request to an
another application area.

Formal Specification:

U(u):u:UIdx → in,out {cua[u,a]|a:AIdx} Unit

U(u) ≡ let ap:AP = A1 u A2 u . . . u An in

let r:R = gen_req(select_serv(ap),userinput:V) in

output (cua[u,obs_AIdx(ap)],r)

U(u) |||

{letv = input (cua[u,obs_AIdx(ap)) in U(u) end}

end

end

gen_req:S× V→ R

select_serv:AP → S

select_serv(ap) ≡ u {s | s:S • s ∈ aps(ap))}

Annotations

• UIdxand AIdx are an index set of Users and Application areas respectively.

• ap:AP = A1 u A2 u . . . u An designates, the users choice to select different application
areas depending on the task in hand.

• output (cua[u,obs_AIdx(ap)],r)designates, the user sending of a request r to the ap-
plication over the channel cua[u,a].

• U(u) ||| {let v = input (cua[u,obs_AIdx(ap)) in U(u) end}, denotes that while the
user can wait for a reponse from the application area, he can continue with new requests to other
application areas. The choice that the user can choose to do nothing or other activities are not
made explicit.

• The auxiliary functions denotes the following:

Section 6.4 Dynamic Analysis of SAS 51

– gen_req:S× V→ R
Given a service and its input values, the function generates a service request.

– select_serv:AP → S
select_serv(ap) ≡ u {s | s:S • s ∈ aps(ap))}
Given an application area, the function designates, a user making a non-deterministic
external choice of a service.

• We introduce the following two macros for simplicity, that we shall use in this document without
further mentioning:

– output : ChannelName×ARG → Unit which means ChannelName !ARG.
Typical usage of this macro is as follows:
output (channnel,val)

– input : ChannelName → Unit RES which means ChannelName! ?. Typical us-
age of this macro is as follows:
let v=input (channel) in...end

6.4.3 Application Area behaviour

Narrative

1. An Application area A(a) can receive service-requests r from both Users U(u) and other
Application areas A(a’).

2. The Application area executes the service-request.

3. The Application area then sends the result back to service requester: User or another Applica-
tion area. Or choose to do nothing.

Formal Specification:

A:a:AIdx → in,out {cua[u,a]|u:UIdx},

{caa[a′,a] | a′:AIdx • a 6= a′} Unit

A(a) ≡

[] {let r:R = input(cua[u,a]) in

let v = execute(r)in

output(cua[u,a],v)u skip

end

end

u

let r:R = input(caa[a’,a]) in

let v = execute(r)in

output(caa[a’,a],v)u skip

end

52 Chapter 6. Domain Analysis

end|u:UIdx,a′:AIdx};A(a)

execute:R→ V

Annotations

• r:R= input(cua[u,a]) designates, receipt of a service-request from a user U(u)

• r:R = input(caa[a’,a]) designates, receipt of a service-request from an another ap-
plication area A(a’) .

• Further, the choice of selection of the service requests from a User or another application area
is internally non-deterministic.

• cua[u,a] designates, the communication channel between the user U(u) and the application
area A(a) . And caa[a’,a] designates the communication channel between the application
area A(a) and an another application area A(a’) .

• Auxiliary functions denote the following:

– execute:R → V
Given a service-request, the function carries out the service and returns the service result.

6.5 Domain Model of SAS

Below is a complete model of Simple Application System, taking into account both static and dynamic
aspects analysed in the previous sections.

type R,V,U,S,AIdx,UIdx

AP==A1|A2| . . .|An

APU=AP−→
m U−set, APS=AP−→

mS−set

channel {cua[u,a]:(R|V)|u:UIdx,a:AIdx},

{caa[a,a′]:(R|V)|a,a′:AIdx • a 6= a′}

value aps:APS,

obs_servType:S→ Register|Lookup|Execute

obs_AIdx: AP→AIdx

Sys: Unit → Unit

Sys() ≡ {U(u)|u:UIdx} ‖ {A(a)|a:AIdx}

Section 6.5 Domain Model of SAS 53

U(u):u:UIdx → in,out {cua[u,a]|a:AIdx} Unit

U(u) ≡ let ap:AP = A1 u A2 u . . . u An in

let r:R = gen_req(select_serv(ap),userinput:V) in

output (cua[u,obs_AIdx(ap)],r)

U(u) |||

{letv = input (cua[u,obs_AIdx(ap)) in U(u) end}

end

end

gen_req:S× V→ R

select_serv:AP → S

select_serv(ap) ≡ u {s | s:S • s ∈ aps(ap))}

A(a):a:AIdx → in,out {cua[u,a]|u:UIdx},

{caa[a′,a] | a′:AIdx • a 6= a′} Unit

A(a) ≡

[] {let r:R = input(cua[u,a]) in

let v = execute(r)in

output(cua[u,a],v)u skip

end

end

u

let r:R = input(caa[a’,a]) in

let v = execute(r)in

output(caa[a,a’],v)u skip

end

end|u:UIdx,a′:AIdx};A(a)

execute:R→ V

55

Chapter 7

Requirements Analysis

In this chapter we shall analyse the requirements for the which the Event Management System is
envisioned to support. Following methodical approach towards requirement analysis is taken:

1. First, an informal description of the overall requirements for EMS is given in Section 7.1.

2. Then an informal and formal description of the following is given:

(a) Event in Section 7.2

(b) Notification in Section 7.3

(c) Event-Notification Template in Section 7.4

(d) Event Management System and State in Section 7.5

(e) Event Notification Instance in Section 7.6

3. The above leads to a complete requirements model for EMS in Section 7.7.

7.1 Overall Event Management

Figure 7.1 on page 56, shows the current domain extended with EMS in more detail. It is to be noticed
that a new EMS is an extension of existing SAS in a customer domain.

56 Chapter 7. Requirements Analysis

Figure 7.1: Domain extended with EMS

From the figure we can observe informally, that two high level requirements for EMS are:

1. Ability to identify an event

2. Ability to notify domain users

In the following sections, a detailed static and dynamic analysis of Event and Notification is given.

7.2 Event

We define the following event types with respect to SAS:

• User Event - These are events initiated by a SAS Application User by carrying out a Task in an
application area of SAS, and meeting some condition.
Example:
“A Salesperson releases a Sales Order with prices and discount, in SAS, and the Profit-Margin
is below 10%.”

• SAS Event - These are events initiated by a SAS Application itself by evaluating some condition
over its internal model of the domain. We would consider a scheduled event like time has
reached 4pm, also as part of SAS event.

Section 7.2 Event 57

Example:
“The total costs related to travel has exceeded the budget level and a workflow is started to
inform the budget owner”.

• External Event - These are events initiated by an IT system external to SAS.
Example: ”Receipt of a mail from a customer”

Static Analysis

1. Event E consists of:

(a) an Initiator I: It can be SAS users, SAS itself or External.

(b) an Event Task ET: It represents a task carried out by the Initiator.

(c) an Event Rule ER over the data associated with the Event Task T .

Formal Specification

E = I×ET×ER

2. Event Initiator I are of types:

(a) SAS User,

(b) SAS itself or

(c) an External System like Message Queue, Email, a RPC call.

Formal Specification

I = User|SAS|External

3. Event Rule ER, is a conditional expression over Task Data, that qualifies an incident as an
Event.

Formal Specification
We can specify it as a function that returns a boolean.

ER :V→BOOL

58 Chapter 7. Requirements Analysis

Behaviour of an Event

Given a static event definition, we now define, how an event is generated. We consider an event
Event(e) has occurred when:

• a Task T is invoked by the initiator I .

• and an associated event rule ER is satisfied.

Formal Specification

Event:E → RS

Event(e) ≡ let(i,et,er) = e in

cases invoked(i,t)of

FALSE→ NOEVENT,

res:RS →

if er(res) then res

else NOEVENT end

end

end

invoked:I×T→ FALSE|RS

Annotations

• Event(e) , designates the occurrence or non-occurrence of an Event.

• RS , designates the output of an Event, which can be a result res when an event occurs or
NOEVENT when there is no event.

• The auxiliary functions denotes the following:

– invoked:I×T→ FALSE|RS
Given an Initiator and Task, the function checks if the initiator I has carried out an asso-
ciated Task T. And the function returns the result of the task.

7.3 Notification

Once an event has occurred, the recipient are notified to carry out some Task or just informed about
the occurrence of the event to act appropriately. Accordingly we define two types of notifications:

• Information Notification - These includes notifying a recipient with simple information mes-
sages, alerts, warnings.
For Example: “When the item inventory goes below reorder point, the Purchase Manager is
alerted about the same.”

• Task Notification - These includes notifying the recipient to carry out a task.
For Example: “Once a new item is created, the Material Planner is notified to create a BOM
structure for the item inside SAS.”

Section 7.3 Notification 59

Static Analysis

1. A Notification N consists of:

(a) a Recipient R ,

(b) a notification Rule NR

(c) a Channel CH of communication between EMS and the recipient,

(d) and the message M.

Formal Specification

N = R×NR×CH×M

2. A recipient R can be:

(a) Fixed Recipient,

(b) Dynamic Recipient,

(c) or a subscribed

Formal Specification

R = Fixed|Dynamic|Subscribed

Behaviour of Notification

Once an event has occurred, a notification can take place. Given an event e and its results res, a
notification process Notification(e,res) involves:

1. Identification of all the notifications ns, that needs to be sent as a result of the event occurrence.

2. For each notification n,

(a) Notification Rule nr is identified.

(b) The recipients are qualified for notification, by evaluating the Notification Rule against
the event result, nr(res)

(c) For the qualified recipients, the notification message M and the channel of communication
CH is identified.

(d) A notification of the message is send to the recipient on the channel.

60 Chapter 7. Requirements Analysis

Formal Specification:

Notification:E× RS → out {crcp[r]:M|r:RIdx} Unit

Notification(e,res) ≡ let ns:N-set = ent(e)in

‖ {let (r,nr,ch,m)= n in

if nr(res) then output(ch,m) end

end |n ∈ ns}

end

Annotations

• Notifications are sent to the recipients in parallel, that simultaneously, in particular se-
quence.

• {crcp[r]:M|r:RIdx}, designates the communication channel between the Notifica-
tion Process and the recipient r. RIdx is an index set of all recipients. Note that, this
channel used for specification, directly models the required notification channel of the
domain.

7.4 Event-Notification Template

• We define an Event Notification Template ENT as a static definition, that relates an event E to
one more intended notifications N-set.
Formal Specification

ENT = E −→
m N-set

• Given an Event-Notification Template, it should be possible for new recipients to subscribe for
Notifications.
Formal Specification

subscribe:ENT× N→ ENT

7.5 EMS System and State

Static Analysis

The overall Event Management System has a state Ψ, which consists of:

• Event-Notification Template State: A state ENTS, of an index-set ETIdx of defined or being
defined Event-Notification Templates, ENT.

• Event-Notification Instances State: A state ENS, of an index-set EIdx of the Event-Notification
Instances EN(e), that EMS currently executes. The state of an active Event-Notification tem-
plate Φ is further undefined.

Section 7.6 Event-Notification Instance 61

type

Ψ, ENTS, ENS, Σ, ETIdx, EIdx

Ψ = ENTS × ENS

ENTS = ETIdx−→
m ENT

ENS = EIdx −→
m Σ

Σ = ETIdx × Φ

Dynamic Analysis

• An Event Management System EMS consists of one or more active Event-Notification Instances
EN(en) running concurrently.

EMS:Unit → Unit

EMS() ≡ ‖ {EN(en)|en:ENIdx}

7.6 Event-Notification Instance

An Event-Notification Instance denotes one of the many active instances of an Event-Notification
Template, which is being executed by the Event Management System.

Narrative

1. Each instance checks for the occurrence of an event.

2. If the response is a NOEVENT or FAULT, the instance skips and starts all over again.

3. If the response is an occurrence of an event with the results back, the instance carries out the
notification.

Formal Specification:

/ ∗ EventNotificationProcess ∗ /

EN(en):en:ENIdx → Unit

EN(en) ≡ let e:E = obs_event(en) in

cases Event(e)of

NOEVENT → skip,

FAULT→ skip,

EVENT(res) → Notification(e,res)

end

end; EN(en)

obs_event:ENIdx→ E

Annotations:

62 Chapter 7. Requirements Analysis

• ENIdx is an index set of all active Event-Notification Instances EN(en). Each Event-Notification
Instance is uniquely identified by a number en which belongs to the index set ENIdx.

