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A B S T R A C T

Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere
monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of tem-
perature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand,
“underdetermination” is common place as regression needs to work on high dimensional input and output
spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of
this, several noise sources are encountered in the data.

In this paper, we present for the first time the use of convolutional neural networks for the retrieval of
atmospheric profiles from IASI sounding data. The first step of the proposed pipeline performs spectral di-
mensionality reduction taking into account the signal to noise characteristics. The second step encodes spatial
and spectral information, and finally prediction of multidimensional profiles is done with deep convolutional
networks. We give empirical evidence of the performance in a wide range of situations. Networks were trained
on orbits of IASI radiances and tested out of sample with great accuracy over competing approximations, such as
linear regression (+32%). We also observed an improvement in accuracy when predicting over clouds, thus
increasing the yield by 34% over linear regression. The proposed scheme allows us to predict related variables
from an already trained model, performing transfer learning in a very easy manner. We conclude that deep
learning is an appropriate learning paradigm for statistical retrieval of atmospheric profiles.

1. Introduction

Temperature and water vapour atmospheric profiles are essential
meteorological parameters for weather forecasting and atmospheric
chemistry studies. Observations from high spectral resolution infrared
sounding instruments on board satellites provide unprecedented accu-
racy and vertical resolution of temperature and water vapour profiles.
However, it is not trivial to retrieve the full information content from
radiation measurements. Accordingly, improved retrieval algorithms
are desirable to achieve optimal performance for existing and future
infrared sounding instrumentation.

The use of MetOp data observations has an important impact on
several Numerical Weather prediction (NWP) forecasts. The Infrared
Atmospheric Sounding Interferometer (IASI) sensor is implemented on
the MetOp satellite series. In particular, IASI collects rich spectral in-
formation to derive temperature and moisture profiles, which are es-
sential to the understanding of weather and to derive atmospheric
forecasts. The sensor provides infrared spectra, from which temperature

and humidity profiles with high vertical resolution and accuracy are
derived. Additionally, it is used for the determination of trace gases
such as ozone, nitrous oxide, carbon dioxide and methane, as well as
land and sea surface temperature, emissivity, and cloud properties
(EUMETSAT, 2014; Tournier et al., 2002).

EUMETSAT, NOAA, NASA and other operational agencies are con-
tinuously developing product processing facilities to obtain L2 atmo-
spheric profile products from infrared hyperspectral radiance instru-
ments, such as IASI, AIRS or the upcoming MTG-IRS. A standard
approach relies on physical models in general and the optimal estima-
tion method (OEM) approach, (August et al., 2012). The use of linear
regression (LR) is widely adopted to provide a first guess estimate of the
variable of interest to start the OEM run. Because of the strong input
spectral co-linearity, the LR model is actually run on top of the data
projected onto the first principal components or Empirical Orthogonal
Functions (EOF) of the measured brightness temperature spectrum (or
radiances). To further improve the results of this first guess estimate,
nonlinear statistical retrieval methods can be applied. Inclusion of
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nonlinear and nonparametric machine learning models here produce
more accurate first guesses, hence faster convergence of the final
(eventually OEM) retrieval approach. These methods have proven to be
valid in retrieval of temperature, dew point temperature (humidity),
and ozone atmospheric profiles (Camps-Valls et al., 2012).

From a statistical standpoint, the challenge is immense. On the one
hand, the curse of dimensionality is often present when using infrared
sounding data for atmospheric profile estimation, because of the high
dimensional input and output spaces, and exponential increase com-
putational resources needed. On the other hand, redundancy is present
in all dimensions (spatial, spectral and temporal). Additionally, several
noise sources and high noise levels are encountered in the data, which
in many cases are correlated with the signal. The previous L2 processing
scheme presented in Camps-Valls et al. (2012) consisted of first per-
forming a spectral dimensionality reduction based on Principal Com-
ponent Analysis (PCA) (Hotelling, 1933), and then a nonlinear regres-
sion based on kernel methods (Camps-Valls et al., 2011, 2012; Camps-
Valls and Bruzzone, 2009). Despite being an effective approach, the
scheme reveals some deficiencies. The PCA transformation accounts for
most of the signal variance, but does not consider the correlation be-
tween the signal and the noise. On the other hand, the spatial in-
formation is discarded and the retrieval algorithm acts on a pixel (FOV)
basis. Only very recent methods have included spatial-spectral feature
relations in the retrieval algorithm, yet in an indirect way through ei-
ther post-filtering of the product, or via data compression (García-
Sobrino et al., 2017). In this paper, we propose a general scheme to
cope with all these problems.

