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ABSTRACT

Canonical correlation analysis (CCA) maximizes the correlation between two sets of multivariate data.

CCA is applied to multivariate satellite data and univariate radar data to produce a subspace descriptive

of heavily precipitating clouds. A misalignment, inherent to the nature of the two datasets, was observed,

corrupting the subspace. A method for aligning the two datasets is proposed to overcome this issue and

render a useful subspace projection. The observed corruption of the subspace gives rise to the hypothesis that

the optimal correspondence between a heavily precipitating cloud in the radar data and the associated cloud

top registered in the satellite data is found by a scale, rotation, and translation invariant transformation

together with a temporal displacement. The method starts by determining a conformal transformation of the

radar data at the time of maximum precipitation for optimal correspondence with the satellite data at the

same time. This optimization is repeated for an increasing temporal lag until no further improvement can be

found. The method is applied to three meteorological events that caused heavy precipitation in Denmark.

The three cases are analyzed with and without using the proposed method. In all cases, the use of prealign-

ment shows significant improvements in the descriptive capabilities of the subspaces, thus supporting the

posed hypothesis.

1. Introduction

Having two multivariate datasets describing different

characteristics of the same scene often poses the ques-

tion of how to use the two sets in a joint analysis. The

combination of several sources of image data is tractable

for a variety of applications, for example, sharpening of

images, substitution of missing data, segmentation, and

change detection. A review of existing methods for the

fusion of multisource imagery is given by Schowengerdt

(2007). We consider here the challenges of determining

a suitable subspace projection of the original variables

for the purpose of image fusion.

The best choice of subspace depends very much on

the data and the application. For a single set of vari-

ables, the methods range from well-known linear

transformations (Jolliffe 2002; Green et al. 1988) over

nonorthogonal subspaces (Bell and Sejnowski 1995) to

highly nonlinear (kernel) methods (Schölkopf et al.

1998; Nielsen 2011; Breiman and Friedman 1985).

However, data fusion is inherently a task involving

multiple datasets and the question is how desirable

properties can be extracted by simultaneous use of

these data. Canonical correlation analysis (CCA) an-

swers this by maximizing the correlation between pro-

jections of the two datasets (Hotelling 1936). However, if

for some reason, the two datasets are not well aligned

(geometrically, temporally, or otherwise), the subspace

projection produced by CCA is corrupted. Such a mis-

alignment was observed in several cases between

weather radar imagery and satellite imagery and a statis-

tically based method correcting for this misalignment is

proposed.

While describing the same physical scene, the radar

imagery contains reflectance of water droplets and the

satellite imagery describes reflectance of the cloud tops,

for different wavelengths of electromagnetic radiation.
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Hence, two different characteristics of the same physical

scene are available.

The expected benefit of fusing weather radar and

satellite data by use of CCA is to determine a subspace

projection maximizing the correlation between the two

datasets, whereby accentuating the cloud tops visible in

the optical satellite data causing heavy rain. To ensure

that the emphasis is on heavy rain, the analysis includes

only the area of an isolated powerful squall.

Initial experiments revealed inconsistent subspaces

and low correlations when using CCA to maximize

correlations between radar data at time t0 and satellite

data at the same time. The observed misalignment is

probably due to the different points of view of the two

sensors; that is, the radar is situated on the ground, ob-

serving precipitation as it occurs below the cloud base,

whereas the satellite is in a geostationary orbit and

registering cloud tops. Furthermore, cloud tops of

heavily precipitating clouds often have a larger spatial

extent, due to the forming of an anvil, causing a lack of

correspondence and further corrupting the produced

subspace.

Therefore, a hypothesis emerged that the observed

squall at time t0 has greater correspondence with a sim-

ilar phenomenon in the satellite data at time ti, i # 0.

This can be of importance when using satellite data as

part of a nowcasting system. It was further hypothesized

that the observed phenomenon in the two data sources is

related by a geometric transformation.