7.7 Event Management Model

Below is a complete requirements model for the Event Management System, based on static and
dynamic aspects analysed in the previous sections.

type Ψ, ENTS, ENS, Σ, ETIdx, ENIdx,RIdx

I,T,R,CH,M,V,RES,D,RIdx,

E=I×ET×ER,

ER=V→BOOL,

I = User|SAS|External,

N = R×NR×CH×M,

R = Fixed|Dynamic|Subscribed

NR = V → BOOL,

ENT = E−→mN-set,

ENTS = ETIdx −→
m ENT

ENS = ENIdx−→
m Σ

Σ = ETIdx ×Φ

channel {crcp[r]:M|r:RIdx}

value ent:ENT

subscribe:ENT× N→ ENT

/ ∗ EventManagementProcess ∗ /

EMS:Unit → Unit

EMS() ≡ ‖ {EN(en)|en:ENIdx}

/ ∗ EventNotification Instance ∗ /

EN(en):en:ENIdx → Unit

EN(en) ≡ let e:E = obs_event(en) in

cases Event(e)of

NOEVENT → skip,

FAULT→ skip,

EVENT(res) → Notification(e,res))

end

Section 7.7 Event Management Model 63

end; EN(en)

obs_event:ENIdx→E

/ ∗ Event ∗ /

Event:E → RS

Event(e) ≡ let(i,et,er) = e in

cases invoked(i,t)of

FALSE→ NOEVENT,

res:RS →

if er(res) then EVENT(res)

else NOEVENT end

end

end

invoked:I×T→ FALSE|RS

/ ∗ Notification ∗ /

Notification:E× RS → out {crcp[r]:M|r:RIdx} Unit

Notification(e,res) ≡ let ns:N-set = ent(e)in

‖ {let (r,nr,ch,m)= nin

if nr(res) then output(ch,m) end

end |n ∈ ns}

end

65

Chapter 8

Solution Approaches

In this chapter we shall analyse four different solution approaches for an EMS solution. The chapter
also attempts to clarify the differences among consecutive models and critically highlights the benefits
and disadvantages. The chapter is organized as below:

• An informal description of Direct Event Management solution is given in Section 8.1.

• An informal description of Synchronous Event Management solution is given in Section 8.2.

• An informal description of Asynchronous Event Management solution is given in Section 8.3.

• An informal description of Asynchronous Event Management solution with the help of an ex-
ternal EM system, is given in Section 8.4.

In each of these sections, first the Solution concept is modeled as a diagram and informal description.
This is followed by a formal specification of both static and dynamic aspects of the system.

66 Chapter 8. Solution Approaches

8.1 Direct Event Management

8.1.1 Solution concept

In this solution, each Application area A(a) has its own local notification system to directly notify
the recipients.
Figure 8.1 on page 66, shows a schematic diagram of a Simple Application System extended with
Event Management functionality.

Figure 8.1: Simple Application with Direct Event Management

From the figure we observe that:
User U(1) does some activity in the Application area A(2) and which results in an event E. Then
A(2) directly notifies the following recipients: user U(3) , another application area A(1) and an
External System EX.

8.1.2 Extending SAS with Direct EMS

To extend the Simple Application System, with a direct EMS we need to extend the default behaviour
of all those application areas A(a) , where we need a notification.

Narrative
The italicised line below marks the extension to the basic application area.

1. An Application area A(a) receives service-requests from Users U(u) and other Application
areasA(a’) .

2. The Application area executes the service-request as input.

3. The Application area then sends the result back to service requester, User or another Application
area. Or choose to do nothing.

Section 8.1 Direct Event Management 67

4. The Application area notifies the recipients about the event, that is invocation of a service
request by a user.

(a) A(a) identifies all the recipients who wants to be notified.

(b) For each of the recipients , A(a) identifies the Notification Rules NR.

(c) A(a) qualifies the recipients for notification based on their notification rule NR.
(d) For the qualified recipients, A(a) identifies which notification needs to sent and on which

channel. Then it sends the notification on the channel.

Formal Specification
Lines marked with numbers, shows the extension points.

A(a):a:AIdx → in,out {cua[u,a]|u:UIdx},

{caa[a′,a] | a′:AIdx • a 6= a′} Unit

A(a) ≡

[] {

{let r:R = input(cua[u,a]) in

let v = execute(r)in

output(cua[u,a],v)u skip

end

end

u

let r:R = input(caa[a’,a]) in

let v = execute(r)in

output(caa[a,a’],v)u skip

end

end}

EventNotification(e) (8.1)

|u:UIdx,a′:AIdx};A(a)

execute:R→ V

EventNotification(e):e:E → Unit (8.2)

EventNotification(e) ≡ cases Event(e)of (8.3)

NOEVENT → skip, (8.4)

FAULT→ skip, (8.5)

EVENT(res) → Notification(e,res))(8.6)

end (8.7)

/ ∗ Event ∗ /

68 Chapter 8. Solution Approaches

Event:E → RS (8.8)

Event(e) ≡ let(i,t,er) = e in (8.9)

cases invoked(i,t)of (8.10)

FALSE→ NOEVENT, (8.11)

res:RS → (8.12)

if er(res) then EVENT(res) (8.13)

else NOEVENT end (8.14)

end (8.15)

end (8.16)

invoked:TRG→ FALSE|RS (8.17)

/ ∗ Notification ∗ /

Notification:E× RS → out {crcp[r]:M|r:RIdx} Unit (8.18)

Notification(e,res) ≡ let ns:N-set = ent(e)in (8.19)

‖ {let (r,nr,ch,m)= nin (8.20)

if nr(res) then output(ch,m) end (8.21)

end |n ∈ ns} (8.22)

end (8.23)

Annotations
EventNotification(e), designates, the local notification system of the application area A(a).

8.1.3 Benefits and Limitations of Direct EMS

• Benefit: One of the advantages of this approach is that, it is easy and straight forward. This is
suitable, when we have very specific and less number of Events to handle and do not foresee
any major extension in future.

• Limitation: The biggest disadvantage of this approach is that, it disturbs the existing SAS
system heavily. Because we have to modify each of those application areas in SAS, events of
which we are interested in. It is very difficult to handle many Event-Notifications needs.

8.1.4 Model of Direct EMS

A complete model of the SAS extended with Direct Event Management is listed in Appendix E on
page 125.

Section 8.2 Synchronous Event Management 69

8.2 Synchronous Event Management

8.2.1 Solution concept

In this solution, each Application area notifies the occurrence of an event to a new Application area
called Event Management Solution EMS. EMS in turn manages receiving events and notifying the
relevant recipients. Figure 8.2 on page 69, shows a Simple Application System extended with Syn-
chronous Event Management functionality.

Figure 8.2: Simple Application with Synchronous Event Management

From the figure we observe that:
User U(1) does some activity A in the Application area A(2) . Then A(2) synchronously sends
a Event message E to EMS. EMS evaluates the notification rules for each of the recipients and then
notifies recipients:N , user U(3) , another application area A(1) and an External System EX .

8.2.2 Extending SAS with Synchronous EMS

To extend the Simple Application System, with a synchronous EMS we need to extend the default
behaviour of all those application areas A(a) , where we need a notification. Further, we need to
extend the SAS itself with a new application area called EMS.

• Application Area Extension
Narrative

The italicised line below marks the extension to the basic application area.

1. An Application area A(a) receives service-requests from Users U(u) and other Appli-
cation areas A(a’).

70 Chapter 8. Solution Approaches

2. The Application area executes the service-request r .

3. The Application area then sends the result back to service requester, User or another
Application area. Or choose to do nothing.

4. The Application area notifies the Event Management application area about the occur-
rence of the event recipients about the event,

Formal Specification

The numbered lines mark the extension points.

A(a):a:AIdx → in,out {cua[u,a]|u:UIdx},

{caa[a′,a] | a′:AIdx • a 6= a′}

,out{cae[a]}Unit

A(a) ≡

[] {

{let r:R = input(cua[u,a]) in

let v = execute(r)in

output(cua[u,a],v)u skip

end

end

u

let r:R = input(caa[a’,a]) in

let v = execute(r)in

output(caa[a,a’],v)u skip

end

end}

output(cae[a],e) (8.24)

|u:UIdx,a′:AIdx};A(a)

execute:R→ V

Annotations
Here we give annotations for the extension parts only.

– output(cae[a],(obs_serv(r),res)), designates the notification by the appli-
cation area A(a) to the Event Management application area about the occurrence of the
event cae[a,a’] is the communication channel used.

– Comparing the application area behaviour in Synchronous EMS, with that of Direct EMS
in Section 8.1.2, we notice that, this solution is more general, modular and extensible. It
directly handles the disadvantages of Direct EMS.

Section 8.2 Synchronous Event Management 71

• New Synchronous EMS
EMS is the new application area, that will receive notification about occurrence of events from
different application areas and then notify the subscribed users. Below a more precise descrip-
tion of the behaviour of EMS is given.

Narrative

1. Event Management Process EMS receives message from Application areas A(a) .

2. EMS identifies all the recipients who have subscribed for the occurrence of an event.

3. For each of the recipients, A(a) identifies the Notification Rules NR .

4. EMS qualifies the recipients for notification based on their NR against the input value.
5. For the qualified recipients, A(a) identifies what notification needs to be sent and on

which channel. Then it sends the notification on the channel.

Formal Specification

/ ∗ SynchronousEventManagementProcess ∗ /

EMS():Unit → Unit

EMS() ≡

[] {lete = input(cae[a]) in

cases Event(e)of

NOEVENT → skip,

FAULT→ skip,

EVENT(res) → Notification(e,res))

end

end|a:AIdx}EMS()

/ ∗ Event ∗ /

Event:E → RS

Event(e) ≡ let(i,t,er) = e in

cases invoked(i,et)of

FALSE→ NOEVENT,

res:RS →

if er(res) then EVENT(res)

else NOEVENT end

end

end

invoked:I×ET→ FALSE|RS

72 Chapter 8. Solution Approaches

/ ∗ Notification ∗ /

Notification:E× RS → out {crcp[r]:M|r:RIdx} Unit

Notification(e,res) ≡ let ns:N-set = ent(e)in

‖ {let (r,nr,ch,m)= nin

if nr(res) then output(ch,m) end

end |n ∈ ns}

end

Annotations

• Compared to Direct EMS in Section 8.1.2, we notice that the EMS application area behaves
like the local notification system in Direct EMS.

8.2.3 Benefits and Limitations of Direct EMS

• Benefit: The main advantage of this approach is that, it is more modular and easily extensible.
The EMS application area can receive event from the current and future application areas.

• Disadvantage: Despite of the above benefit, one still needs to modify each of the Application
areas, to notify EMS about the occurrence of the event. If there are many events a customer is
interested in, it means quite a big change in the existing standard solution SAS.

8.2.4 Model of Synchronous EMS

A complete model of the Application System extended with Synchronous Event Management is listed
in Appendix F on page 129.

Section 8.3 Asynchronous Event Management 73

8.3 Asynchronous Event Management

8.3.1 Solution concept

In this solution, a new Application area called Event Management Solution EMS asynchronously polls
and detects for the occurrence of the Event from the system state. EMS then processes the result and
notifies the relevant recipients. Note that, the Application areas do not need to notify the occurrence
of an event. Figure 8.3 on page 73, shows a Simple Application System extended with Asynchronous
Event Management functionality.

Figure 8.3: Simple Application with Asynchronous Event Management

From the figure we observe that:
User U(1) does some activity A in the Application area A(2) , that results in a change in the system
state. Meanwhile, an instance of Event Monitor EM(1) polls the Global State for the occurrence of

74 Chapter 8. Solution Approaches

the Event. EM(1) then notifies the recipients: user U(3) , another application area A(1) and an
External System EX after evaluating the notification rules for each of the recipients.

8.3.2 Extending SAS with Asynchronous EMS

To extend the Simple Application System, with an asynchronous EMS we need to extend the SAS
with a new application area called EMS.

New Asynchronous EMS
EMS is the new application area, that will poll different application areas for the occurrence of events
and then notify the subscribed users. Below a more precise description of the behaviour of EMS is
given.

Narrative

1. Event Management Process EMS consists of one or more Event Notification instances EN(en)
running in parallel.

2. Each EN(en) checks if the Event Task et is invoked by Initiator I. The global state GS is
observed to determine if the task is carried out.

3. If the response is a NOEVENT or FAULT, EN(en) skips and starts all over again.

4. If the response is an occurrence of an event with the results back, EN(en) carries out notifica-
tion.

5. For each of the recipients, EN(en) identifies the notification rules NR .

6. EN(en) qualifies the recipients for notification based on their NR against the input value.

7. For the qualified recipients, EN(en) identifies the what notification needs to sent and on which
channel. Then it sends the notification on the channel.