Three main motivations guide our proposal:

• Accounting for noisy and spatial features. Recently, in García-Sobrino
et al. (2017, 2019), great improvement in the performance of re-
trieval methods was reported when applying standard compression
algorithms to the images. Although this result may appear counter-
intuitive since compression implies reduction on the amount of in-
formation in the images, a certain level of compression is actually
beneficial because: (1) compression removes information but also
noise, and it could be useful to remove the components with low
signal-to-noise ratio (SNR); and (2) spatial compression introduces
information about the neighbouring pixels in an indirect yet simple
way. Including the noise estimate in the design of PCA of infrared
sounders has been considered before (Collard et al., 2010), and
actually it is currently implemented in the IASI pipeline (EUMET-
SAT, 2017). However the inclusion of the spatial information, while
it is important (Laparra and Santos-Rodríguez, 2016), has obtained
less attention. The use of Minimum Noise Fractions (MNF) employed
in this paper is a simple and mathematically elegant way to take
advantage of both properties simultaneously. The way we apply
MNF here enforces the inclusion of spatial information as noise is
estimated by the residuals from fitting a quadratic surface locally. In
this work, we compare the effect of using noise-free PCA and MNF
when retrieving temperature profiles using IASI data. Moreover,
since PCA and MNF are both linear and unsupervised transforma-
tions, using MNF does not introduce any critical modification in the
data processing pipeline. One can simply replace the PCA principal
components with MNF components. Also, replacing PCA with MNF
could be advantageous in other retrieval schemes.

• Accounting for smoothness in the spatial and vertical dimensions. All
previous machine learning based algorithms (Blackwell et al., 2008;
Camps-Valls et al., 2012; Camps-Valls, 2016; Laparra et al., 2017;
Rivera-Caicedo et al., 2017) used for statistical retrieval exploited
the spectral information in the FOVs only, and discarded spatial
information of the acquired scene. Including spatial information in
classifiers and regression methods has been done traditionally via
hand-crafted features (Plaza et al., 2002; Tuia et al., 2010; Camps-
Valls et al., 2006, 2014). This, however, requires expert knowledge,
it is time consuming and scenario dependent. In the last decade,

convolutional neural networks (CNNs) have excelled in many clas-
sification problems in remote sensing (Aptoula et al., 2016; Geng
et al., 2015; Zhang et al., 2016; Luus et al., 2015; Maggiori et al.,
2017; Zhang et al., 2016; Romero et al., 2016). CNNs allow to easily
learn the proper filters to process images and optimize a task (in our
case, prediction of atmospheric profiles). Traditional artificial
neural network architectures have been explored for this problem
e.g. in Aires et al. (2002), Whitburn et al. (2016), but these archi-
tectures consider single point measurements in the retrieval and fail
to incorporate spatial information and feature transformations. It is,
however, quite striking that very few applications of CNNs are found
in the field of regression, and none to our knowledge for bio-geo-
physical parameter retrieval. In this paper, we present for the first
time the use of deep convolutional neural networks for the retrieval
of atmospheric profiles from IASI sounding data. We should note
that, neural networks offer an additional advantage to our multi-
variate regression problem: models are intrinsically multi-output
and account for the cross-relations between the state vector at dif-
ferent altitudes. This allows us to attain smoothness, and hence
consistency, across the atmospheric column in a very straightfor-
ward way.

• Accounting for higher level feature representations. The problem of
translating radiances to state parameters is challenging because of
its intrinsic high non-linearity and underdertermination. Deep
learning offers a simple strategy to approach the problem of com-
plex feature representations by stacking together several convolu-
tional layers. In the last decade, deep networks have replaced
shallow architectures in many recognition and detection tasks.

Capitalizing on these three motivations, in this paper we propose a
chained scheme that exploits the MNF transformation and deep con-
volutional neural networks for atmospheric parameter retrieval. In
summary, the proposed scheme performs multidimensional output
nonlinear regression, accounts for noise features, and exploits correla-
tions in all dimensions.

The remainder of the paper is organized as follows. Section 2 pre-
sents the processing scheme and analyses the building blocks (di-
mensionality reduction and retrieval) in detail. Section 2.1 describes
the datasets used for the development of the algorithm. Section 3 il-
lustrates the performance of the proposed method in terms of accuracy,
bias and smoothness of the estimates (across the space and vertical
dimensions), both over land and over ocean. We also pay attention to
the algorithm performance when predicting over clouds as a function of
the cloud fraction. The section ends with an exploratory analysis of the
performance of the method to estimate other (yet related) variables
with minimal retraining. We outline the conclusions of the work and
the foreseeable future developments in Section 4.