The relations included in the hypothesis are rooted in

the underlying physical situation. The geometric trans-

formation allows for 1) stretching to account for the

formation of an anvil and outflow and 2) rotation and

translation to adjust for the nonuniform airflow in the

embedded clouds and any misalignments due to the two

sensors’ different viewpoints. When heavy convection

results in an anvil, the precipitating clouds are concealed

from the satellite; wherefore, a time shift is included in

the model to properly relate the images through the

changes.

The method presented investigates—and verifies—

this hypothesis and determines the temporal displace-

ment and the optimal geometric transformation of the

convective area in order to produce a subspace de-

scriptive of heavy precipitation events. The benefits of

an improved subspace are, for example, an easier seg-

mentation of these types of clouds or a more compact (a

single component) representation of the satellite data,

which will be highly correlated with the information

provided by the radar data.

This relies on the availability of radar imagery at time

t0, where a spatially isolated, heavy precipitation event is

known to occur. The flow of the method is to move back

in time through a discrete time series of satellite imagery,

in each time step finding the geometric transformation

T (i) of the area of interest that maximizes the corre-

spondence with the satellite imagery at time ti, i# 0, until

further temporal displacement results in a decrease in the

correspondence.

The cases analyzed are presented in section 2 together

with a description of the available data sources. The

method proposed is presented in detail in section 3 and

an evaluation of the results is given in section 4.

2. Data

Three scenarios of extreme weather in Denmark are

analyzed, all categorized by a meteorologist as thun-

derstorms in warm air masses and producing heavy

precipitation. The three cases are treated and catego-

rized in relation to Danish weather standards; thus, the

extremity of the downpour should be seen in relation to

this geographical region. A brief summary of each sce-

nario will be given.

(i) 16 July 2007

A heavy rainfall hit Jutland during the night of

16–17 June, where thunderstorms developed in ad-

vance of a cold front moving in from the southwest.

Downpour intensities above 50 mm h21 were re-

corded with lightning frequencies of up to 50 flashes

per minute.

(ii) 11 August 2007

Warm and moist air over the eastern part of

Denmark and southern Sweden developed into

thunderstorms with downpour intensities of up to

60 mm h21. Locally, cloudbursts of 2-h duration

were reported, causing flooded roads in several

locations.

(iii) 20 August 2007

A multicell convective system developed in the

warm moist air coming from northern Germany

and maturing over southwestern Denmark. Ex-

treme downpour intensities of approximately

53 mm in only 10 min were recorded, causing

damage to roads and train tracks, as well as local

flooding. The extremity of this scenario brought

the meteorological synoptic situation under scru-

tiny (Nielsen 2008).

For each scenario treated, the two data sources are

separate time series of satellite data and radar data, re-

spectively. The two time series have the same temporal

extents, but not the same sampling frequencies. The

specific properties and origin of the data sources are

given below.
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a. Satellite data

Multispectral image data from the Second Meteosat

SecondGeneration (MSG-2, renamedMeteosat-9) weather

satellite, launched in December 2005, are made available

by the Danish Meteorological Institute (DMI). The Spin-

ning Enhanced Visible and Infrared Imager (SEVIRI)

on boardMSG-2 has a spatial resolution of 3 km at nadir

and a temporal resolution of 15 min. Twelve spectral

channels (three VIS, one near-IR, and eight IR) are

available with characteristics shown in Table 1. The re-

flectance has an interpretation as brightness temperatures

(Müller 2010). The spatial resolution for latitudes corre-

sponding to Denmark is increased to 6–8 km3 4 km, due

to the satellite’s perspective from the geostationary orbit.

Only the eight infrared channels are used here, as two

of the three analyzed weather systems occur at night-

time, rendering the visible and near-IR wavelengths

useless.

b. Radar data

The radar imagery provided byDMI is a fusion of data

from the institute’s five operational weather radars in

Denmark. The images have a ground sampling distance

of 1 km and a temporal resolution of 10 min. It was found

that an accumulation of the radar reflectance eased the

task of identifying the convective area of interest; hence,

the reflectance values referred to are actually the total

reflectivity in each pixel within 630 min of the sampling

time; that is, the value of a given pixel in the radar im-

agery at time ti is given as

dBZi 5 103 log10

 
�
i13

j5i23

zj

1mm6 m23

!
, (1)

where zi is the radar reflectivity at time ti. This accu-

mulation makes the spatially isolated cloud easier to

segment.

