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1. INTRODUCTION

An important task in remote sensing Earth observation involves the
detection of changes which may signal for example environmentally
significant events. The Sentinel-1 synthetic aperture radar (SAR) and
the Sentinel-2 as well as the Landsat optical/visible-infrared space-
borne platforms, with spatial resolutions of the order of 10-20-30 me-
ters and revisit times of the order of days, provide an attractive source
of data for change detection tasks. Specifically, the SAR imagery pro-
vide complete independence from solar illumination and cloud cover.
A convenient source of such data is the Google Earth Engine which
gives near real time data access and which has an application pro-
gramming interface for the access and for processing the data. Here
we make available open-source automatic change detection software
and for optical data also automatic radiometric normalization soft-
ware for both cloud and local processing.

The theory sections of this contribution are very similar (nearly
identical) to sections in [1]. In this contribution, we exclude exam-
ples on radiometric normalization and include new developments in
both stand-alone and cloud software implementation and we give new
examples.

2. CHANGE DETECTION IN SAR DATA

In [2] a change detection procedure for multi-look polarimetric SAR
data [3] is described involving a test statistic (and its factorization) for
the equality of polarimetric covariance matrices following the com-
plex Wishart distribution. The procedure is capable of determining,
on a per-pixel basis, if and when a change at any prescribed signifi-
cance level has occurred in a time series of SAR images. The proce-
dure may also be applied to collections of pixels (segments, patches,
fields). Single polarization (power data, dimensionality p = 1), dual
polarization (for example vertically polarized transmission, vertical
and horizontal reception, p = 2) and full or quad polarization (all
four combinations of vertical and horizontal transmission/reception,
p = 3) can be analyzed.

The term multi-look in SAR imagery refers to the number of in-
dependent pixels (termed the equivalent number of looks, ENL) of a
surface area that have been averaged in order to reduce the effect of
speckle, a noise-like consequence of the coherent nature of the signal
transmitted from the sensor. The observed signals in the covariance
representation, when multiplied by the equivalent number of looks,
are complex Wishart distributed. This distribution is the multivariate
complex analogue of the well-known chi squared distribution.

The complex Wishart distribution is completely determined by
the parameters p (dimensionality), ENL, and 3 (the variance-covari-
ance matrix). Given two observations of the same area at different
times, one can set up a hypothesis test in order to decide whether or
not a change has occurred between the two acquisitions. The null
hypothesis, Hy, is that 3; = 3o, i.e., the two observations were
sampled from the same distribution and no change has occurred, and
the alternative (change) hypothesis, Hi, is 31 # 3. Since the dis-
tributions are known, a likelihood ratio test can be formulated which
allows one to decide to a desired degree of significance whether or not
to reject the null hypothesis. Acceptance or rejection is based on the
test’s p-value, which in turn may be derived from the (approximately
known) distribution of the test statistic when 3; = 35 (“under Ho”
in statistical parlance).

For analysis of the situation with data from two time points, k =
2 below, see [4, 5, 6, 7]. In [8] the authors describe bi-temporal
region-based change detection for polarimetric SAR images by means
of mixtures of Wishart distributions.

If we have data from more than two time points, k > 2, the
procedure sketched can be generalized to test a hypothesis that all of
the k pixels (or patches) are characterized by the same 32,

Hoy:Shi=3=-=(=3)

against the alternative (H1) that at least one of the 3;,¢ = 1,...,k,
is different, i.e., that at least one change has taken place.

For the logarithm of the omnibus likelihood ratio test statistic @
for testing Ho against H; we have, see [2]

k
InQ = ni{pklnk+>» In|X,—kIn|X|}.
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Here n is ENL, the X; = n3; (i.e., ENL times the observed covari-
ance matrix) follow the complex Wishart distribution, X ; ~ We(p,
n,%;),and X = 3% X; ~ We(p,nk, ). Also, if the hypothe-
sis is true, 3 = X /(kn). Q € [0, 1] with Q = 1 for equality.

The probability of finding a smaller value of —21n @) is approx-
imated by (z = —21Ing, where g is the actually observed value of

@)

P{—2mmQ <z} ~ P{*((k-1)f) <z},

i.e., the probability of change at some time point. f = 9 for quad pol,
f = 4 for dual pol, f = 2 for dual pol diagonal only.