2. Methodology

Rather than modeling atmospheric parameters from single point
measurements, the purpose here is to investigate spatial dependencies in
the retrieval. IASI data are collected as 30 point measurements in a swath
scan using a 2 × 2 pixel grid simultaneously. The IASI instrument scans
around 765 swaths per orbit which then becomes 1530 lines of 60 points
per orbit. This fact can be used to structure the data in rectangular grids
and treat them as images likewise (García-Sobrino et al., 2017). We use
this approach in two steps of our prediction pipeline illustrated in Fig. 1.
The pipeline consists of (1) removing irrelevant spectral channels and
structuring the data as images of dimension of 1530 × 60 × 4699 per
orbit (cf. Camps-Valls et al., 2012), (2) applying the linear basis (learned
using an MNF decomposition) on the spectral components, (3) extracting
patches from data so that observations are local neighbourhoods around
each pixel, (4) running either a CNN model or a linear regression for re-
trieval of atmospheric parameters at 90 different altitudes simultaneously.
Let us describe in detail each of these steps.
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2.1. Data collection and preprocessing

The Infrared Atmospheric Sounding Interferometer (IASI) is an in-
strument implemented on the MetOp satellite series. From MetOp’s
polar orbit, the IASI instrument scans the Earth at an altitude of, ap-
proximately, 820 km. The instrument measures in the infrared part of
the electromagnetic spectrum (between 645 cm−1 and 2760 cm−1) at a
horizontal resolution of 12 km over a swath width of, approximately,
2200 km. It obtains a global coverage of the Earth’s surface every 12 h,
representing 7 orbits in a sun-synchronous mid-morning orbit. This
represents more than one million high dimensionality samples to be
processed each day. Obtaining all the products provided by IASI with
classical methods requires an enormous computational load. To process
these products efficiently some works have focused on using machine
learning methods (Camps-Valls et al., 2012; Laparra et al., 2015, 2017).

Each original sample has 8461 spectral channels, but following
previous recommendations (Camps-Valls et al., 2012) we performed
feature selection removing the most noisy channels and keeping 4699.
Even with such drastic feature reduction, regression methods can suffer
and easily overfit as many parameters need to be learned. In addition,
even though some noise is removed by doing this channel selection,
there still remains noise and spectral redundancy in the data. Actually it
has been suggested that simple spatial smoothing techniques remove
the noise and help improving the predictions quality (García-Sobrino
et al., 2017). In the following subsection we pay attention to the feature
extraction step to better pose the problem.

Products obtained from IASI data are used to for meteorological
models. For instance humidity profiles reach an error of 10% at a
vertical resolution of one kilometer. Temperature profiles can reach an
accuracy of one Kelvin (EUMETSAT, 2017). To facilitate the training of
our machine learning algorithms we matched each pixel with the
temperature and dew point temperature profiles estimated using the
European Center for Medium-Range Weather Forecasts (ECMWF)
model. The ECMWF model provides estimations for 137 different
pressure levels between [10 10 ]2 3 hPa in the atmosphere and spatial

resolution of 0.5 degrees.

2.2. Dimensionality reduction

Traditionally, dimensionality reduction is done by means of PCA, or
equivalently by means of Singular Value Decomposition (SVD) (Golub
and Van Loan, 1996). In this context, PCA compresses the total varia-
tion of the original variables (i.e. radiance) into fewer uncorrelated
variates termed ‘principal components’ which minimize the re-
construction error of the original variables. Alternatively, one could use
a different feature extraction method, for instance Independent Com-
ponent Analysis (ICA) (Hyvärinen et al., 2001) where the uncorrelated
and statistically independent variates maximize a measure of non-
Gaussianity such as negentropy in all original variables. Taking into
account the noise estimate when designing PCA for infrared sounders
has been shown to be important (Collard et al., 2010; EUMETSAT,
2017). In Malmgren-Hansen et al. (2017) we applied a minimum noise
fraction (MNF) transformation that simultaneously minimizes the noise
fraction or equivalently maximize the signal-to-noise ratio (given a
noise model) in all original variables and takes into account the in-
formation contained in the spatial neighbors. The noise is estimated as
the pixel-wise residual from a quadratic function fitted in a 3x3
window. It can be shown that the MNF variates can be considered as a
form of independent components, (Larsen, 2002). Fig. 2 shows a result
from Malmgren-Hansen et al. (2017) that compares MNF and PCA for
analysis at the pixel level ( ×1 1), as well as when local × ×3 3, 5 5, and

×7 7 neighbourhoods are used as input to a linear regression. It is seen
that the performance gain converges above 100 spectral components
even for increasing spatial sample sizes in the experiments. We have
chosen 125 spectral MNF components for the experiments presented
Section 3 based on the studies in Malmgren-Hansen et al. (2017),
Camps-Valls et al. (2012) as it was an optimal trade off between ac-
curacy and low number of components.