Prior to any analysis, the two data sources are pro-

jected to a common grid covering Denmark of size

400 3 500 pixels, where each pixel corresponds to

2 km 3 2 km. Hence, a pixel-to-pixel correspondence is

established.

A prerequisite for the following methodology is

identification of a point in time of maximum pre-

cipitation. This time will be denoted as t0 and will be

used as a starting point for the algorithm.

3. Method

The multispectral satellite data will be considered as

a set of p 5 8 stochastic random variables and arranged

in a matrix X 2 R
N3p. The radar data are considered as

a single stochastic variable, that is, univariate, and ar-

ranged in a vector y 2 R
N:

X5

2
666664

xT1

xT2

..

.

xTp

3
777775

T

5

2
6664
x11 . . . x1p

..

.
⋱ ..

.

xN1 . . . xNp

3
7775, y5

2
6666664

y1

y2

..

.

yN

3
7777775
. (2)

A superscript will be added to the notation to indicate

the time when the satellite data were relevant; that is,

X(i) is then the satellite data matrix at time ti. As only

radar reflectance of a single squall at time t0—and

transformations of this—are used, this notation is not

introduced for the radar data. Here, N is the number of

pixels considered in the analysis and will be introduced

later when examining the images.

a. Canonical correlation analysis

CCA is a method for analyzing the relations between

two sets of variables. It was first introduced by Hotelling

(1936) and is described in most textbooks on multivariate

statistical analysis (see, e.g., Anderson 1984; Wackernagel

1995).

CCA maximizes the correlation r between linear

combinations of two sets of variables (e.g.,X2R
N3p and

Y 2 R
N3q):

r5 corr(Xa,Yb)5
aTS12bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aTS11a
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bTS22b
q , (3)

where S11 and S22 are the dispersion matrices of X and

Y, respectively, andS12 is the covariancematrix ofX and

TABLE 1. Characteristics of channels in the multispectral satellite

dataset from SEVIRI. [Table from Schmetz et al. (2002).]

Channel No.

Characteristics of

spectral band (mm)
Main gaseous

absorber

or windowlcen lmin lmax

1 VIS0.6 0.635 0.56 0.71 Window

2 VIS0.8 0.81 0.74 0.88 Window

3 NIR1.6 1.64 1.50 1.78 Window

4 IR3.9 3.90 3.48 4.36 Window

5 WV6.2 6.25 5.35 7.15 Water vapor

6 WV7.3 7.35 6.85 7.85 Water vapor

7 IR8.7 8.70 8.30 9.10 Window

8 IR9.7 9.66 9.38 9.94 Ozone

9 IR10.8 10.80 9.80 11.80 Window

10 IR12.0 12.00 11.00 13.00 Window

11 IR13.4 13.40 12.40 14.40 Carbon dioxide

12 HRV Broadband (;0.4–1.1) Window/

water vapor
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Y. This can be done by solving the generalized eigen-

value problem

r25
aTS12S

21
22 S21a

aTS11a
5

bTS21S
21
11 S12b

bTS22b
, (4)

where the eigenvectors a1, . . . , ap with corresponding

eigenvalues r21 $ � � � $ r2p are the desired projection di-

rections for X.

Within this context, CCA will be used to assess which

spectral bands in the satellite data are correlated with

the radar data and thereby determine a subspace pro-

jection of the satellite data that maximizes the correla-

tion with the radar data.

1) SIMPLIFICATION FOR UNIVARIATE CASE

As the radar data are univariate, q 5 1 0 Y 5 y, the

projection direction a can be shown to be

a5
1

r
S21
11 s12b5

S21
11 s12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sT
12S

21
11 s12

q , (5)

whereby solving an eigenvalue problem is avoided

(Vestergaard 2011). Here, the covariance between X

and y is denoted by s12 to emphasize that this is a vector

when y is univariate. The projection of X onto a is called

the (first) canonical variate.