8. EN(en) starts all over again.

Formal Specification

/ ∗ AsynchronousEventManagementProcess ∗ /

EMS:Unit → Unit

EMS() ≡ ‖ {EN(en)|en:ENIdx}

/ ∗ EventNotification Instance ∗ /

EN(en):en:ENIdx → Unit

EN(en) ≡ let e:E = obs_event(en) in

cases Event(e)of

NOEVENT → skip,

FAULT→ skip,

Section 8.3 Asynchronous Event Management 75

EVENT(v) → Notification(e,v))

end

end}EN(en)

obs_event:ENIdx→E

/ ∗ Event ∗ /

Event:E → RS

Event(e) ≡ let(i,t,er) = e in

cases invoked(i,et)of

(false,v)→ NOEVENT,

(true,v)→

if er(v) then EVENT(v)

else NOEVENT end

end

end

invoked: I×ET → in cstg Unit ×BOOL × V

invoked(i,et) ≡ let stg:Σ = input(cstg) in

let (b,v,i’)= interpret(et)(stg)in

if b ∧ (i = i’) then (true,v)

else (false,v) end

end

end

interpret:ET → Σ → BOOL×VAL×I

value

vstg:Σ

GS:Unit → out cstg Unit

GS() ≡ while true do

output(cstg,vstg) in

....

end

/ ∗ Notification ∗ /

Notification:E× V → out {crcp[r]:M|r:RIdx} Unit

Notification(e,v) ≡ let ns:N-set = ent(e)in

76 Chapter 8. Solution Approaches

‖ {let (r,nr,ch,m)= n in

if nr(res) then output(ch,m) end

end |n ∈ ns}

end

Annotations
Here we give annotations for the extension parts only.

• Comparing to Simple Application System, this solution, does not effect the behaviour of Appli-
cation area at all.

• Compared to Direct EMS in 8.1.2, we notice that the EMS application area behaves like the
local notification system in Direct EMS.

• Comparing with Synchronous EMS, we notice that, in this system, no direct message is sent to
EMS at the point of event occurrence. Rather, EMS has the responsibility to poll for detecting
if the Event has occurred.

8.3.3 Model of Asynchronous EMS

A complete model of the Application System extended with Asynchronous Event Management is
listed in Appendix G on page 133.

Section 8.4 External Asynchronous Event Management 77

8.4 External Asynchronous Event Management

8.4.1 Solution concept

This solution is similar to Asynchronous EMS except that, an external Event Management Solution
EMS asynchronously polls the Simple Application via an interface EMI, to check for the occurrence
of the Event from the system state. EMS then processes the result and notifies the relevant recipi-
ents. Figure 8.4 on page 77, shows a Simple Application System extended with Event Management
functionality using an external Event Management Solution.

Figure 8.4: Simple Application with External Asynchronous Event Management

From the figure we observe that:
User U(1) does some activity A in the Application area A(2) , that results in a change in the system
state. Meanwhile, an instance of Event Monitor EM(1) in the external Event Management Solution
EMS polls the Global State via an Interface EMI, for the occurrence of the Event. EM(1) then
notifies the recipients: user U(3) and another application area A(1) via EMI and an External System
EX directly, after evaluating the business rules for each of the subscribers.

78 Chapter 8. Solution Approaches

8.4.2 Extending SAS with external Asynchronous EMS

To extend the Simple Application System with an external asynchronous EMS, we need to have an
external EMS and also extend SAS with an Event Management Interface EMI application area .

• New External Asynchronous EMS
EMS is the new application area, that will pool the application area for the occurrence of events
from different application areas and then notify the subscribed users. Below a more precise
description of the behaviour of EMS is given.

Narrative

1. Event Management Process EMS consists of one or more Event Notification instances
EN(en) running in parallel.

2. EN(en) sends a request to Event Management Interface EMI in the Simple Application
System to check for the occurrence of a specific Event.

3. If the response is a NOEVENT or FAULT, EN(en) skips and starts all over again.

4. If the response is an occurrence of an event with the results back, EN(en) carries out
notification.

5. For each of the recipients, EN(en) identifies the notification rules NR .

6. EN(en) qualifies the recipients for notification based on their NR against the input value.
7. For the qualified recipients, EN(en) identifies the what notification needs to sent and on

which channel. Then it sends the notification on the channel.

8. EN(en) starts all over again.

Formal Specification

/ ∗ EventManagementProcess ∗ /

EMS:Unit → Unit

EMS() ≡ ‖ {EN(en)|en:ENIdx}

/ ∗ EventNotification Instance ∗ /

EN(en):en:ENIdx → Unit

EN(en) ≡ let e:E = obs_event(en) in

cases output_ input(cemi[en],e)of

NOEVENT → skip,

FAULT→ skip,

EVENT(v) → Notification(e,v))

end

end}EN(en)

obs_event:ENIdx→E

Section 8.4 External Asynchronous Event Management 79

/ ∗ Notification ∗ /

Notification:E× RS → out {crcp[r]:M|r:RIdx} Unit

Notification(e,v) ≡ let ns:N-set = ent(e)in

‖ {let (r,nr,ch,m)= nin

if nr(v) then output(ch,m) end

end |n ∈ ns}

end

Annotations
Here we give annotations for the extension parts only.

– resp:RS=output_ input(cemi[e],obs_req(er,e)), designates sending of
a request to Event Management Interface EMI . This is followed by waiting for receipt of
a response resp about occurrence of an event, from EMI .

– {cemi[e]|e:EMIdx}, designates the communication channel between EMS and EMI.

• Event Management Interface
EMI is a new application area within SAS, that serves as the interface for the external EMS
to communicate with other Application areas of SAS. Below a more precise description of the
behaviour of EMI is given.

Narrative

1. Event Management Interface EMI inside the application waits for requests from Event
Notification Instances EN(en).

2. EMI executes the request by executing appropriate service(business wrapper) to check for
the occurrence of an Event. The global state GS is observed to determine if the task is
carried out.

3. EMI sends the response back or skips doing nothing.

4. EMI starts all over again.

Formal Specification

/ ∗ EventManagement Interface ∗ /

EMI:en:ENIdx → in,out {cemi[en]},

EMI(en) ≡ let(i,et,er):E = input(cemi[en]) in

cases invoked(i,et)of

(false,v)→ NOEVENT,

(true,v) →

if er(v) then EVENT(v)

else NOEVENT end

end

end

80 Chapter 8. Solution Approaches

invoked: I×ET → in cstg Unit ×BOOL × V

invoked(i,et) ≡ let stg:Σ = input(cstg) in

let (b,v,i’)= interpret(et)(stg)in

if b ∧ (i = i’) then (true,v)

else (false,v) end

end

end

interpret:ET → Σ → BOOL×VAL×I

value

vstg:Σ

GS:Unit → out cstg Unit

GS() ≡ while true do

output(cstg,vstg) in

8.4.3 Model of External Asynchronous EMS

A complete model of the Application System extended with External Asynchronous Event Manage-
ment is listed in Appendix H on page 137.

81

Chapter 9

Design of Event Management Language

In previous chapters, we have carried out Domain Analysis, Requirements Analysis and Different So-
lution Approaches for the proposed Event Management System (EMS). In this Chapter, we shall use
the domain, requirements and the solution understanding, to design an Event Management Language
(EML). EML is intended to be specific for the domain of EMS. It will embody the domain and re-
quirements concepts in its constructs. It is our intention that EML would serve as a tool for the CSC
Requirements Engineer to both elicit and specify customer specific requirements, that could be met
by the proposed EMS solution.
EML language requirements and design goals are first described in Section 9.1. In Section 9.2, EMS
Use Cases B are analysed to establish the syntax of EML. A model of EML syntax is then presented
in Section 9.2.5.

9.1 Language Analysis

9.1.1 Language Requirements

Based on the Domain and Requirements Analysis of Event Management System, it should be possible,
at the language level to:

• Express an Event

• Express one or more Notifications

• Express association of an Event to Notifications

9.1.2 Elements of Design

Below are some of the design consideration we have considered to design EML:

Users

The main user of this language is typically a Requirements Engineers at the various Customer Solution
Centers (CSCs). They are expected to use EML to specify the customer specific requirements. Further,
as a secondary user, Application Developers at various CSCs would interpret the specification written
in EML, to configure the standard solution into a customer-specific solution.

82 Chapter 9. Design of Event Management Language

Language Paradigm and Level

Since the main use of the language is to specify requirements by a Requirements Engineer, we decide
EML to be descriptive and high-level in nature like “make” or “HTML”. The language should be able
to capture requirements that could be satisfied by the standard Event Management Solution (EMS).
Further, if the Requirements Engineer is not able to express some requirements using EML, it could
mean:

• That there is a need to build a custom component by a CSC Solution Developer, to meet those
customer-specific requirements that could not be specified in EML. and hence could not be
satisfied by satisfied by standard EMS.

• OR, it could serve as input for the EML language enhancement.

9.2 EML Syntax

In this section, an informal and formal description of EML syntax is given. We have developed the
syntax iterating between the following two activities:

• Informally analysing and expressing the EMS Use Cases in a declarative manner. Section 9.2.1
presents an Example of a Use Case and its specification in EML.

• Analysing the declarative specification and formally specifying the abstract syntax in RSL. The
is elaborated in Sections 9.2.2, 9.2.3 and 9.2.4.

9.2.1 Example EML Specification

Figure 10.1 shows, an example “Create new item”workflow scenario. (Based on the Use-case B.6 on
page 117)

Figure 9.1: Workflow to create a new item in SAS

It involves the following steps:

1. The Product Designer creates a new item with its technical details only. The Item does not
include information about BOM, cost, routing, and sales price.

Section 9.2 EML Syntax 83

2. The Materials Planner needs to be notified by Email to create BOM structure for the item. At
the same time, the Production Planner would like to be informed by Email to create routing
information.

3. After the Materials Planner creates BOM structure for the item and calculates unit costs for the
new item, the supplier needs to be informed about the subcomponent details.

4. When the Production Planner has finished creating routing and the Materials Planner has created
BOM structure for the item, Salesperson would like to be informed. So that the Saleperson can
assign sales price for the item.

5. Once all the details are available for the item, the Logistics Manager would like to know which
items to plan for production.

EML SPECIFICATION

-- EventNotify
Event “Production Designer SAS User Id” “Create a new item.”

“(Item BOM Structure = Empty) AND (Routing = Empty) AND (Salesprice = 0.0)”
Notify “Material Planner Email Id”

Task(“Create BOM structure for item.”,”Link to Item details”)
Notify “Production Planner Email Id”

Task(“Create routing for Item.”,”Link to Item details”)
-- EventNotify
Event “Material Planner SAS User Id”

“Create BOM structure for item and calculate unit price.”
Notify “Supplier Email Id” Info(“New Item.”,”Link to Item and BOM details”)
-- EventNotify
Event “Production Planner SAS User Id”

“Create routing and calculate capacity requirements for Item.”
AND

Event “Material Planner SAS User Id”

“Create BOM structure for item and calculate unit price.”
Notify “Salesperson Email Id”

Info(“Item is ready for production and needs sales price.”,
”Link to Item details”)

-- EventNotify
Event “Salesperson SAS User Id”

“Enter sales price for the item based on calculated cost.”
Notify “Logistics Manager Email Id”

Info(“New Item is created.”,”Link to Item and BOM details”)

9.2.2 EML Specification

An EML Specification consists of a set of Event-Notification (EN) pairs.

EML_Spec = (E × N)- set

Annotations

• Within a Event-Notification EN, a notification N always follows an Event E.
For Example:
– EventNotify

84 Chapter 9. Design of Event Management Language

Event “Material Planner SAS User Id”

“Create BOM structure for item and calculate unit price.”
Notify “Supplier Email Id” Info(“New Item.”,”Link to Item and BOM details”)

• The sequence of Event-Notification EN within an EML-Specification is immaterial. The choice
of set in the above specification, makes it explicit.

9.2.3 Event

• Event

An Event E can be constructed by a SIMPLE-Event SE, an AND-Event AE or an OR-Event OE
.

– A SIMPLE-Event SE is constructed from an Initiator I, Event Task ET and an Event-rule
ER. These are further elaoccurredborated below.

– An AND-Event AE is constructed from two events E, a left event and a right event. Se-
mantically, it means an event has occurred only when the two events have occurred.

– An OR-Event OE is constructed from two events E, a left event and a right event. Seman-
tically, it means an event has occurred when one of the two events has occurred.

Formal Specification

E == SE|AE|OE ...

SE = mkSE(i:I, et:ET, er:ER)

AE = mkAE(le:E, re:E)

OE = mkOE(le:E, re:E)

Annotations
mkSE(..),mkAE(..),mkOE(..) designate, the constructor functions that generate Sim-
ple Event, AND Event and OR Events respectively.

For Example:

1. Example of User Event, SAS Event and External Event

-- User Event
Event “Salesperson SAS User Id”

“Update Sales Order with price and discounts.”
“(Sales Order Status = Released) AND (Profit < 10%)”

-- SAS Event
Event “SAS Application Id” “MRP calculation run.”

“MRP status = Error ”
-- External Event
Event “Supplier Email Id” “Replies by Email about Delivery.”