2.3. Regression models

In this work we use ordinary least squares (OLS) linear regression as
a benchmark method to compare the results using CNNs. This is chosen
out of consideration that it is a widely adopted and used model, not
only atmospheric parameter retrieval, but also in many other fields.
Further, we were able to implement a version of OLS that could be
trained on the same large scale dataset of up to 525,000 samples as we
used for the CNN, which enables direct comparison between the
models. With other popular regression models such as kernel methods
the memory consumption often makes sub-sampling of large scale da-
tasets necessary in order to run it in practice. The OLS model, here in its
simplest version, is for every sample, n, giving an estimate, tn, of a
target vector tn with K elements as,

= = +t f x Wx b( )n n n (1)

where xn is the n’th observation of size I input variables, W is a matrix
of coefficients and b the model intercept. In our regression I would
equal 125 decomposed spectral radiances times the number of local
neighbourhood pixels (e.g. × × =125 3 3 1125). Given all N observa-
tions, a closed form solution can be found to the minimization of the

Fig. 1. Pipeline schematic: IASI spectra are first reduced from the original 8461 spectral channels by selecting a subset of 4699 channels according to noise
specifications in Camps-Valls et al. (2012), which then pass through an MNF projection to reduce the dimensionality to 125 features. Subsequently, patch extraction
is performed with varying sizes. Finally, either a linear regression or a CNN is used for prediction of the atmospheric profiles sampled at 90 ver.tical positions.

Fig. 2. Mean RMSE error for linear regression as a function of number of
spectral components included, when predicting atmospheric temperatures. PCA
and MNF signal decompositions of spectral channels are compared.
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when we take the negative logarithm and remove additive and multi-
plicative constants, with fk being a single target of the 90 atmospheric
temperatures. Minimizing this error function is as well the most com-
monly used approach to regression with neural networks. Using the
nonlinear function y x W( ; )n in the minimization functional in Eq. (5)
gives rise to a non-convex problem which cannot be solved analytically
(Bishop, 2006). Typically gradient descent techniques are deployed
here to learn the network parameters collectively summarized in W.
Note that if linearity is kept in the last layer of the neural network, i.e.
no non-linear activation function is applied on the output, our model
can be written as,

= +y x W W g x W b( ; ) ( ; ) ,n L n L1,.., 1 (6)

and we see that the last layer, L, of the neural network is a linear re-
gression on a set of non-linear feature extractions from the previous
L 1 layers. When the first layers’ weight vectors W L1,.., 1 are given,
the last layer weights WL can be found with a closed form solution as
with the linear regression. This can be used to ensure the optimal set of
parameters for the last layer after CNN training (Bishop, 1995) or used
in a hybrid training algorithm as suggested in Webb and Lowe (1988).

The error in Eq. (5) corresponds to minimizing the variances of our
estimated target functions given that each K outputs are independent
and can be modelled with one global parameter for the variance,

= =
= =NK

y tx W f x t1 ( ( ; ) ) ( )err
n

N

k

K

k n k n n n
2

1 1
,

2 2

(7)

err
2 here refers to the variance in the prediction error which our ob-

jective is to minimize. The assumption of output variable independence
is not always true. In our case one could assume that nearby variables in
the vertical atmospheric profile will be correlated resulting in a more
complex likelihood function. For simplicity we will keep the assump-
tion of independence, but other approaches could be adopted in future
studies.

The purpose of comparing a linear model with a CNN for estimating
atmospheric temperatures is to study how the spatial information in the
data helps determining the optimal prediction model. In a linear model
we can model local input correlations by concatenating a neighbour-
hood of spectral pixel values when predicting the center pixel. In a CNN
all spatial content in the given input patch is mapped to a latent re-
presentation through a series of stacked convolutions, for which the
kernel coefficients are a part of the parameters we optimize. If, e.g. the
proximity of a coastline has a high influence on the target variable for
the IASI data, a kernel in the CNN can learn to represent this feature in
the latent representation, no matter where in the patch that the

coastline appears.
To find the optimal set of weights for the CNN we use an iterative