2) VISUAL INSPECTION OF EIGENVECTORS

Because of the more complex covariance relations in

CCA compared to, for example, principal component

analysis, it is often not feasible to visually inspect the ei-

genvectors directly. Instead, the correlations between the

original variables and the projected variables are consid-

ered. These variables can be calculated efficiently from

the covariance matrices, which are already estimated to

obtain the eigenvector. First, we recall the correlation

between a single variable xi and the canonical variate to be

corr(xi,Xa)5
cov(xi,Xa)

sx
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTS11a

q ,

where cov(xi,Xa) denotes the covariance between xi and

Xa, and sxi is the standard deviation of xi. For all p

variables the correlation can be written as

corr(X,Xa)5D21S11a(a
TS11a)

21/2 , (6)

whereD is a matrix with diagonal elementsDii 5sxi and

zeros off-diagonal.

b. Aligning with invariance to scale, rotation, and
translation

It is hypothesized that a conformal alignment of

a squall isolated in the radar data can increase the cor-

respondence with the satellite imagery. Such an align-

ment can be formulated as a transformation of the

homogeneous image coordinates zh 5 [xi, yi, 1]
T using

a rotation, a scaling, and a translation matrix:

1) counterclockwise rotation with the angle u,

zr 5Rzh 5

cosu 2sinu 0

sinu cosu 0

0 0 1

2
4

3
5 xi

yi
1

2
4

3
5 ;

2) scaling with sx in the x direction and sy in the y

direction,

zs 5Szh 5

sx 0 0

0 sy 0

0 0 1

2
64

3
75 xi

yi
1

2
4

3
5; and

3) translation with (tx, ty),

zt 5Tzh5

1 0 tx
0 1 ty
0 0 1

2
64

3
75 xi

yi
1

2
4

3
5 .

Note that x and y are used as image coordinates in this

context.

Collecting the parameters in a single set and con-

straining to isotropic scaling (i.e., s [ sx 5 sy), the

transformation T of the homogeneous coordinates zh,

given the parameters u 5 [u, s, tx, ty], is

ẑh5 T (zh j u)5TSRzh , (7)

where we combine the three separate transformations

into one by matrix multiplication. Nearest-neighbor in-

terpolation is used to fill in missing values after the

transformation. The number of observations N in the

analysis will be the number of pixels having an intensity

value after transformation of the squall; that is, it varies

between different transformations.

The optimal transformation of the image coordinates,

and thus the alignment of the squall, can be formulated

as a nonlinear minimization problem:

u+5 argmin
u

hDfX, y[T (zh j u)]gi , (8)

where D is some function describing the dissimilarity

between the satellite imagery and the transformed radar

data. Precisely which function to choose will be dis-

cussed below. For minimizing differences between pixel
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intensities, Eq. (8) can be formulated as a linear mini-

mization problem (Eldén 2007, 122–128) but minimi-

zation of the correlation measures discussed below is

a nonlinear optimization problem.

A bounded version of the simplex algorithm by

D’Errico (2012) was used to solve the optimization

problem in Eq. (8). This implementation allows for de-

fining upper and lower bounds for the parameters, which

is a desirable feature in this context. The bounds used

were uLB 5 [2458, 0.5, 220, 220]T and uUB 5 [458, 1.5,
20, 20]T, allowing for a rotation between6458, a scaling
between 0.5 and 1.5 of the original size, and a translation

of 620 pixels (40 km) in each direction. These are

bounds on the optimization between time steps and not

for the entire optimization.

DEFINING A DISSIMILARITY MEASURE

A requirement for the choice of the dissimilarity

function is the capability of comparing a number of

univariate observations (radar data) with the corre-

sponding multispectral observations (satellite data) and

evaluating to a scalar reflecting the difference between

the two sets:

D : (RN3p,RN)1R .

The two sets of observations are not measured on the

same scale; wherefore, for instance, the simple absolute

pixel-wise difference does not make sense. Two differ-

ent applicable correlationmeasures are discussed below.

Although correlation is a measure of similarity, a large

negative correlation will equal large correspondence in

this case, since low brightness temperatures in the sat-

ellite data will correspond to heavy rain (i.e., high re-

flectance in the radar data).