Furthermore this test can be factored into a sequence of tests
involving hypotheses of the form 3; = 3, against 3; # 3o,
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3 = 3y = 33 against ¥; = ¥y # X3, and so forth. More
specifically, to test whether the first 1 < j < k complex variance-
covariance matrices 3J; are equal, i.e., given that

S ===
then the likelihood ratio test statistic R; for testing the hypothesis
Hy ;X =3, against Hy; : X, # 3
is given by, see [2]
n{p(jInj - (j — 1) n(j - 1))

Jj—1 J
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i=1 i=1

In Rj =

Finally, the R; constitute a factorization of ) such that Q = ]_[f:2 R;
or

In@Q =

k
> InR;.
j=2

The probability of finding a smaller value of —21n R; is approx-
imated by (z; = —21Inr;, where 7; is the actually observed value of
Rj)

P{—2InR; <z} =~ P{(f) <z},
i.e., the probability of change at time point 5 with no previous change.

The tests are statistically independent under the null hypothesis.
In the event of rejection of the null hypothesis at some point in the test
sequence, the procedure is restarted from that point, so that multiple
changes within the time series can be identified. For details includ-
ing better approximations to the distributions of () and R; under the
null hypotheses, see [2], visualization of change, and (some of) the
software developed, see [9].

Since the omnibus method can detect not only if changes oc-
cur but also, within the temporal resolution of an image sequence,
when they occur, long time series of frequent acquisitions over rel-
evant sites are of special interest. One convenient source of such
data is the Google Earth Engine1 (GEE) [10] which ingests Sentinel-1
data (C-band, multi-looked VV/VH or HH/HV) as soon as they are
made available by the European Space Agency (ESA) and provides
an easy-to-use application programming interface (API) for accessing
and processing the data.

3. CHANGE DETECTION AND RADIOMETRIC
NORMALIZATION IN OPTICAL DATA

With respect to optical/visible-infrared imagery, a data-driven, sta-
tistical approach to change detection is provided by the iteratively
reweighted multivariate alteration detection IR-MAD) algorithm [11,
5]. This method applies iterated canonical correlation analysis (CCA)
to geometrically co-registered multispectral images from two time
points before calculating band-wise differences. The CCA orders the
image bands according to similarity (measured by correlation), rather
than spectral wavelength. The differences between corresponding
pairs of canonical variates are termed the MAD variates. Specifically,
a MAD variate Z is

Z = adTX-b"Y

Uhttps://earthengine.google.com/ and https://developers.google.com/earth-
engine/

where X represents the m-dimensional image at time point 1, Y
represents the m-dimensional image at time point 2, and a and b are
the eigenvectors from the CCA. Thus a” X is a canonical variate for
time point 1 and Y is a canonical variate for time point 2. We
have m uncorrelated canonical variates (CVs) with mean value zero
and variance one from both time points, the correlation between cor-
responding pairs of CVs is p (termed the canonical correlation which
is maximized in CCA), and we have m uncorrelated MAD variates
with mean value zero and variance 2(1 — p).

In each iteration the values of each image pixel j are weighted by
one minus the current estimate of the change probability and the im-
age statistics (mean and covariance matrices) are re-sampled. Since
the MAD variates for the no-change observations are approximately
Gaussian and uncorrelated, the sum of their squared values (after nor-
malization to unit variance)

m

2 7z}
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i=1

ideally follows a chi squared distribution with m degrees of freedom,
C? ~ x%(m). The probability of finding a smaller value of C? is
approximated by (c? is the actually observed value of C?)

P{C* <’} ~ P{x*(m)<c}.

Small P-values favour rejection of the no-change hypothesis, so
for each iteration, 1 — P{x?(m) < ¢} is used to weight each pixel
to gradually reduce the influence of the change observations on the
MAD transformation. Iterations continue until the canonical correla-
tions stop changing (or a maximum number of iterations is reached).

Furthermore, canonical correlation analysis is invariant to linear
and affine transformations, a fact that can be used to perform auto-
matic relative radiometric normalization of the two multispectral im-
ages [12, 1]. This is not pursued further here.

4. SOFTWARE

The authors have made available the necessary change detection soft-
ware for interaction with the GEE on the open-source repository Git-
hub?. The client-side programs run in a local Docker container serv-
ing a simple Flask web application. Apart from the Docker engine®
and a browser, no software installation is required whatsoever. Af-
ter the user has been authenticated to the Earth Engine, he or she
can carry out the following tasks: 1) run the IR-MAD algorithm on
Sentinel-2 (or Landsat) bi-temporal imagery, 2) perform relative ra-
diometric normalization in batch mode on an image sequence, 3) run
the sequential omnibus algorithm on Sentinel-1 dual polarization im-
age time series, 4) export imagery to his or her Earth Engine assets
folder or to Google Drive for further processing or visualization.