stochastic gradient descent (SGD) based update scheme. It is well
known that estimating the error for all training samples in each itera-
tion leads to slower convergence. For this reason a mini batch approach
is used for training deep learning models. This, though, leads to more
noisy estimates of the error function and methods to cope with this
stochastic noise have been proposed. We use the method called ADAM
(Kingma and Ba, 2014) with batch size equal to 128 samples and adopt
the suggested parameters for learning rate, etc. This method applies
exponential moving averages of the gradients and squared gradients
which are used to ensure a smooth convergence of the training. Since
our initial target state vector (temperatures, dew-point temperatures,
etc.) can have different variances across the atmosphere, one could
choose to normalize the target variables. This might lead to sig-
nificantly different solutions in an SGD based scheme, as opposed to
e.g. an SVD factorization of the ordinary least squares problem. The
fact that target values might change scale can have a big impact on
some SGD schemes since the gradient term scales as well. Unless ac-
counted for in the learning rate, this will change the convergence of a
solution. The ADAM scheme chosen for optimization in our experiments
is practically invariant to scaling of the gradients due to its update rule
based on first and second order moment vectors. These vectors impose
an individual stepsize for each parameter in the network during the
iterative parameter updates. In this work all CNN configurations were
trained for 400 epochs without an early stopping scheme that requires a
independent validation dataset. Neither, was extensive hyper-para-
meter tuning a part of this study which focuses on the retrieval with
spatial inclusion.

3. Experimental results

The goal of our experiments is to demonstrate the advantages of
CNNs for the retrieval of atmospheric variables from infrared sounders.
In particular, we will illustrate how the networks include spatial reg-
ularization in a natural way. This feature results in improved prediction
in the case of cloud coverage or noisy settings. Another advantage of
the method is that cross-relations between the different atmospheric
states are captured, so smoothness in the vertical profile is also
achieved. Finally, we explore a very interesting possibility of the net-
work to perform transfer learning, by which a network trained for ex-
ample for temperature profile estimation can be re-used for moisture
estimation with minor retraining.

3.1. Experimental setup

We will employ the data collected in 13 consecutive orbits within
the same day, 17-08-2013, by the IASI sensor. Each orbit consists of
approximately 92,000 samples. We use the first 7 orbits (which cover
most of the Earth) for training and the last 6 for testing (which also
cover most of the Earth). Fig. 3 shows the coverage of the two different
sets of data taken on the same day.

3.2. Models

In order to investigate different levels of spatial information, four
CNN models have been designed. Essential CNN features of the four
proposed models including the full architecture description of each
model is found in Table 1.

Our experiments consist of comparisons between CNN predictions
with an ordinary least squares (OLS) linear regression model. We de-
signed OLS models that also include spatial information from sur-
rounding measurements. The linear model defined according to Eq. (1)
can be extended to different spatial sample size by appending new
variables to the columns of the data matrix X that holds N data sample
vectors xn for = …n N0, , as rows. As the input dimensionality
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quadratically grows with increasing w, the size of the dataset limits the
spatial extend that can be included in the regression. We have therefore
limited the OLS regression to =w 15.

In particular, CNN A is trained on patches of =w 3. With a con-
volution kernel size, s, in the first layer of ×3 3 coefficients this results
in one valid convolution per patch. Practically this is equivalent to a
multi layer perceptron network with ×3 3 pixels concatenated as an
input vector. CNN A therefore does not learn detection of the presence
of nearby features in the same manner as the other CNN models, but we
include it in our experiments to compare directly with the OLS for small
patch sizes. In CNN B, C, D we keep s as ×3 3 filters, while letting the
patch size increase resulting in increased number of convolutions across
the patch, i.e. we model local correlations (features) across an entire
patch.

3.3. Retrieval performance and evaluation

In Table 2 the mean over the RMSE vertical profiles are given for
our regression models with different sizes of w with the corresponding
individual profiles shown in Fig. 4. In general, CNNs outperform linear
regression models. CNN performance can be further improved by re-
training the last layer once the regular training is done. According to
Eq. (6) we can find the last CNN layer weights with the OLS algorithm
when we fix the previous layers’ weights. In our experiments, this
procedure improved the CNN predictions with additionally 12–17% for
all CNN architectures. It should be noted that the OLS generally per-
forms worse than any CNN model except for at few very high altitudes.
This is likely a consequence of optimizing the CNNs on the sum of
squared errors over all altitudes. When optimizing over a sum of target
errors we look for the best average solution rather than the best in-
dividual solution.

Let us now analyze some key aspects of the proposed CNN models:
(1) the smoothness of the prediction profiles across space and vertical
dimensions, and (2) the transferability of the models to be re-used in
predicting other variables.