(i) Cross correlation

The cross-correlation function is defined under the

hypothesis of second-order stationarity; that is, the mean

and the autocovariance function do not depend on loca-

tion, and are usually used for comparison of a spatially

lagged variable with another variable (Wackernagel

1995). Here, the transformation is extended from a spa-

tial lag—a translation—to also include rotation, scaling,

and a temporal lag. For a single of the variables xi, the

cross correlation with a transformation of y is

ri5 corrfxi, y[T (zh j u)]g5
covfxi, y[T (zh j u)]g

sxisy

,

where sxi is the standard deviation of xi and sy is the

standard deviation of y[T(zh j u)]. Thus, the vector of cross
correlations is r 5 [r1, r2, . . . , rp]

T. To obtain a scalar ex-

pression, the dissimilarity in terms of cross correlation

can either be calculated as an average of p correlations or

as the correlation between the first principal component

of X and the transformed radar data, where the latter

was found to be appropriate within this context.

(ii) Multiple correlation coefficient

The multiple correlation coefficient (MCC) is a mea-

sure of correlation between a single variable from one

set of variables X1 and the optimal linear combination of

a second set of p variables X2. For the ith variable in X1,

the MCC is defined as

rij1,..., p 5 12
detSi

sidetS22

,

where Si is defined as

Si 5

"
s2
i sT

i

si S22

#
,

with s2
i being the variance of the ith variable, si being

the ith column in the covariancematrix ofX2 andX1, and

S22 being the dispersion matrix of X2.

The MCC has an obvious resemblance to the corre-

lation achieved by a CCA when having a univariate first

set of variables. Using the MCC as an optimization

measure would therefore correspond to repeatedly

performing a CCA for every possible transformation of

the radar data and using the correlation from this anal-

ysis as an objective value. Given that we aim to improve

the CCA subspace, this approach would seem reason-

able. However, experiments show that using MCC as an

objective value does not provide as much improvement

in the subspace compared to using cross correlation, as

described above. This is probably due to the need to

estimate an optimal linear transformation while de-

termining the correlation, causing a more fluctuant ob-

jective value and in turn a more difficult optimization

problem. Thus, the cross-correlation measure is used as

the dissimilarity measure in Eq. (8).

c. Determining temporal displacement

The method proposed for determining the temporal

displacement will be outlined step by step in this section

and presented in algorithmic form.

The first step is to select the convective area of interest

in the radar imagery. In the cases treated here, it was

found adequate to perform a simple thresholding and

subsequently to select the largest connected component.

The spatial coordinates corresponding to this area will

be denoted z, such that y(z) corresponds to a single

isolated squall in the radar data at time t0. We chose to
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use t 5 35 dBZ as a lower threshold for this segmenta-

tion, which is a popular choice, suggested by, for ex-

ample, Mecikalski et al. (2010).

The algorithm moves backward through time from t0,

corresponding to the time of maximum convection. For

each temporal lag ti, the correspondence between the

satellite data X(i) and the original radar data y is maxi-

mized using the alignment described in section 3b. The

optimal set of parameters u
(i)
+ will be used as starting

point for the optimization in the next step (i.e., for time

ti21). This is based on the assumption that the optimal

transformation at time ti21 is close (in parametric space)

to the optimal transformation at time ti. This is intuitive

since a deep convective cloud is expected to exhibit

a smooth development in the satellite data.

The stopping criterion for the method is the demand

for a decrease in dissimilarity; that is, if

DhX(i), yfT [zh j u
(i)
+ ]gi.DhX(i11), yfT [zh j u

(i11)
+ ]gi ,

the algorithm is stopped and the optimal correspon-

dence is achieved by a temporal displacement of i 1 1

lags and an alignment with the parameter set u
(i11)
+ .

Hence, one step past the optimal displacement is required

to realize that this is the solution. The method is formu-

lated as pseudocode in algorithm 1 in the appendix.

We propose using this alignment method prior to

analyzing the two datasets using CCA. To summarize,

rather than the simpler

corr[X(0)a, y] , (9)

we will use the expression

corrfX(i+)a, y[T (zh j u
i+

+)]g , (10)

which is maximized.