“Response = Delivery OK”

Section 9.2 EML Syntax 85

2. Figure 9.2, shows an EML-specification consisting of an AND Event E1 AND E2 and
the corresponding Notification N.

-- EventNotify
Event “Production Planner SAS User Id”

“Create routing and calculate capacity requirements for Item.”
AND

Event “Material Planner SAS User Id”

“Create BOM structure for item and calculate unit price.”
Notify “Salesperson Email Id”

Info(“Item is ready for production and needs sales price.”,
”Link to Item details”)

Figure 9.2: Example EML-Specification 3

3. Figure 9.3, shows an EML-specification consisting of an OR Event (E1 AND E2) OR E3
and the corresponding Notification N. We assume AND is more associative than OR. This
example illustrates, the power of recursive specification of AND and OR Events above.

86 Chapter 9. Design of Event Management Language

Event < parameter1 >

AND

Event < parameter2 >

OR

Event < parameter3 >

Notify < parameter1 >

Figure 9.3: Example EML-Specification 4

• Initiator
An Initiator I of an Event E can be a SAS User UI, SAS Application area SI or an External
user EI.These initiators can be constructed using unique ids: UId, SId and EId respectively.

I == UI|SI|EI ...

UI = mkUI(UId)

SI = mkSI(SId)

EI = mkEI(EId)

Examples:

– A SAS user could be a Sales person with user id RV . The initiator can be constructed as
mkUI("RV").

– An external user could be a Customer contact with email id Cust@canon.com . The
initiator can be constructed as mkEI("Cust@canon.com").

• Event Task
An Event Task ET can be constructed by a SAS Task ST or an External Task ExT.

Formal Specification

ET == ST|ExT ...

ExT = mkExT(ExTId)

ST == mkST(TId)

Section 9.2 EML Syntax 87

For Example:
In the below specification, “Update Sales Order with price and discounts.” is a SAS Task.
– EventNotify

Event “Salesperson SAS User Id” “Update Sales Order with price and discounts.”
“(Sales Order Status = Released) AND (Profit < 10%)”

• Event Rule

An Event Rule ER can be constructed from:

– a constant Const

– an attribute An of a relation Rn in a database: RnAn
– Equality constructor Eq

– Logical equality constructor Eq

– Logical AND constructor AND

– Logical OR constructor OR

– Logical LESS THAN constructor LT

– Logical GREATER THAN constructor GT

Formal Specification

ER == Const | RnAn| Eq | And | Or | Lt | Gt ...

Const = mkConst(v:VAL)

RnAn = mkRnAn(rn:Rn, an:An)

Eq = mkEq(ler:ER, rer:ER)

And = mkAND(ler:ER, rer:ER)

Or = mkOr(ler:ER, rer:ER)

Lt = mkLt(ler:ER, v:VAL)

Gt = mkGt(ler:ER, v:VAL)

Examples:

– In the below specification, “(Sales Order Status = Released) AND (Profit < 10%)” is an Event Rule.

Event “Salesperson SAS User Id” “Update Sales Order with price and discounts.”
“(Sales Order Status = Released) AND (Profit < 10%)”

– This Event rule: "(Sales Order Status = Released) AND (Profit < 10%)"
translates to the abstract syntax

mkAND(mkEq(mkRnAn(Sales Order, Status), mkConst("Released"))

,mkLt(mkRnAn(Sales Order,Profit),mkConst("10")))

88 Chapter 9. Design of Event Management Language

9.2.4 Notification

• Notification

A Notification N can be constructed by an Information-Notification IN or a Task-Notification
TN.

– An Information-Notification IN is constructed from a Recipient R, a channel CH and in-
formation Info as message.

– An Task-Notification TN is constructed from a Recipient R, a channel CH and Notification-
task NT as message.

Formal Specification

N == IN|TN...

IN = mkIN(to:R, ch:CH, i:Info)

TN = mkTN(to:R, ch:CH, nt:NT)

Annotations

– mkIN(..),mkTN(..) designate, the constructor functions that generate Information-
Notification IN and Task-Notification TN respectively.

Examples

1. Example of Task Notification
Notify “Material Planner Email Id”

Task(“Create BOM structure for item.”,”Link to Item details”)
Notify “Production Planner Email Id”

Task(“Create routing for Item.”,”Link to Item details”)

2. Example of Information Notification
Notify “Salesperson Email Id”

Info(“Item is ready for production and needs sales price.”,
”Link to Item details”)

Notify “Logistics Manager Email Id”
Info(“New Item is created.”,”Link to Item and BOM details”)

3. Figure 9.4, shows an EML-specification with basic Notification N1 as a result of an Event
E1.

Event < parameter1 >

Notify < parameter1 >

Figure 9.4: Example EML-Specification 5

Section 9.2 EML Syntax 89

4. Figure 9.5, shows an EML-specification consisting of more than one Notifications N1, N2
in response to an Event E1. It is assumed that all the Notifications N1, N2... takes
place in parallel, independent of each other.

-- EventNotify
Event “Production Designer SAS User Id” “Create a new item.”

“(Item BOM Structure = Empty) AND (Routing = Empty) AND (Sales price = 0.0)”
Notify “Material Planner Email Id”

Task(“Create BOM structure for item.”,”Link to Item details”)
Notify “Production Planner Email Id”

Task(“Create routing for Item.”,”Link to Item details”)

Figure 9.5: Example EML-Specification 6

R, CH, Info, NT are further analysed and described below.

• Recipient
A Recipient R of a Notification N can be a SAS User UR, SAS Application area SR or an
External user EXR. These recipients can be constructed using unique ids: UId, SId and EId
respectively.

R == UR|SR|EXR ...

UR = mkUR(UId)

SR = mkSR(SId)

EXR = mkEXR(ExId)

Examples:

– A SAS user could be a Sales person with user id RV . The initiator can be constructed as
mkUR("RV").

– An external user could be a Customer contact with email id Cust@canon.com . The
initiator can be constructed as mkEXR("Cust@canon.com").

• Channel
A Channel CH of a Notification N can be Email, Phone, Fax,SMS.

CH == Email|Phone|Fax|Fax|SMS ...

90 Chapter 9. Design of Event Management Language

• Notification Info

A Notification Information Info consists of static information.

Info = mkInfo(d:Description)

• Notification Task

A Notification Task NT can be constructed by:

– Manual Task MT

– SAS Task ST

– External Task ExT

– Automatic SAS Task AST

Formal Specification

NT == MT|ExT|AST|ST ...

MT = mkMT(d:Description)

ExT = mkExT(ExTId)

AST = mkAST(ExTId)

ST == mkST(TId)

9.2.5 EML Syntax Specification

Below is a complete specification for the EML syntax.

EML_Spec = (E × N)- set

E == SE|AE|OE ...

SE = mkSE(i:I, tsk:ET, er:ER)

AE = mkAE(le:E, re:E)

OE = mkOE(le:E, re:E)

I == UI|SI|EI ...

UI = mkUI(UId)

SI = mkSI(SId)

EI = mkEI(EId)

ER == Const | RnAn| Eq | And | Or | Lt | Gt ...

Const = mkConst(v:VAL)

RnAn = mkRnAn(rn:Rn, an:An)

Section 9.2 EML Syntax 91

Eq = mkEq(ler:ER, rer:ER)

And = mkAND(ler:ER, rer:ER)

Or = mkOr(ler:ER, rer:ER)

Lt = mkLt(ler:ER, v:VAL)

Gt = mkGt(ler:ER, v:VAL)

ET == ST|ExT ...

ExT = mkExT(ExTId)

ST == mkST(TId)

N == IN|TN...

IN = mkIN(to:R, ch:CH, i:Info)

TN = mkTN(to:R, ch:CH, nt:NT)

R == UR|SR|EXR ...

UR = mkUR(UId)

SR = mkSR(SId)

EXR = mkEXR(ExId)

CH == Email|Phone|Fax|Fax|SMS ...

Info = mkInfo(d:Description)

NT == MT|ExT|AST|ST ...

MT = mkMT(d:Description)

ExT = mkExT(ExTId)

AST = mkAST(ExTId)

ST == mkST(TId)

92 Chapter 9. Design of Event Management Language

9.3 EML Semantics

We will sketch the essentials of the semantics by focusing on SIMPLE-Event se:SE and Notification
N in our treatment of EML-Spec. The semantic description also assumes, the solution approach is an
Event Management Solution based on an External EMS system as explained in Section 8.4.

9.3.1 Semantic of EML Specification

Given a EML-Specification EML_Spec, an environment ENV and a state of SAS Σ, a EML-Specification
could be interpreted by the meaning functionMEML_Spec as described below:

• An Event e is detected ..

• If the Event has occurred, then the associated Notification n is carried out. This is followed by
repetition of the interpretation of the remaining Event-Notification pairs.

• If the Event has not occurred, the interpretation step is repeated until the event has occurred.

Formal Specification

MEML_Spec : EML_Spec→ ENV→ Σ → Σ

MEML_Spec(ems)(ρ)(σ) ≡ if ems = {} then skip

else

let (e,n):(E×N)•(e,n) ∈ ems in

let (b,v) = MEvent(e)(ρ)(σ) in

if b then

MNotification(n,v); MEML_Spec(ems\{(e,n)})(ρ)(σ)

else

MEML_Spec(ems)(ρ)(σ)

end

end

end

end

Annotations

• If the EML-Specification ems is empty, the whole interpretation process is skipped.

• The meaning functions MEvent(e)(ρ)(σ) and MNotification(n,v) designates, the semantics
of the Event e and Notification n respectively. These are further described below.

9.3.2 Semantic of Event

Given an Event E, an environment ENV and a state of SAS Σ, an Event could be interpreted by the
meaning function MEvent , which states that an Event has occurred when:

• An Event Task et has been carried out and

Section 9.3 EML Semantics 93

• The Event Initiator is same as the Event-Task actor.

• Event Rule er on the Task output v is satisfied.

Formal Specification

MEvent : E→ ENV→ Σ → BOOL×VAL

MEvent(e)(ρ)(σ) ≡ let mkSE(i:I, et:ET, er:ER) = e in

let (b,v,i′) = MEventTask(et)(ρ)(σ) then

if b ∧ (i = i′) ∧ MEventRule(er)(v) then (true,v)

else (false,v) end

end

end

MEventTask : ET→ ENV→ Σ → BOOL×VAL×I

MEventRule : ER→ VAL→ BOOL

MEventRule(er)(v) ≡ cases er of

mkConst(v)→ v

mkRnAn(rn:Rn, an:An)→ obsRnAn(rn,an,v)

mkEq(ler:ER,rer:ER)→

(MEventRule(ler)(v) = MEventRule(rer)(v))

...

end

obsRnAn : Rn× An× V → V

Annotations

• The meaning function MEventTask : ET→ ENV→ Σ → BOOL×VAL×I designates, the occur-
rence of an Event-Task et . The output of the function are:

– If the Task has occurred (true/fasle),

– The Task output VAL and

– The Task Initiator I

• The meaning function MEventRule : ER→ VAL→ BOOL designates, the evaluation of the
Event-Rule ER against the Task-Output V. The output of the function is true/false.

9.3.3 Semantic of Notification

Given a Notification N and an Event-Task output V, a Notification could be interpreted by the meaning
function MNotification . A Notification is considered to have occurred when:

94 Chapter 9. Design of Event Management Language

• The Notification rule NR is satisfied, and

• A message Info or Task is sent to the recipient R.

Formal Specification

MNotification : N × V→Unit

MNotification(n,v) ≡ cases n of

mkIN(to:R,nr:NR,i:Info)→

MNotificationtRule(nr,v)

∧ output(MRecipient(to), MInfo(i,v))

mkTN(to:R,nr:NR,nt:NT)→

MNotificationtRule(nr,v)

∧ output(MRecipient(to), MNotificationTask(nt,v))

end

MNotificationRule : NR×V→ BOOL

MRecipient : R→ CH

MRecipient(r) ≡ cases r of

mkUR(UId)→ obs_channel(UId)

mkSR(SId)→ obs_channel(SId)

mkExR(ExId)→ obs_channel(ExId)

...

end

obs_channel : (UId|SID|ExId) → CH

MInfo : Info×V→ Info

MNotificationTask : NT×V→ TaskId×V

MNotificationTask(nt,v) ≡ cases nt of

mkMT(MTId)→ (MTId,v)

mkST(STId)→ (STId,v)

...

end

Annotations

• The meaning function MNotificationRule : NR×V→ BOOL designates, the condition that must be
satisfied for sending a message(Info/Task) to a recipient.

Section 9.3 EML Semantics 95

• The meaning function MRecipient : R→ CH designates, the channel CH of the recipient R, to
which the message is to be sent.

• The meaning function MInfo : Info×V→ Info designates, generation of Information Info
that needs to be sent to the recipient.