During a neural network optimization the average gradient of the
error function is back propagated to update the weights. In this way we
capture the best average solution to our regression. This is in contrast to
a linear model where each output is an independent model of the input.
In the case of atmospheric parameter retrieval where neighbouring
targets are spatially dependent, the average gradient or the non-

linearity in the CNN seems to smooth vertical predictions as well. Fig. 5
shows 4 transects of the mean error for a given path in an orbit of data.
It can be seen that the linear model can obtain spatial smooth (hor-
izontally) predictions by increasing the input patch size. The CNN en-
sures a smooth error profile both in the vertical and horizontal direc-
tions of the transect. The estimated cloud fraction is marked on each
pixel of our dataset and can be seen as the white dashed line in Fig. 5.
Though higher errors are generally expected in cloudy areas it seems
that the correlation between the cloud fraction and the error are weak.
We shall explore this further.

The water vapor profiles are often of interest as well for NWP
models and so the prediction performance of these profiles is relevant
too. Fig. 6 shows the profiles for the CNN and OLS models on 15x15
neighborhood pixel samples. Generally it is a harder problem to predict
water vapor profiles and hence we see a higher error here than for
atmospheric temperatures. The mean RMSE for the CNN profile is
3.34 K and 4.21 K for the OLS model.

3.3.1. Predictions over clouds
Predictions are inherently disturbed by strong attenuation or mixing

of radiometric contributions from a large number of sources. It is
commonly known that the presence of clouds attenuate the signal and
hamper retrieval of parameters. Some approaches to temperature pre-
diction typically act on cloud-free marked pixels only to be confident on
the obtained predictions. Cloud masks can to some extent be estimated
from optical sensors, but different approaches to generating cloud
masks can have high influence on the final result. Since we are pre-
dicting the center pixel profile from a neighbourhood of pixels one
could filter patches based on the amount of clouds. Nevertheless, in the
results shown here, no such pre-filtering was performed, but CNNs
figure out how to exploit the (possibly less cloudy) neighbouring ra-
diances. Fig. 7 shows the error of a CNN on pixels with less than 50%
clouds and pixels with more than 50% clouds. The cloud mask contains
mostly 0% and 100% cloud fractions. For linear regression the differ-
ence between predicting over clouds or in cloud free areas is clear,
around an increment of one degree of the error in lower atmospheric
layers. In the case of CNNs this difference is less noticeable, around 0.25
degrees in the same area. An important thing to stress is that the CNNs
model obtains less prediction error over cloudy areas than the linear
model does over cloud free areas.

Fig. 3. Example of how we split the data: training (left) and test (right). Figures show surface temperatures for different orbits.
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3.3.2. Predictions over land
Prediction over land is typically more challenging than over ocean,

mainly due to the more varying conditions, landscape and land cover,
and changes in bodies’ emissivities. We aimed to study the performance
of algorithms as a function of the land cover per pixel. Fig. 8 shows the

error in predictions from a linear model and a CNN with ×15 15 pixel
input patch size, conditioned on the land fraction. The land fraction
mask contains mostly 0% or 100% values, but some coastal areas are
given as intermediate values due to the resolution cell covering both
land and sea. On the other hand, the land fraction has a high influence
on the predictions, and continues to be a challenge for precise predic-
tions of atmospheric temperature profiles.

3.4. Transfer learning

The concept of transfer learning within deep learning has proven
useful for a range of computer vision tasks. Deep CNNs trained on large
databases of natural images can be transferred to smaller datasets for
specific applications with high end performance.

There are two overall different approaches to transfer learning. One,
as in Yosinski et al. (2014), where the training of a Network is repeated
on a new dataset but starting with the weights found solving the first

Table 1
Table of CNN architectures. B.R.D. is a concatenation of 3 layers, Batch Normalization, Rectified Linear Unit activation layer and Dropout. Dropout is performed with
a probability =p 0.5 in all cases. The parameter column denote (number of channels in previous layer) x (filters in this layer) x (filter height) x (filter width).

CNN A CNN B

Type Parameters Output Type Parameters Output

Input – 125 × 3 × 3 Input – 125 × 10 × 10
Conv 125 × 60 × 3 × 3 + 60 60 × 1 × 1 Conv 125 × 60 × 3 × 3 + 60 60 × 10 × 10
B.R.D. 4 × 60 60 × 1 × 1 Conv 60 × 60 × 3 × 3 + 60 60 × 10 × 10
Conv 60 × 120 × 1 × 1 + 120 120 × 1 × 1 Pool – 60 × 5 × 5
B.R.D. 4 × 120 120 × 1 × 1 B.R.D. 4 × 60 60 × 5 × 5
Conv 120 × 240 × 1 × 1 + 240 240 × 1 × 1 Conv 60 × 120 × 3 × 3 + 120 120 × 5 × 5
B.R.D. 4 × 240 240 × 1 × 1 Conv 120 × 120 × 3 × 3 + 120 120 × 3 × 3
Conv 240 × 90 × 1 × 1 + 90 90 × 1 × 1 Pool – 120 × 1 × 1