In the following section, a comparison will be given of

subspaces yielded by CCAwith and without aligning the

data using the proposed method.

4. Results

The three scenarios presented in section 2 are all

treated with the proposed method. For comparison, they

are also analyzed usingCCAwithout any alignment at all.

The results will be compared by (i) visually inspecting the

first canonical variate (i.e., the satellite imagery projected

onto the direction determined by CCA) and (ii)

inspecting the correlation structure of the original spec-

tral bands with this projection, calculated from Eq. (6).

To properly interpret the visualizations of the canoni-

cal variates, one should consider the contrast between

clouds carrying heavy precipitation and other clouds. A

large contrast, accentuating the heavy precipitating

clouds, would be expected from a descriptive subspace.

The actual scale on the image intensities is not impor-

tant. For the three cases treated here, the areas of heavy

precipitation are known from weather reports.

The first result presented is the one originally driving

the hypothesis that an initial alignment of the two

datasets is needed: the convective area of interest is

segmented in the radar data at time t0 and the canonical

correlation analysis is performed between this area and

the satellite data also at time t0. In Fig. 1 a bar plot of the

correlations between the canonical variates and the

original data is shown. Performing a CCA on three sep-

arate scenarios representing the same meteorological

phenomenon, it is expected that the correlation structures

of the resulting subspaces from each of these separate

analyses are comparable and that each of the sub-

spaces are descriptive of a precipitating cloud. However,

as Fig. 1 shows, the correlation structures are very dif-

ferent between scenarios, and the first canonical variates

(Figs. 2–4) do not provide a satisfactory visualization of

data accentuating precipitating clouds; the cloud tops are

not distinguishable from their surroundings.

The proposedmethod is applied to the three scenarios

and the results are summarized in Table 2. All trans-

formation parameters listed are with respect to the radar

data at time t0. For the first scenario (16 August 2007),

the optimal transformation is found as a rotation of

approximately 148, with no change in scale, and a trans-

lation of (26.5, 19.4) pixels, corresponding to (13.0,

38.8) km to the west and north. No temporal displace-

ment was found necessary for this scenario as ti* 5 t0.

The transformation for the second scenario (11 August

FIG. 1. Correlation structure fromCCAwithout using the proposed

alignment method.
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2007) is found to be optimal for a temporal displacement

of one lag and a transformation containing primarily

a rotation (228.68) and a translation of (14.8, 22.6)

pixels (i.e., to the east). The optimization yields a final

cross correlation of 20.298, which is seen to be signifi-

cantly smaller in magnitude than that of the two other

scenarios (20.575 and 20.728). Here, it is worth re-

membering that a large negative value is preferred, as

high values in the radar data and low values in the sat-

ellite data are associated with heavy rain.

The final scenario (20 August 2007) exhibits the

largest transformation, as a temporal displacement of

four time lags, corresponding to 40 min, is found opti-

mal. From the chosen parameters in each lag, it is seen

that an approximately 458 rotation is found to be optimal

together with a displacement to the north. A small in-

crement in scale to s 5 1.1 is found to be appropriate at

time t0, decreasing from there. This is due to the rapid

development of the cloud-top area over this period: at

time t0 the cloud base, causing precipitation, is much

smaller than the associated cloud top. When going back

in time from there, the cloud top decreases in area, and at

time t24 the best correspondencewith the precipitation in

the radar data at time t0 is found, using a scale of 0.6.

Correlation structures for the three scenarios, when

the proposed alignment method is used, are shown in

Fig. 5. Comparing with Fig. 1, the difference is apparent:

the three scenarios’ correlations now exhibit similar

structures and have in general increased correlations.

This supports the hypothesis that three similar meteo-

rological situations should also show similarities when

FIG. 2. The first canonical variate at time t0 on 16 Jul 2007. No

prior alignment of radar data is performed. Image intensities

stretched to mean 6 3 standard deviations.

FIG. 3. As in Fig. 2, but for 11 Aug 2007.

FIG. 4. As in Fig. 2, but for 20 Aug 2007.