JavaScript code* to run both the Wishart omnibus and the IR-
MAD methods directly in the GEE code editor/playground is also
available. The Wishart omnibus code also generates an MP4 movie
showing where and when change occurred.

As a recent development, a Docker-based interface to the GEE
for the Wishart omnibus algorithm is made available.® It talks to the
GEE servers from a Jupyter notebook and is more flexible than the

2 https://github.com/mortcanty/earthengine/

3 https://docs.docker.com/

4 http:/fwenvi-idl.blogspot.de/

3 http://fwenvi-idl.blogspot.com/2018/07/jupyter-notebook-interface-
for.html
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Fig. 1. Sequential omnibus change map for a region in southern Puerto Rico, showing the time of the most recent change (black none, blue
early, red late). The time series consisted of 19 Sentinel-1 images from April to October 2017. Hurricane Maria struck on 20 September.
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Fig. 2. Fraction of changed pixels in the south-eastern part of the
change image shown in Figure 1. The peak occurs for the interval
ending 22 September 2017, hurricane Maria struck on 20 September.

web interface, since the user is in a universal interactive Python pro-
gramming environment.

Software is available also for local processing,® see [9]. Tutorials
on how to install software and to do both the polarimetric SAR and

6 https://people.compute.dtu.dk/alan/software html

the optical data processing locally on your own hardware are available
on Github.”>® As another recent development, computer implementa-
tion work has been done within the Horizon 2020 project DataBio’
DLV-732064 funded by the European Union (command-line and GUI
executables'® for Windows and Linux based on our Matlab code and
on extended code from [13], a version for small images which fit into
memory and a line-by-line version for big data exist), see proceedings
from this meeting (first author Behnaz Pirzamanbein).

5. EXAMPLES

To illustrate, the Sentinel-1 multi-temporal VV/VH based change map
in Figure 1 displays the color-coded time intervals in which the most
recent changes in the 2017 hurricane Maria catastrophe in Puerto Rico
occurred. Figure 2 shows the fraction of changed pixels which peaks
in the interval ending on 22 September 2017. Maria made landfall in
Puerto Rico on 20 September 2017. The change maps can be viewed
interactively in the GEE Code Editor."!

Changes in one of several wildfires (the so-called Tubbs Fire'?
which took place on 9-30 October 2017 between Calistoga and Santa

7 https://mortcanty.github.io/src/tutorialsar.html

8 https://mortcanty.github.io/src/tutorial html

9 https://www.databio.eu/
10 https://github.com/BehnazP/DataBio/
https://code.earthengine.google.com/9374d69f4b0e3c1 1a7al4a958 1£858d0
12 https://en.wikipedia.org/wiki/Tubbs_Fire
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Fig. 3. The Tubbs Fire north of Santa Rosa, California, October
2017 (top-left; the bottom-right shows part of a larger fire around
Kenwood). IR-MAD change variates associated with three greatest
canonical correlations shown as RGB, burned areas in dark green
(built-up areas), lighter green (mostly wooded) and bright yellow
(mostly non-wooded), other non-fire related change mostly in blue
(for example near Calistoga), and pale yellow (south of Santa Rosa).
All variates are stretched over 16 no-change standard deviations.

Rosa and in which nearly 150 km? burned) in the northern California
wine areas Napa Valley and Sonoma Valley are detected. The burned
areas depicted in green (built-up and wooded areas) and bright yellow
(non-wooded areas) in Figure 3 (where another fire down towards
Kenwood is visible also) match well with published fire maps.'*'*
The Sentinel-2 images were acquired on 5 October and 1 November
(bracketing the fire), only the four 10 m bands 2, 3, 4 and 8 were
analyzed.

6. CONCLUSIONS

Examples based on both Sentinel-1 dual polarization synthetic aper-
ture radar data and Sentinel-2 optical data show the usefulness of the
generic, automatic change detection techniques sketched. Note, that
for the optical change detection method, because of the orthogonality

13 http://abc Tnews.com/maps-a-look-at-each-north-bay-fire/2517694/
14 http://fire.ca.gov/

between the change variates, different types of change can be discrim-
inated between.

The introduction of software for automated change analysis with
polarimetric SAR as well as optical image data available to run ei-
ther on your own hardware or to anyone authenticated to run on the
Google Earth Engine is expected to be extremely useful to both re-
searchers and practitioners. Generic, automatic techniques as these
are expected to be useful in many other application areas also (other
than natural disasters) where the study of spatio-temporal dynamics
is important.
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