B.R.D. 4 × 120 120 × 1 × 1
Conv 120 × 240 × 1 × 1 + 240 240 × 1 × 1
B.R.D. 4 × 240 240 × 1 × 1
Conv 240 × 90 × 1 × 1 + 90 90 × 1 × 1

Network CNN A CNN B

Number of parameters 127,290 347,070
Output dimension 90
Optimizer ADAM (Kingma and Ba, 2014)
Approx. Training time 4 h 11 h
GPU Core Utilization 62% 82%
# train. samples 524,552 460,887
Mean test RMSE [K] 2.48 2.43

CNN C CNN D

Type Parameters Output Type Parameters Output

Input – 125 × 15 × 15 Input – 125 × 25 × 25
Conv 125 × 100 × 3 × 3 + 100 100 × 15 × 15 Conv 125 × 100 × 3 × 3 + 100 100 × 23 × 23
Conv 100 × 100 × 3 × 3 + 100 100 × 13 × 13 Conv 100 × 100 × 3 × 3 + 100 100 × 21 × 21
Pool – 100 × 6 × 6 Pool – 100 × 10 × 10
B.R.D. 4 × 100 100 × 6 × 6 B.R.D. 4 × 100 100 × 10 × 10
Conv 100 × 160 × 3 × 3 + 160 160 × 4 × 4 Conv 100 × 160 × 3 × 3 + 160 160 × 8 × 8
Conv 160 × 160 × 3 × 3 + 160 160 × 2 × 2 Conv 160 × 160 × 3 × 3 + 160 160 × 6 × 6
Pool – 160 × 1 × 1 Pool – 160 × 3 × 3
B.R.D. 4 × 160 160 × 1 × 1 B.R.D. 4 × 160 160 × 3 × 3
Conv 160 × 240 × 1 × 1 + 240 240 × 1 × 1 Conv 160 × 200 × 3 × 3 + 200 200 × 1 × 1
B.R.D. 4 × 240 240 × 1 × 1 B.R.D. 4 × 200 200 × 1 × 1
Conv 240 × 90 × 1 × 1 + 90 90 × 1 × 1 Conv 200 × 240 × 1 × 1 + 240 240 × 1 × 1

B.R.D. 4 × 240 240 × 1 × 1
Conv 240 × 90 × 1 × 1 + 90 90 × 1 × 1

Network CNN C CNN D

Number of parameters 639,750 938,350
Output dimension 90
Optimizer ADAM (Kingma and Ba, 2014)
Approx. Training time 18 h 36 h
GPU Core Utilization 80% 85%
# train. samples 415,472 324,792
Mean test RMSE [K] 2.19 2.28

Table 2
Summary of the mean RMSE (across the atmosphere profile) on temperature
prediction. Each row represents a different model and each column is the effect
of chaning the patch size. The CNN + Opt. row is the same network as the first
but where the last layer is optimized with the closed form least square solution
after training.

Patch Size 1 × 1 3 × 3 5 × 5 7 × 7 10 × 10 15 × 15 25 × 25

CNN – 2.48 – – 2.43 2.20 2.28
CNN+Opt. – 2.11 – – 2.01 1.94 2.01
OLS 3.30 3.00 2.91 2.86 2.84 2.85 –
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Fig. 4. RMSE error profiles of model prediction for both CNNs (left) and linear models (right) at different input spatial patch sizes. The CNN generally outperform
OLS regression except at very high altitudes. The temperatures at lower altitudes (> 200 hPa) are the most important for meteorological models.

Fig. 5. Top plot shows the target temperature along a transect profile, lower four plots shows the transect profile of the prediction error from different regression
models. White dashed line is the cloud fraction, i.e. the percentage on cloud each input sample is marked with. The y-axis is the altitude pressure level.
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problem. The second is to consider a part of the network a feature ex-
tractor and access the latent representation learned from one dataset
and classifier to solve a problem on a second related dataset (Sharif
Razavian et al., 2014).

The purpose of exploring transfer learning in our setup is not to
unveil whether cross domain features can be learned. Instead, we ex-
plore the ability of a model trained to predict atmospheric temperature
profiles to be transferred to other output variables, such as moisture
profiles. Possible benefits are shorter training time, as well as higher
accuracy.

Fig. 9 shows faster training convergence on predicting dew point
temperatures when considering initialization of a CNN with either
weights from a network trained on atmospheric temperatures or a
standard random initialization for training from scratch. The figure
shows that the performance reached by CNN initialized from random

weights can be reached in less than around 1
8

(50 epochs instead of 400)
of the training time if the weights are transferred from a model trained
for another output variable.