TABLE 2.Optimal parameters and resulting function value (cross

correlation) for each step back in time for each scenario. The op-

timal temporal displacement is the final lag displayed.

Scenario Lag u s tx ty f

16 Jul 2007 t0 14.1 1.0 26.5 19.4 20.575

11 Aug 2007 t0 239.7 1.1 19.3 22.2 20.292

t21 228.6 1.0 14.8 22.6 20.298

20 Aug 2007 t0 44.6 1.1 20.9 11.5 20.579

t21 44.8 1.0 22.1 10.5 20.584

t22 44.9 0.8 0.6 13.0 20.608

t23 43.6 0.6 3.0 16.9 20.616

t24 44.7 0.6 2.8 16.2 20.728
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analyzing them using CCA. The average correlation

over all bands and all scenarios has increased from 0.38

to 0.89 by performing the prealignment, providing

a quantitative evaluation of the method.

The individual analyses yield the canonical variates

shown in Figs. 6–8. The overwhelming improvement

caused by the alignment method is clearly visible: the

information contained in the satellite data having cor-

respondence with the radar data is now dominant,

making the precipitating cloud of interest much easier to

distinguish from the background. Even the scenario with

the smallest final objective value (11 August 2007) has

been significantly improved (cf. Figs. 3 and 7). These

results show that the transformation is of paramount

importance.

It is worth noting that an improved subspace could

also be achieved without allowing for a temporal dis-

placement. This can be of importance if applying the

method to scenarios, where the cloud of interest is less

isolated from surrounding heavy precipitation. The

method is sensitive to such cases, as it can possibly

‘‘switch’’ to another cloud in the satellite data, if a higher

correspondence can be achieved.

FIG. 5. Correlation structure from CCA when applying the

proposed alignment method.

FIG. 6. The first canonical variate at time t0 on 16 Jul 2007. Prior

to CCA, the radar data have been aligned using the proposed

method. Image intensities are stretched to mean 6 3 standard

deviations.

FIG. 7. As in Fig. 6, but for 11 Aug 2007.

FIG. 8. As in Fig. 6, but for 20 Aug 2007.

708 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 52



5. Conclusions

A method has been proposed for the optimal align-

ment of an isolated squall, observed in weather radar

imagery, to maximize correspondence—in terms of

correlation—with satellite imagery. The algorithm de-

termines the conformal transformation and temporal

displacement by consecutively solving a nonlinear op-

timization problem for an increasing temporal lag be-

tween the two data sources. When no further increase in

correspondence can be achieved, the algorithm is

stopped.

The improvement in subspace yielded by canonical

correlation analysis is illustrated by analysis of three

cases of severe precipitation inDenmark. A quantitative

evaluation was conducted, comparing the correlations

achieved by CCA with and without using the proposed

prealignment. An increase in average correlation over

all three cases from 0.38 to 0.89 was achieved. A visual

inspection of the canonical variates clearly shows the

benefits of a prealignment compared to not performing

the prealignment.

Provided that these three scenarios are good repre-

sentatives of high-intensity precipitation in Denmark,

the linear combination of the eight IR bands fromMSG-2

can be used as a fixed transformation, emphasizing

heavy rain in a single component. This can be of im-

portance for future classification or forecasting appli-

cations, for example, exploiting the extended coverage

of MSG-2 to create a surrogate for weather radars,

where they cannot reach. However, a larger dataset with

more cases would be needed to ensure proper validation

of such a method.
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APPENDIX

Algorithms

Algorithm 1 maximizes correspondence with satellite

data by a conformal transformation and a temporal

displacement of radar data:

u0 5 (0, 1, 0, 0)

y ) radar data at time t0
i 5 1, stop 5 false

while d(i) , d(i11) _ i . 21 do

i 5 i 2 1

X ) satellite data at time ti
u
(i)
+ 5 argminufD[X, T (y j u)]g (u0 as starting point)

d(i) 5 D[X, T(y j u+)]
u0 5 u

(i)
+

end while

return i+ 5 i 1 1, ui
+

+ 5u
(i11)
+
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