• The meaning function MNotificationTask : NT×V→ TaskId×V designates, generation of Task
TaskId and its input V, that needs to be notified to the recipient.

9.3.4 EML Semantics Specification

MEML_Spec : EML_Spec→ ENV→ Σ → Σ

MEML_Spec(ems)(ρ)(σ) ≡ if ems = {} then skip

else

let (e,n):(E×N)•(e,n) ∈ ems in

let (b,v) = MEvent(e)(ρ)(σ) in

if b then

MNotification(n,v); MEML_Spec(ems\{(e,n)})(ρ)(σ)

else

MEML_Spec(ems)(ρ)(σ)

end

end

end

end

MEvent : E→ ENV→ Σ → BOOL×VAL

MEvent(e)(ρ)(σ) ≡ let mkSE(i:I, et:ET, er:ER) = e in

let (b,v,i′) = MEventTask(et)(ρ)(σ) then

if b ∧ (i = i′) ∧ MEventRule(er)(v) then (true,v)

else (false,v) end

end

end

MEventTask : ET→ ENV→ Σ → BOOL×VAL×I

MEventRule : ER→ VAL→ BOOL

MEventRule(er)(v) ≡ cases er of

mkConst(v)→ v

mkRnAn(rn:Rn, an:An)→ obsRnAn(rn,an,v)

mkEq(ler:ER,rer:ER)→

(MEventRule(ler)(v) = MEventRule(rer)(v))

96 Chapter 9. Design of Event Management Language

...

end

obsRnAn : Rn× An× V → V

MNotification : N × V→Unit

MNotification(n,v) ≡ cases n of

mkIN(to:R,nr:NR,i:Info)→

MNotificationtRule(nr,v) ∧ output(MRecipient(to), MInfo(i,v))

mkTN(to:R,nr:NR,nt:NT)→

MNotificationtRule(nr,v) ∧ output(MRecipient(to), MNotificationTask(nt,v))

end

MNotificationRule : NR×V→ BOOL

MRecipient : R→ CH

MRecipient(r) ≡ cases r of

mkUR(UId)→ obs_channel(UId)

mkSR(SId)→ obs_channel(SId)

mkExR(ExId)→ obs_channel(ExId)

...

end

obs_channel : (UId|SID|ExId) → CH

MInfo : Info×V→ Info

MNotificationTask : NT×V→ TaskId×V

MNotificationTask(nt,v) ≡ cases nt of

mkMT(MTId)→ (MTId,v)

mkST(STId)→ (STId,v)

...

end

9.4 Discussion

We wish to comment on how the solution model of External Asynchronous EMS (Section 8.4 on page
77) relates to the semantic model of EML. To do so let us consider the following EML semantic:

Section 9.4 Discussion 97

MEML_Spec : EML_Spec→ ENV→ Σ → Σ

MEML_Spec(ems)(ρ)(σ) ≡ if ems = {} then skip

else

let (e,n):(E×N)•(e,n) ∈ ems in

let (b,v) = MEvent(e)(ρ)(σ) in

if b then

MNotification(n,v); MEML_Spec(ems\{(e,n)})(ρ)(σ)

else

MEML_Spec(ems)(ρ)(σ)

end

end

end

end

• When in the above model we write σ , it refers to the global-state stg:Σ of Simple Application
System (SAS) in the External Asynchronous EMS solution model. The state of SAS is polled
to detect occurrence of an Event.

• The meaning function MEvent(e)(ρ)(σ) corresponds to
invoked: I×ET → in cstg Unit ×BOOL × V function within Event Management
Interface EMI, in the External Asynchronous EMS solution model.

• MNotification(n,v) corresponds to Notification:E×RS→ out {crcp[r]:M|r:RIdx} Unit

in the External Asynchronous EMS solution model.

99

Chapter 10

Guidelines for Requirements Engineers

The aim of this chapter is to provide guidelines in terms of example usage scenarios with there spec-
ification in EML for a CSC Requirements Engineer. The intention is that, it would enable a CSC
Requirements engineer, to be first elicit and then specify customer-specific requirements in EML. It is
assumed that, a CSC Requirements Engineer is knowledgeable about the customer’s specific domain.
The chapter is organised around the following different Event Management Functionality offered by
the Standard Event Management software:

• Exception Management
To alert employees when some exceptional situation happens. See section 10.1 for example
scenarios and there specification in EML.

• Event Based Workflow
To send alerts about task completion, which in turn, enables to have a workflow of Tasks. See
section 10.2 for example scenarios and there specification in EML.

• Pro-active Information
Proactively send information like “status of Sales Order” , to customers, suppliers and people
inside the company. See section 10.3 for example scenarios and there specification in EML.

10.1 Exception Management

Scenario 1
Consider the below exception scenario:
“A Master Resource Planning(MRP) engine is started in SAS on Friday evening at 5pm and is let to
run during the weekend. If an error occurs during the MRP run, the Production Planner would like to
be notified about the exception by an SMS on his mobile. ” (Based on Use-case B.3 on page 116)

EML SPECIFICATION

-- EventNotify
Event “SAS Application Id” “MRP calculation run.” “MRP status = Error ”
Notify “Production Planner Mobile No.”

Info(“Error during MRP run.”, “Link to error details,”)

100 Chapter 10. Guidelines for Requirements Engineers

Scenario 2
Consider the below exception scenario:
“The Sales Manager has a goal to ensure that profit margin on any sales doesn’t fall below 10%. For
this, Sales Manager would like to be alerted by Email, whenever there is a Sales with a profit less than
10%.” (Based on Use-case B.1 on page 115)

EML SPECIFICATION

-- EventNotify
Event “Salesperson SAS User Id” “Update Sales Order with price and discounts.”

“(Sales Order Status = Released) AND (Profit < 10%)”
Notify “Sales Manager Email Id”

Info(“Sales order below profit margin.”,”Link to Sales Order details,”)

Scenario 3
Consider the below exception scenario:
“The Production Manager is carrying out his daily production activity. The initiated operations are
causing delay/back orders. Both the Production Manager and the Salesperson would like to know
about the possible delay in production, so that they can plan for the sales or inform the customer as
appropriate. Production Manager and Sales person would like to be notified on there phone and mo-
bile respectively. “ (Based on Use-case B.2 on page 115)

EML SPECIFICATION

-- EventNotify
Event “SAS Application Id” “Register production time.”

“Delayed operations or back-orders”
Notify “Production Manager Email Id”

Info(“Delay in production activity.”,”Link to activity details.”)
Notify “Sales Manager Mobile No.”

Info(“Sales Order could be delayed due to delay in production activity.”,
”Link to sales order details.”)

Scenario 4
Consider the below exception scenario:
“The Purchaser would like to know if the inventory of a critical item X goes below Item Reorder point.
So that he can plan for the items replenishment.” (Based on Use-case B.4 on page 116)

EML SPECIFICATION

-- EventNotify
Event “Production Manager SAS User Id” “Consume critical item for production.”

“Inventory of item < Reorder Point”
Notify “Purchaser Email Id”

Info(“Low inventory for item X.”,”Link to Item inventory details,”)

Scenario 5.
Consider the below exception scenario:
“Whenever inventory of an item is about to expire within 10 days, the Production Manager and Sales-
person needs to notified, for taking suitable actions.” (Based on Use-case B.8 on page 119)

EML SPECIFICATION

Section 10.2 Event Based Workflow 101

-- EventNotify
Event “SAS Application Id” “Check for Item expire date.”

“(Expire date - Current Date) = 10 days)”
Notify “Production Manager Email Id”

Info(“Items are about expire in 10 days.”,”Link to Items”)
Notify “Salesperson Email Id”

Info(“Items are about expire in 10 days.”,”Link to Items”)

10.2 Event Based Workflow

Scenario 1

Figure 10.1 shows, an example “Create new item”workflow scenario. (Based on the Use-case B.6 on
page 117)

Figure 10.1: Workflow to create a new item in SAS

It involves the following steps:

1. The Product Designer creates a new item with its technical details only. The Item does not
include information about BOM, cost, routing, and sales price.

2. The Materials Planner needs to be notified by Email to create BOM structure for the item. At
the same time, the Production Planner would like to be informed by Email to create routing
information.

3. After the Materials Planner creates BOM structure for the item and calculates unit costs for the
new item, the supplier needs to be informed about the subcomponent details.

4. When the Production Planner has finished creating routing and the Materials Planner has created
BOM structure for the item, Salesperson would like to be informed. So that the Salesperson can
assign sales price for the item.

5. Once all the details are available for the item, the Logistics Manager would like to know which
items to plan for production.

EML SPECIFICATION

102 Chapter 10. Guidelines for Requirements Engineers

-- EventNotify
Event “Production Designer SAS User Id” “Create a new item.”

“(Item BOM Structure = Empty) AND (Routing = Empty)
AND (Sales price = 0.0)”

Notify “Material Planner Email Id”
Task(“Create BOM structure for item.”,”Link to Item details”)

Notify “Production Planner Email Id”
Task(“Create routing for Item.”,”Link to Item details”)

-- EventNotify
Event “Material Planner SAS User Id”

“Create BOM structure for item and calculate unit price.”
Notify “Supplier Email Id”

Info(“New Item.”,”Link to Item and BOM details”)
-- EventNotify
Event “Production Planner SAS User Id”

“Create routing and calculate capacity requirements for Item.”
AND

Event “Material Planner SAS User Id”

“Create BOM structure for item and calculate unit price.”
Notify “Salesperson Email Id”

Info(“Item is ready for production and needs sales price.”,
”Link to Item details”)

-- EventNotify
Event “Salesperson SAS User Id”

“Enter sales price for the item based on calculated cost.”
Notify “Logistics Manager Email Id”

Info(“New Item is created.”,”Link to Item and BOM details”)

Scenario 2

Figure 10.2 shows, an example “Sales/Shipping“ workflow scenario (Based on Use-case B.5 on page
117)

Figure 10.2: Workflow - Sales and Shipment Notifications

It involves the following steps:

1. A customer places an order for item X, via a Portal on the web.

2. A Salesperson is notified, about creation of a new Customer Order with order details.

3. Salesperson creates and releases a new Production Order for the Customer Order.

Section 10.2 Event Based Workflow 103

4. Logistics Staff is given a pre-warning , to Accept/Decline sending an email to the transportation
supplier.

5. The Logistics Staff accepts to send email to the transportation supplier.

6. An Email is sent to the transportation supplier, with item and shipping details.

7. After shipping, the Warehouse Worker changes Sales Order status to shipped.

8. A pre-warning is sent to Salesperson to Accept/Decline, to send an email to the customer in-
forming about the shipping-date.

9. When the Salesperson accepts sending of email to Customer, an email is sent to the customer.
EML SPECIFICATION

– EventNotify

Event “Customer Web portal Id” “Place a new order.”
Notify “Salesperson SAS User Id”

Info(“New order created.”,”Link to Order details”)
-- EventNotify
Event “Salesperson SAS User Id” “Create and release a Production Order.”
Notify “Logistics Staff SAS User Id”

Task(“Accept/Decline sending of email to transportation supplier.”,
”Link to Order details”)

-- EventNotify
Event “Logistics Staff SAS User Id”

“Accepts to send an email to transportation supplier.”
Notify “Transportation Supplier Email Id”

Info(“New item to be shipped.”,”Link to Item and Shipping details”)
-- EventNotify
Event “Warehouse Worker SAS User Id” “Update Sales Order status.”

“Order Status = Shipped”
Notify “Salesperson SAS User Id”

Task(“Accept/Decline sending of email to customer.”,”Link to order details”)
-- EventNotify
Event “Salesperson SAS User Id” “Accepts to send an email to customer.”
Notify “Customer Email Id”

Info(“The order shipment details.”,”Link to order details”)

Scenario 3

Figure 10.3 shows, an example “Supplier Reminder“ workflow scenario (Based on Use-case B.7 on
page 118)

Figure 10.3: Workflow - Supplier Reminder

104 Chapter 10. Guidelines for Requirements Engineers

It involves the following steps:

1. Purchaser goes about daily work of procurement and supplier management. 7 days remain until
expected receipt from some suppliers.

2. Purchaser would like to be notified to accept or decline, whether to send a reminder email to the
suppliers.

3. When the purchaser accepts sending of reminders, a reminder email is sent to the suppliers with
order details.

4. When the supplier replies to the reminder email and responds about Delivery as “OK”, the Order
is updated as “Confirmed” and the Purchaser is notified by SMS about the scheduled delivery.

5. When the supplier replies to the reminder email and responds about Delivery as “Not OK”, the
Order is updated as “Not Confirmed” and the Purchaser is notified by SMS about problem in
delivery.

EML SPECIFICATION

-- EventNotify
Event “SAS Application Id” “Check expected receipt date.”