Considering a model trained on atmospheric temperatures, a feature
extractor for a linear regression to predict dewpoint temperatures can
as well be done, and this approach is conceptually closer to the one
proposed in Sharif Razavian et al. (2014). RMSE profiles from the
transfer learning experiments are shown in Fig. 10.

The red and blue profiles in Fig. 10 show that we reach the same
performance whether we start with a model trained on atmospheric
temperatures or random weights, when predicting dewpoint tempera-
tures. This is not surprising since it is the same dataset we fit the models
on, all we change is the response variable. When considering the second
transfer learning approach where a CNN trained on temperature pre-
diction is used as a feature extractor with a linear regression to predict
dewpoint we reach a less optimal solution. The grey profile in Fig. 10
shows the second transfer learning approach and training a linear re-
gression directly on the input radiance is shown as the purple profile. At
low altitudes we get better accuracy than the shallow linear regression
model (> 1° RMSE terms). At higher altitudes though, the second
transfer learning approach does it worse. Fine tuning for a specific
output variable is necessary in order to achieve good predictions. The
high RMSE at mid range altitudes is caused by the frequent presence of
clouds in this range, i.e. higher absolute dew point values.

4. Conclusion and discussion

We present for the first time the use of deep convolutional neural
networks for the retrieval of atmospheric profiles from infrared
sounding data, particularly for IASI data. The proposed scheme per-
forms multidimensional output nonlinear regression, accounts for noise
features, and exploits correlations in all dimensions. Good experimental
results were obtained compared widely adopted OLS approaches de-
spite also adapting neighbourhood pixel in OLS regression. Networks
were trained on full orbits and tested out of sample with great accuracy.
We also observed a huge benefit in accuracy when predicting over
clouds, increasing the yield by 34% over linear regression. The pro-
posed scheme is modular and allows us to predict related variables from
an already trained model. We also illustrated this by exploiting the
learned network to predict temperature profile and retraining it to fit
moisture (dew point temperature) profiles. Good results were obtained

Fig. 6. Water vapor atmospheric profiles for the best performing CNN and
Linear model versions. Unit is dew point temperature in Kelvin.

Fig. 7. RMSE profile when testing on cloudy samples (CF > 0.5) versus samples marked cloud free (CF < 0.5).
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too, which demonstrates that the learned features by the network im-
pose a sort of spatial and vertical smoothness that can be exploited for
other state variables that share these features, such as some trace gases
as well. We conclude that a deep network is an appropriate learning
paradigm for statistical retrieval of atmospheric profiles.

There are several aspects of the modeling to explore in the future to
improve the statistical retrieval. It would be relevant to explore model
architectures that directly model the output correlations. This could be
done with the neural network by including the joint probabilities be-
tween neighbouring targets at the expense of a more complicated error
function. Alternatively one can predict the difference between neigh-
bouring target variables rather that their value and, in this way, in-
corporate neighbourhood correlation in the targets. We have shown
that there is a high potential for models that incorporate feature ex-
tracting abilities as well as capabilities of modeling non-linear phe-
nomena in statistical retrieval. Exploring a greater variety of di-
mensionality reduction techniques, such as the spatio-spectral
supervised technique presented in Huang et al. (2019), or incorporating
it into the CNN architecture is also an area to further explore. Finding
optimal architectures for CNNs remains an open task in the deep
learning literature, and due to the non-convexity of the problem,

experiments are the only way to find optimal models. In this work, a
few architectures have been explored but a larger analysis of this is
highly relevant for the application. Further, results in this work were
performed on a single day dataset, and larger datasets that capture
more variances, such as (monthly, yearly) temporal variations are
needed regardless of the chosen method. Recent alternatives on effi-
cient training of convolutional nets could relieve the induced com-
plexity (Giusti et al., 2013; Sermanet et al., 2013; Kampffmeyer et al.,
2016). Further work could also includes deeper comparison of the re-
sults with other methods and radiosonde measurements as in Jiménez-
Muñoz et al. (2010), Sobrino et al. (2015), Zhang et al. (2015), Julien
et al. (2015) to get a better measure of in-application performance.

Fig. 8. RMSE profiles when predicting temperature profiles over land (LF > 0.5) and over sea (LF < 0.5).

Fig. 9. Test error convergence during training for dewpoint temperature pre-
diction. Blue curve is a CNN initialized with random weights and the red is a
CNN initialized with the weights for a model that predicts air temperatures.
Both models converge to a mean RMSE error of 3.34 K after 400 epochs. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. Dew point temperature RMSE profiles of transfer learning regression
models. The features learned on temperatures are poor for dewpoint prediction
(grey profile) unless fine tuned (red profile). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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