“(Expected Receipt Date - Current Date) = 7days”
Notify “Purchaser SAS User Id”

Task(“Accept/Decline to send reminder email to suppliers.”,
”Link to Order details”)

-- EventNotify
Event “Purchaser SAS User Id” “Accept/Decline to send reminder email to suppliers.”

“Response = Accept”
Notify “Supplier Email Id”

Task(“Respond whether delivery is OK/Not OK.”,”Link to Order details”)
-- EventNotify
Event “Supplier Email Id” “Replies by Email about Delivery.”

“Response = Delivery OK”
Notify “SAS Application Id”

Task(“Update Order to confirmed.”,”Link to Order details”)
Notify “Purchaser Mobile No.” Info(“Scheduled Delivery.”,”Link to Order details”)
-- EventNotify
Event “Supplier Email Id” “Replies by Email about Delivery.”

“Response = Delivery not OK”
Notify “SAS Application Id”

Task(“Update Order to not confirmed.”,”Link to Order details”)
Notify “Purchaser Mobile No.”

Info(“Delivery Problem.”,”Link to Order details”)

10.3 Proactive Info

Scenario 1.
Consider the below exception scenario:
”The customer requests the Salesperson to cancel the Sales Order. This also means, to cancel the Pro-
duction Order associated with the Sales Order. The Production Planner would like to be notified by
Email in good time the orders which needs to be canceled, to avoid unnecessary production .” (Based
on Use-case B.10 on page 119)

EML SPECIFICATION

Section 10.3 Proactive Info 105

-- EventNotify
Event “Salesperson SAS User Id” “Cancel a Sales Order.”

“Order Status = Canceled”
Notify “Production Manager Email Id”

Info(“Sales Order is canceled”,”Link to Sales Order, Production Orders”)

Scenario 2.
Consider the below exception scenario:
”Once the output from a production order has been received at the warehouse, the Warehouse Person-
nel is to be notified on his Mobile to pick the items. Also, the Sales Manager is informed in SAS Task
List, about completion of production order.” (Based on Use-case B.9 on page 119)

EML SPECIFICATION

-- EventNotify
Event “SAS App Id” “Register output from production order.”
Notify “Warehouse Person Mobile No.”

Info(“Item to be picked”,”Link to Production Order Details”)
Notify “Sales Manager SAS User Id”

Info(“Production Order is complete and ready to be picked”,
”Link to Production Order Details”)

Part IV

Conclusion

107

109

Chapter 11

Conclusion

11.1 Summary of Contributions

In summary, the main contributions of this thesis are as follows:

1. Contribution to the following areas of Requirements Engineering research challenges Section
1.1.4:

(a) Reuse of requirements models
We have demonstrated that the requirements found during development of Standard Soft-
ware by MDC could be reused by the CSC Requirements Engineer.

(b) Support for requirements practitioners
We have shown the importance of domain-specific language (DSL) as a tool for the CSC
Requirements Engineer, to both elicit and specifying customer specific requirements.

(c) Bridging the gap between requirements elicitation approaches based on contextual en-
quiry and more formal specification and analysis techniques
We have shown, how DSL could serve as a link between the informal elicitation techniques
(Use Cases in our case) and formal specification in RSL.

(d) Better understanding of the impact of software architectural choices on the prioritisation
and evolution of requirements:
Modelling he different solution approaches, explicitly brought out benefits and limitations
among different approaches.

2. Contribution to the Event Management Project at Microsoft Business Solutions:

(a) Proposal of an approach for creating a domain-specific language at the MDC.

(b) Requirements model for Event Management.

(c) Event Management Language as a tool for CSC Requirements Engineers.

11.2 Limitations

One of the major shortcoming of this thesis, has been that we could not evaluate of the Event Manage-
ment Language with real CSC Requirements Engineers. Because of this we are not able to conclude

110 Chapter 11. Conclusion

about the usefulness of EML in the field. On the other hand, we were able to get feedback from MBS
Event Management Project Team. The main feedback were:

• They were able to use the example specification to present Event Management functionality
to other teams in the company. They found it more precise than Use-cases or other type of
descriptions.

• They were able to make the Use-cases more precise after looking at the basic constructs and
examples of EML specification.

• dInterestingly, the test engineer of project team, found it very useful to define functional Test
Cases.

11.3 Conclusions

The following inferences could be drawn based on the work done in this thesis are:

1. Partial application of Formal specification and modelling techniques, can be very effective to
business software applications.

2. Domain-specific language serve as a link between the informal elicitation techniques (Use Cases
in our case) and formal specification in RSL.

3. Step-wise development of different solution approaches help to understand the requirements
better and possibly unravel benefits and limitations.

11.4 Future Work

1. Deriving DSL elements from Formal Models
It could be of value to find out, once we have a formal domain and requirements model, how can
we derive a domain-specific language from it. Work in this area would help software engineers,
who are not that proficient in language design.

2. Evaluation of EML
It would be worth investigating further, how EML and specification examples in EML are per-
ceived by the CSC Requirements Engineers. That would serve as great input for further work
in this direction.

3. Application Generator for EMS
Based on the models of EML, an application generator could be developed, which would gen-
erate customer-specific EMS based on requirements specified in EML.

Part V

Appendices

111

Appendix A

Glossary of Key Terms

This appendix contains an alphabetized list of the acronyms and key terms used in this thesis.

A.1 Acronyms

CSC Customer Solution Center

DSL Domain Specific Language

EMS Event Management System

MDC Main Development Center

RE Requirements Engineering

RSL/CSP Raise Specification Language / Communicating Sequential Processes

SAS Simple Application System

113

114 Appendix A. Glossary of Key Terms

Appendix B

EMS Use Cases

This appendix lists the Use Cases from the EMS project. The Use Cases are modified to accommodate
the proprietary requirements of EMS Project at Microsoft Business Solutions.

B.1 Profit margin below limit

Context The Sales Manager wants to be notified, if the profits on item of group B goes below
10%.

Actors Sales Manager, Salesperson.

Goal Make sure that sales price levels ensure a certain profit margin.

Sequence

Actor action System response
1. Sales Manager/Salesperson enters sales order
with prices and discounts.
2. One day, a released/posted sales order for an
item in group B has a profit lower than 10%.

3. A notification is sent to the Sales Manager by
Email, with links to the Sales Order and
information about the Salesperson who is
handling the Sales Order.

4. Sales Manager acts accordingly.

B.2 Order Delayed - Production/Sales Activity Control

Context The delivery date of a planned sales order is pushed due to a slack in the production line.

Actors Production Manager, Salesperson

Goal To notify actors that production order can not meet promised ending date.

Sequence

115

116 Appendix B. EMS Use Cases

Actor action System response
1. Production Manager performs daily
production activity
2. Initiated operations are causing delay/back
orders.

3. System notifies the Production Manager and
the Sales person about a possible delay in
delivery, by Email and SMS respectively. The
message includes details about the delaying
activity.

4. Production Planner and Salesperson act
accordingly.

B.3 MRP run error

Context As part of normal procedure, the MRP is set up to calculate a new materials plan during
the weekend. It is crucial that the MRP result is ready on Monday morning when produc-
tion must be restarted. If run errors are not detected until Monday, it will be too late to
rerun.

Actors Production Planner.

Goal To alert actor of critical problem outside business hours.

Sequence

Actor action System response
1. The MPS/MRP are set to start Friday evening
and run during the weekend.

2. The system run the MPS/MRP planning
according to planned.

3. An error occurs in the MPS/MRP and the
MRP run is stopped.

3. The system registers the MRP errors. A
notification is sent to the Production Planner on
his mobile phone.

B.4 Inventory below reorder point

Context The Purchase Manager would like to keep track of critical item inventory for his order
planning.

Actors Purchase Manager

Goal Notify the purchaser that item inventory is below reorder point - if critical.

Sequence

Actor action System response
1. The inventory of a critical item X falls below
the reorder point, due to sale of the item.

2. System registers the low inventory. A
notification is sent to the purchaser by Email. It
contains the item inventory information like
Current Stock, Reorder point and a link to the
Item.

Appendix B. EMS Use Cases 117

B.5 Collaboration - Sales and shipping notifications

Context A customer places an Order which results in a new Sales Order for the Item, which
needs to manufactured and shipped. When the production ending date is known, the
transportation supplier is notified. When the item is shipped, the customer is notified.

Actors Salesperson, Logistics Staff, Warehouse Worker, Transportation supplier, Customer

Goal Improve customer service by providing shipping information. To make the process more
effective by proactively providing information to the next in the process.

Sequence

Actor action System response
1. A customer places an order for item X, via a
Portal on the web.

2. The system registers an open Sales Order. And
informs the Salesperson by a notification to his
Application Inbox. The Sales Order details are
included.

3. The Salesperson receives a notification about
the new sales order and creates a Production
Order for the Sales Order.
4. The Production Planner releases the
Production Order for production.

5. The system registers the Production Order as
released. And sends a pre-warning to the
Logistics Staff to his Application Inbox, in order
to Accept/Decline, sending an email to the
transportation supplier.

6. The Logistic Staff receives the notification and
accepts that the email be sent to the
transportation supplier.

7. The system sends an email to the
transportation supplier. The email contains,
information about items, weight, number of
pallets, pick-up date, delivery address etc

8. After shipping, the Warehouse Worker
changes Sales Order status to shipped.

9. The system registers the Sales Order as
shipped. And sends a pre-warning to
Salesperson, about the shipping-date-email for
the customer.

10. The Salesperson receives the notification and
accept that the email is sent to the Customer
informing about the shipping details.

11. The system sends the email to the customer
stating the delivery date and order details

B.6 Create new end item

Context The Product Designer has configured a new end item and proceeds to enter his data on a
new item card in Attain. This causes related tasks for numerous interdependent actors.

Actors Product Designer (responsible for the configuration of new items), Materials Planner (in
charge of BOM structures, unit costs and procurement), Production Planner (must define
routing and BOM to prepare new item for production), Sales person (must assign a sales
price to new item and prepare it for sale) , Logistics Manager (in charge of all aspects of
the internal supply chain)

118 Appendix B. EMS Use Cases

Goal Optimize the workflow around the creation of a new item in a production company.

Sequence

Actor action System response
1. Product Designer creates a new item with its
technical details only. The Item does not include
information about BOM, cost, routing, and sales
price.

2. System registers new incomplete item. It
informs Materials Planner by Email to create
BOM structure for the item. At the same time,
system informs the Production Planner by Email
to create routing information. Links to the new
item is given.

3. Materials Planner creates BOM structure for
the item and calculates unit costs for the new
item.

4. The system registers the BOM structure and
the item unit cost. And notifies the suppliers of
new item details, by Email.

5. At the same time, Production Planner creates
routing and calculates capacity requirements.

6. System synchronises the two tasks and notifies
the sales person that the item is ready for
production and needs a sales price.

7. Salesperson enters sales price for the item
based on the calculated costs.

8. System registers that new item has complete
set of data and notifies logistics manager that a
new end item is created.

B.7 Remind supplier of delivery

Context The Purchaser may issue reminders to suppliers, either as part of a standard procedure
to ensure that all inbound deliveries are on schedule, or as a special precaution against
failure by specific unstable suppliers.

Actors Purchaser, Supplier

Goal To avoid disruption in supply chain due to delivery failure. Also, to know about potential
delivery problems as early as possible.

Sequence

Actor action System response
1. Purchaser goes about daily work of
procurement and supplier management. 7 days
remain until expected receipt from supplier XX

2. System notifies the Purchaser in his
Application Inbox, to Accept/Decline, to send a
reminder to the Suppliers by email.

2. Purchaser accepts, sending of reminders. 3. System sends reminder email to supplier XX.
The email contains order details and options:
“Delivery Ok” / “Delivery not ok”

4a. The supplier receives the Email and replies
as “Delivery Ok”.

5. The system updates the order as confirmed and
notifies the Purchaser about scheduled delivery.

4b. The supplier receives the Email and replies
as “Delivery Not Ok”.

6. The system updates the order as not confirmed
and notifies the Purchaser about the problem in
delivery.

Appendix B. EMS Use Cases 119

B.8 Inventory expire date passed

Context The Production Manager and Salesperson wish to know about inventory expire dates.

Actors Production Manager / Salesperson.

Goal Inform actors in time about expire for suitable action to be taken.

Sequence

Actor action System response
1. The items in the inventory are about to expire
in 10 days.

2. The system notifies the Production Manager
and Salesperson, with a list of items which are
about to expire and there details.

3. The Production Manager and Salesperson take
suitable actions.

B.9 Output to inventory

Context The output from a production order has been received at the warehouse and the informa-
tion has to be passed on.

Actors Sales Manager/Warehouse Personnel

Goal To notify sales personnel that production output has been received in inventory

Sequence

Actor action System response
1. Output from a production order is registered in
inventory.

2. The system registers for the inbound of
produced items. And notifies the Warehouse
Personnel to pick the items and alerts the Sales
Manager.

3. The recipients act accordingly.

B.10 Order/demand canceled

Context An order is canceled and the components are not needed.

Actors Production Planner

Goal To notify the the Production Planner that the order has been canceled and the demand has
changed.

Sequence

Actor action System response
1. The Sales person cancels an Sales Order and
the associated production order is no longer
needed.

2. The system registers the Sales Order as
canceled and notifies the Production Planner by
Email, about the Canceled Orders with Order
details.

3. The Planner runs a net change MPS/MRP

Appendix C

Domain Model of Simple Application
System (SAS)

type R,V,U,S,AIdx,UIdx

AP==A1|A2| . . .|An

APU=AP−→
m U−set, APS=AP−→

mS−set

channel {cua[u,a]:(R|V)|u:UIdx,a:AIdx},

{caa[a,a′]:(R|V)|a,a′:AIdx • a 6= a′}

value aps:APS,

obs_servType:S→ Register|Lookup|Execute

obs_AIdx: AP→AIdx

Sys: Unit → Unit

Sys() ≡ {U(u)|u:UIdx} ‖ {A(a)|a:AIdx}

U(u):u:UIdx → in,out {cua[u,a]|a:AIdx} Unit

U(u) ≡ let ap:AP = A1 u A2 u . . . u An in

let r:R = gen_req(select_serv(ap),userinput:V) in

output (cua[u,obs_AIdx(ap)],r)

U(u) |||

{letv = input (cua[u,obs_AIdx(ap)) in U(u) end}

end

end

gen_req:S× V→ R

121

122 Appendix C. Domain Model of Simple Application System (SAS)

select_serv:AP → S

select_serv(ap) ≡ u {s | s:S • s ∈ aps(ap))}

A(a):a:AIdx → in,out {cua[u,a]|u:UIdx},

{caa[a′,a] | a′:AIdx • a 6= a′} Unit

A(a) ≡

[] {let r:R = input(cua[u,a]) in

let v = execute(r)in

output(cua[u,a],v)u skip

end

end

u

let r:R = input(caa[a’,a]) in

let v = execute(r)in

output(caa[a,a’],v)u skip

end

end|u:UIdx,a′:AIdx};A(a)

execute:R→ V

Appendix D

EMS Requirements Model

type Ψ, ENTS, ENS, Σ, ETIdx, ENIdx,RIdx

I,T,R,CH,M,V,RES,D,RIdx,

E=I×ET×ER,

ER=V→BOOL,

I = User|SAS|External,

N = R×NR×CH×M,

R = Fixed|Dynamic|Subscribed

NR = V → BOOL,

ENT = E−→mN-set,

ENTS = ETIdx −→
m ENT

ENS = ENIdx−→
m Σ

Σ = ETIdx ×Φ

channel {crcp[r]:M|r:RIdx}

value ent:ENT

subscribe:ENT× N→ ENT

/ ∗ EventManagementProcess ∗ /

EMS:Unit → Unit

EMS() ≡ ‖ {EN(en)|en:ENIdx}

/ ∗ EventNotification Instance ∗ /

EN(en):en:ENIdx → Unit

EN(en) ≡ let e:E = obs_event(en) in

cases Event(e)of

NOEVENT → skip,

123

124 Appendix D. EMS Requirements Model

FAULT→ skip,

EVENT(res) → Notification(e,res))

end

end; EN(en)

obs_event:ENIdx→E

/ ∗ Event ∗ /

Event:E → RS

Event(e) ≡ let(i,t,er) = e in

cases invoked(i,t)of

FALSE→ NOEVENT,

res:RS →

if er(res) then EVENT(res)

else NOEVENT end

end

end

invoked:TRG→ FALSE|RS

/ ∗ Notification ∗ /

Notification:E× RS → out {crcp[r]:M|r:RIdx} Unit

Notification(e,res) ≡ let ns:N-set = ent(e)in

‖ {let (r,nr,ch,m)= nin

if nr(res) then output(ch,m) end

end |n ∈ ns}

end

Appendix E

SAS with Direct EMS

type R,V,U,S,AIdx,UIdx

AP==A1|A2| . . .|An

APU=AP−→
m U−set, APS=AP−→

mS−set

Ψ, ENTS, ENS, Σ, ETIdx, ENIdx,RIdx

I,T,R,CH,M,V,RES,D,RIdx,

E=I×ET×ER,

ER=V→BOOL,

I = User|SAS|External,

N = R×NR×CH×M,

R = Fixed|Dynamic|Subscribed

NR = V → BOOL,

ENT = E−→mN-set,

ENTS = ETIdx −→
m ENT

ENS = ENIdx−→
m Σ

Σ = ETIdx ×Φ

channel {cua[u,a]:(R|V)|u:UIdx,a:AIdx},

{caa[a,a′]:(R|V)|a,a′:AIdx • a 6= a′}

{crcp[r]:M|r:RIdx}

value aps:APS,

obs_servType:S→ Register|Lookup|Execute

obs_AIdx: AP→AIdx

125

126 Appendix E. SAS with Direct EMS

Sys: Unit → Unit

Sys() ≡ {U(u)|u:UIdx} ‖ {A(a)|a:AIdx}

U(u):u:UIdx → in,out {cua[u,a]|a:AIdx} Unit

U(u) ≡ let ap:AP = A1 u A2 u . . . u An in

let r:R = gen_req(select_serv(ap),userinput:V) in

output (cua[u,obs_AIdx(ap)],r)

U(u) |||

{letv = input (cua[u,obs_AIdx(ap)) in U(u) end}

end

end

gen_req:S× V→ R

select_serv:AP → S

select_serv(ap) ≡ u {s | s:S • s ∈ aps(ap))}

A(a):a:AIdx → in,out {cua[u,a]|u:UIdx},

{caa[a′,a] | a′:AIdx • a 6= a′} Unit

A(a) ≡

[] {

{let r:R = input(cua[u,a]) in

let v = execute(r)in

output(cua[u,a],v)u skip

end

end

u

let r:R = input(caa[a’,a]) in

let v = execute(r)in

output(caa[a,a’],v)u skip

end

end}

EventNotification(e)

|u:UIdx,a′:AIdx};A(a)

execute:R→ V

Appendix E. SAS with Direct EMS 127

/ ∗ EventNotificationFunction ∗ /

EventNotification(e):e:E → Unit

EventNotification(e) ≡ cases Event(e)of

NOEVENT → skip,

FAULT→ skip,

EVENT(res) → Notification(e,res))

end

/ ∗ Event ∗ /

Event:E → RS

Event(e) ≡ let(i,t,er) = e in

cases invoked(i,t)of

FALSE→ NOEVENT,

res:RS →

if er(res) then EVENT(res)

else NOEVENT end

end

end

invoked:TRG→ FALSE|RS

/ ∗ Notification ∗ /

Notification:E× RS → out {crcp[r]:M|r:RIdx} Unit

Notification(e,res) ≡ let ns:N-set = ent(e)in

‖ {let (r,nr,ch,m)= nin

if nr(res) then output(ch,m) end

end |n ∈ ns}

end

Appendix F

SAS with Synchronous EMS

type R,V,U,S,AIdx,UIdx

AP==A1|A2| . . .|An

APU=AP−→
m U−set, APS=AP−→

mS−set

Ψ, ENTS, ENS, Σ, ETIdx, ENIdx,RIdx

I,T,R,CH,M,V,RES,D,RIdx,

E=I×ET×ER,

ER=V→BOOL,

I = User|SAS|External,

N = R×NR×CH×M,

R = Fixed|Dynamic|Subscribed

NR = V → BOOL,

ENT = E−→mN-set,

ENTS = ETIdx −→
m ENT

ENS = ENIdx−→
m Σ

Σ = ETIdx ×Φ

channel {cua[u,a]:(R|V)|u:UIdx,a:AIdx},

{caa[a,a′]:(R|V)|a,a′:AIdx • a 6= a′}

{crcp[r]:M|r:RIdx}

value aps:APS,

obs_servType:S→ Register|Lookup|Execute

obs_AIdx: AP→AIdx

129

130 Appendix F. SAS with Synchronous EMS

Sys: Unit → Unit

Sys() ≡ {U(u)|u:UIdx} ‖ {A(a)|a:AIdx} ‖ EMS()

U(u):u:UIdx → in,out {cua[u,a]|a:AIdx} Unit

U(u) ≡ let ap:AP = A1 u A2 u . . . u An in

let r:R = gen_req(select_serv(ap),userinput:V) in

output (cua[u,obs_AIdx(ap)],r)

U(u) |||

{letv = input (cua[u,obs_AIdx(ap)) in U(u) end}

end

end

gen_req:S× V→ R

select_serv:AP → S

select_serv(ap) ≡ u {s | s:S • s ∈ aps(ap))}

A(a):a:AIdx → in,out {cua[u,a]|u:UIdx},

{caa[a′,a] | a′:AIdx • a 6= a′}

,out{cae[a]}Unit

A(a) ≡

[] {

{let r:R = input(cua[u,a]) in

let v = execute(r)in

output(cua[u,a],v)u skip

end

end

u

let r:R = input(caa[a’,a]) in

let v = execute(r)in

output(caa[a,a’],v)u skip

end

end}

output(cae[a],e)

|u:UIdx,a′:AIdx};A(a)

execute:R→ V

Appendix F. SAS with Synchronous EMS 131

/ ∗ EventManagementProcess ∗ /

EMS():Unit → Unit

EMS() ≡

[] {lete = input(cae[a]) in

cases Event(e)of

NOEVENT → skip,

FAULT→ skip,

EVENT(res) → Notification(e,res))

end

end|a:AIdx}EMS()

/ ∗ Event ∗ /

Event:E → RS

Event(e) ≡ let(i,t,er) = e in

cases invoked(i,t)of

FALSE→ NOEVENT,

res:RS →

if er(res) then EVENT(res)

else NOEVENT end

end

end

invoked:TRG→ FALSE|RS

/ ∗ Notification ∗ /

Notification:E× RS → out {crcp[r]:M|r:RIdx} Unit

Notification(e,res) ≡ let ns:N-set = ent(e)in

‖ {let (r,nr,ch,m)= nin

if nr(res) then output(ch,m) end

end |n ∈ ns}

end

Appendix G

SAS with Asynchronous EMS

type R,V,U,S,AIdx,UIdx

AP==A1|A2| . . .|An

APU=AP−→
m U−set, APS=AP−→

mS−set

Ψ, ENTS, ENS, Σ, ETIdx, ENIdx,RIdx

I,T,R,CH,M,V,RES,D,RIdx,

E=I×ET×ER,

ER=V→BOOL,

I = User|SAS|External,

N = R×NR×CH×M,

R = Fixed|Dynamic|Subscribed

NR = V → BOOL,

ENT = E−→mN-set,

ENTS = ETIdx −→
m ENT

ENS = ENIdx−→
m Σ

Σ = ETIdx ×Φ

channel {cua[u,a]:(R|V)|u:UIdx,a:AIdx},

{caa[a,a′]:(R|V)|a,a′:AIdx • a 6= a′}

{crcp[r]:M|r:RIdx}

value aps:APS,

obs_servType:S→ Register|Lookup|Execute

obs_AIdx: AP→AIdx

133

134 Appendix G. SAS with Asynchronous EMS

Sys: Unit → Unit

Sys() ≡ {U(u)|u:UIdx} ‖ {A(a)|a:AIdx} ‖ EMS()

U(u):u:UIdx → in,out {cua[u,a]|a:AIdx} Unit

U(u) ≡ let ap:AP = A1 u A2 u . . . u An in

let r:R = gen_req(select_serv(ap),userinput:V) in

output (cua[u,obs_AIdx(ap)],r)

U(u) |||

{letv = input (cua[u,obs_AIdx(ap)) in U(u) end}

end

end

gen_req:S× V→ R

select_serv:AP → S

select_serv(ap) ≡ u {s | s:S • s ∈ aps(ap))}

A(a):a:AIdx → in,out {cua[u,a]|u:UIdx},

{caa[a′,a] | a′:AIdx • a 6= a′}

,out{cae[a]}Unit

A(a) ≡

[] {

{let r:R = input(cua[u,a]) in

let v = execute(r)in

output(cua[u,a],v)u skip

end

end

u

let r:R = input(caa[a’,a]) in

let v = execute(r)in

output(caa[a,a’],v)u skip

end

end}|u:UIdx,a′:AIdx};A(a)

execute:R→ V

Appendix G. SAS with Asynchronous EMS 135

/ ∗ EventManagementProcess ∗ /

EMS:Unit → Unit

EMS() ≡ ‖ {EN(en)|en:ENIdx}

/ ∗ EventNotification Instance ∗ /

EN(en):en:ENIdx → Unit

EN(en) ≡ let e:E = obs_event(en) in

cases Event(e)of

NOEVENT → skip,

FAULT→ skip,

EVENT(v) → Notification(e,v))

end

end}EN(en)

obs_event:ENIdx→E

/ ∗ Event ∗ /

Event:E → RS

Event(e) ≡ let(i,t,er) = e in

cases invoked(i,et)of

(false,v)→ NOEVENT,

(true,v)→

if er(v) then EVENT(v)

else NOEVENT end

end

end

invoked: I×ET → in cstg Unit ×BOOL × V

invoked(i,et) ≡ let stg:Σ = input(cstg) in

let (b,v,i’)= interpret(et)(stg)in

if b ∧ (i = i’) then (true,v)

else (false,v) end

end

end

interpret:ET → Σ → BOOL×VAL×I

value

136 Appendix G. SAS with Asynchronous EMS

vstg:Σ

GS:Unit → out cstg Unit

GS() ≡ while true do

output(cstg,vstg) in

....

end

/ ∗ Notification ∗ /

Notification:E× V → out {crcp[r]:M|r:RIdx} Unit

Notification(e,v) ≡ let ns:N-set = ent(e)in

‖ {let (r,nr,ch,m)= n in

if nr(res) then output(ch,m) end

end |n ∈ ns}

end

Appendix H

SAS with External Asynchronous EMS

type R,V,U,S,AIdx,UIdx

AP==A1|A2| . . . |An

APU=AP−→
m U−set, APS=AP−→

mS−set

Ψ, ENTS, ENS, Σ, ETIdx, ENIdx,RIdx

I,T,R,CH,M,V,RES,D,RIdx,

E=I×ET×ER,

ER=V→BOOL,

I = User|SAS|External,

N = R×NR×CH×M,

R = Fixed|Dynamic|Subscribed

NR = V → BOOL,

ENT = E−→mN-set,

ENTS = ETIdx−→
m ENT

ENS = ENIdx −→
m Σ

Σ = ETIdx ×Φ

channel {cua[u,a]:(R|V)|u:UIdx,a:AIdx},

{caa[a,a′]:(R|V)|a,a′:AIdx • a 6= a′}

{crcp[r]:M|r:RIdx}

value aps:APS,

obs_servType:S→ Register|Lookup|Execute

obs_AIdx: AP→AIdx

137

138 Appendix H. SAS with External Asynchronous EMS

Sys: Unit → Unit

Sys() ≡ {U(u)|u:UIdx} ‖ {A(a)|a:AIdx} ‖ EMI() ‖ EMS()

U(u):u:UIdx → in,out {cua[u,a]|a:AIdx} Unit

U(u) ≡ let ap:AP = A1 u A2 u . . . u An in

let r:R = gen_req(select_serv(ap),userinput:V) in

output (cua[u,obs_AIdx(ap)],r)

U(u) |||

{letv = input (cua[u,obs_AIdx(ap)) in U(u) end}

end

end

gen_req:S× V→ R

select_serv:AP → S

select_serv(ap) ≡ u {s | s:S • s ∈ aps(ap))}

A(a):a:AIdx → in,out {cua[u,a]|u:UIdx},

{caa[a′,a] | a′:AIdx • a 6= a′}

,out{cae[a]}Unit

A(a) ≡

[] {

{let r:R = input(cua[u,a]) in

let v = execute(r)in

output(cua[u,a],v)u skip

end

end

u

let r:R = input(caa[a’,a]) in

let v = execute(r)in

output(caa[a,a’],v)u skip

end

end}|u:UIdx,a′:AIdx};A(a)

execute:R→ V

/ ∗ EventManagement Interface ∗ /

Appendix H. SAS with External Asynchronous EMS 139

EMI:en:ENIdx → in,out {cemi[en]},

EMI(en) ≡ let(i,et,er):E = input(cemi[en]) in

cases invoked(i,et)of

(false,v)→ NOEVENT,

(true,v) →

if er(v) then EVENT(v)

else NOEVENT end

end

end

invoked: I×ET → in cstg Unit ×BOOL × V

invoked(i,et) ≡ let stg:Σ = input(cstg) in

let (b,v,i’)= interpret(et)(stg)in

if b ∧ (i = i’) then (true,v)

else (false,v) end

end

end

interpret:ET → Σ → BOOL×VAL×I

value

vstg:Σ

GS:Unit → out cstg Unit

GS() ≡ while true do

output(cstg,vstg) in

/ ∗ EventManagementProcess ∗ /

EMS:Unit → Unit

EMS() ≡ ‖ {EN(en)|en:ENIdx}

/ ∗ EventNotification Instance ∗ /

EN(en):en:ENIdx → Unit

EN(en) ≡ let e:E = obs_event(en) in

cases output_ input(cemi[en],e)of

NOEVENT → skip,

FAULT→ skip,

EVENT(v) → Notification(e,v))

end

140 Appendix H. SAS with External Asynchronous EMS

end}EN(en)

obs_event:ENIdx→E

/ ∗ Notification ∗ /

Notification:E× RS → out {crcp[r]:M|r:RIdx} Unit

Notification(e,v) ≡ let ns:N-set = ent(e)in

‖ {let (r,nr,ch,m)= nin

if nr(v) then output(ch,m) end

end |n ∈ ns}

end

Bibliography

[1] T.E. Bell and T.A. Thayer : Software Requirements: Are They Really a Problem?. Proc. ICSE-2:
2nd International Conference on Software Engineering. San Francisco, 1976, 61-68

[2] Zave, P. : Classification of Research Efforts in Requirements Engineering. ACM Computing
Surveys, 29(4):315-321.

[3] The Standish Group, “Software Chaos”, http://www.standishgroup.com.

[4] European Software Institute, “European User Survey Analysis”, Report USV_EUR 2.1, ESPITI
Project, January 1996.

[5] Bashar Nuseibeh & Steve Easterbrook: Requirements Engineering: A Roadmap. ACM 2000.

[6] Axel van Lamsweerde: Requirements Engineering in the Year 00: A Research Perspective.

[7] Ian Sommerville, Software Engineering, 6th Edition, Pearson Education Limited, 2001.

[8] M. Jackson: Software Requirements & Specifications - A Lexicon of Practice, Principles and
Prejudices. ACM Press, Addison-Wesley, 1995.

[9] Mainbaum, T. S .E. : Mathematical Foundations of Software Engineering: A Roadmap. In this
volume.

[10] Garlan, D. : Software Architecture: A Roadmap. In this volume.

[11] Spivey, J. M. : Introducing Z: a Specification Language and its Formal Semantics. Cambridge
University Press, Cambridge, 1998.

[12] Nielsen, M., Havelund, K., Wagner, K., and George, C.: The RAISE language, methods and
tools. Formal Aspects of Computing 1, 85-114, 1989.

[13] Jones, C. B. : Systematic Software Development Using VDM. Prentice-Hall International, New
York, 1986.

[14] Hoare, C. A. R. : Communicatinf Sequential Processes. Prentice-Hall Internaltional, 1985.

[15] Loucopoulos, P., Kavakli, E. Enterprise Modelling and the Telelogical Approach to Require-
ments Engineering. International Journal of Intelligent and Cooperative Information Systems,
4(1):45-79, 1995.

[16] David M. Weiss: Defining families: commonality analysis, Lucent Technologies Bell Laborato-
ries, 1997.

141

142 Appendix H. BIBLIOGRAPHY

[17] J. L. Bentley: Programming Pearls: Little Languages, Communications of the ACM,29(8), 711-
721, August 1986.

[18] D. Bruce: What makes a good domain-specific language? APOSTLE, and its approach to par-
allel discrete event simulation. In Kamin [43], pages 17-35.

[19] J. Heering: Application Software, Domain-Specific Languages and Language Design Assistants,
Software Engineering(SEN), SEN-R0010 May 31, 2000.

[20] A. van Deursen, P. Klint, J.M.W. Visser: Domain-Specific Languages, Software Engineer-
ing(SEN), SEN-R0032 November 30, 2000.

[21] Scott Thilbault: Domain-Specific Languages: Conception, Implementation and Application, Phd
Thesis, Univeristy de Rennes, October 1998.

[22] Scott Thilbault, Renaud Marlet, Charles Consel: A Domain Specific Language for Video Device
Drivers: from Design to Implementation, Univeristy de Rennes, 1997.

[23] S.J. Greenspan, A. Borgida and J. Mylopoulos: A Requirements Modeling Language and its
Logic, Information Systems, 11(1), 1986,pages 9-23.

[24] James Neighbors.: Software Construction Using Components. PhD thesis, University of Cali-
fornia, Irvine, 1980.

[25] R. McCain.: Reusable Software Component Construction: A Product-Oriented Paradigm. In
Proceedings of the 5th AIAA/ACM/NASA/IEEE Computers in Aerospace Conference, Long
Beach, CA, pp: 125-135, October 21-23, 1985.

[26] Ruben Prieto-Diaz: Domain Analysis: An Introduction. Software Engineering Notes, 15(2),
April 1990.

[27] A. Dardenne, Axel van Lamsweerde, and S. Fikas. Goal:Directed Requirements Acquisition.
Science of Computer Programming, 20:3-50, 1993.

[28] R. Darimont and Axel van Lamsweerde. Formal Renement Patterns for Goal:Driven Require-
ments Elaboration. In Proc. FSE’4, Fourth ACM SIGSOFT Symp. on the Foundations of Soft-
ware Enginering, pages 179-190. ACM, October 1996.

[29] Axel van Lamsweerde and L. Willemet. Inferring Declarative Requirements Specication from
Operational Scenarios. IEEE Transaction on Software Engineering, pages 1089-1114, 1998.

[30] Special Issue on Scenario Management. IEEE Trans. on Software Engineering, December 1998.

[31] Pamela Zave and Michael A. Jackson. Techniques for partial specication and specication of
switching systems. In S. Prehn and W.J. Toetenel, editors, VDM’91: Formal Software Develop-
ment Methods, volume 551 of LNCS, pages 511-525. Springer-Verlag, 1991.

[32] Pamela Zave and Michael A. Jackson. Requirements for telecommunications services: an attack
on complexity. In Proceedings of the Third IEEE International Symposium on Requirements
Engineering (Cat. No.97TB100086), pages 106{117. IEEE Comput. Soc. Press, 1997.

[33] Pamela Zave. Classication of Research Eorts in Requirements Engineering. ACM Computing
Surveys, 29(4):315{321, 1997.

Appendix H. BIBLIOGRAPHY 143

[34] B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework for Expressing the Relationships
between Multiple Views in Requirements Specications. IEEE Transactions on Software Engi-
neering, 20(10):760-773, October 1994.

[35] John Mylopoulos, L. Chung, and E. Yu. From Object-Oriented to Goal-Oriented Requirements
Analysis. CACM: Communications of the ACM, 42(1):31-37, January 1999.

[36] A. Hunter and B. Nuseibeh. Managing Inconsistent Specications: Reasoning, Analysis and
Action. ACM Transactions on Software Engineering and Methodology, 7(4):335-367, October
1998.

[37] Axel van Lamsweerde, R. Darimont, and E. Letier. Managing Con in Goal-Driven Requirements
Engineering. IEEE Transaction on Software Engineering, 1998. Special Issue on Inconsistency
Management in Software Development.

[38] Axel van Lamsweerde and E. Letier. Integrating Obstacles in Goal-Driven Requirements Engi-
neering. In Proc. ICSE-98: 20th International Conference on Software Enginereering, Kyoto,
Japan, April 1998. IEEE Computer Society Press.

[39] Axel van Lamsweerde and L. Willemet. Handling Obstacles in Goal{Driven Requirements Engi-
neering. IEEE Transaction on Software Engineering, 2000. Special Issue on Exception Handling.

[40] Jackson, M. , Zave, P.: Domain Descriptions. 1st International Symposium on Requirements
Engineering (RE’93), San Diego, USA, 4-6 January 1993, pp. 56-64.

[41] Dines Bjorner: The SE Book,The ABZ of The Theory and Practice of Software Engineering

[42] Janet Suleski, Catherine Quirk: Supply Chain Event Management: The antidote for Next Year’s
Supply Chain Pain, AMR Research Inc. 2001.

[43] Formal Methods Specification and Verification Guidebook For Software and Computer Systems,
Volume II: A Practitioner’s Companion, May, 1997, NASA

[44] The RAISE SPECIFICATION language, The RAISE Language Group

[45] Concurrent and Real-time Systems, The CSP Approach, Steve Schneider

[46] M.A. Jackson, Problem Analysis Using Small Problem Frames, South African Computer Journal
22, Special Issue on WOFACS’98, pp47-60, 1999.

[47] J.V. Guttag, J.J. Horning, and J.M. Wing, “Some Remarks on Putting Formal Specifications to
Productive Use.”, Science of Computer Programming, North-Holland, Vol. 2, No. 1, Oct. 1982,
pp. 53-68.

