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Abstract—Canonical correlation analysis (CCA) is an established
multivariate statistical method for finding similarities between linear
combinations of (normally two) sets of multivariate observations. In this
contribution we replace (linear) correlation as the measure of association
between the linear combinations with the information theoretical measure
mutual information (MI). We term this type of analysis canonical
information analysis (CIA). MI allows for the actual joint distribution
of the variables involved and not just second order statistics. Where
CCA is ideal for Gaussian data, CIA facilitates analysis of variables
with different genesis and therefore different statistical distributions. As
a proof of concept we give a toy example. We also give an example with
DLR 3K camera data from two time points covering a motor way.

I. INTRODUCTION

In 1936 Hotelling [1] introduced canonical correlation analysis
(CCA). In CCA we find linear combinations U = a’X and V =
bT'Y of k variables in X and / variables in Y. The projections a and
b are found such that U and V have maximum correlation and their
variances equal one. Correlation is a linear measure of association
between variables, and CCA is based on second order statistics only.
CCA is therefore ideal for multivariate Gaussian data.

In this paper we replace correlation as the measure of association
with the information theoretical measure mutual information (MI). In
this type of analysis which we term canonical information analysis
(CIA) we find a and b such that the MI between U and V is
maximized, [2]. MI is an entropy based measure which allows for the
actual joint distribution of U and V. It is therefore more suited for
non-Gaussian data and for data with different statistical distributions
and different modalities.

The idea of maximizing MI between two sets of variables is
mentioned in [3]. However, the authors merely propose solutions
to this problem based on independent component analysis in the
individual spaces of the variables and they do not provide a truly
canonical approach. In [4] and [5] the problem of maximizing MI of
linear combinations of variables is solved in a manner which makes
its application to small sample problems feasible. Our implementation
is applicable to large sample problems including image data also.

Section II describes marginal and joint entropy as well as relative
entropy (also known as the Kullback-Leibler divergence) and mutual
information. Section III very briefly mentions convolution based
approximate entropy estimation. Section IV sketches some aspects
of mutual information maximization. Section V gives a toy example
as a proof of concept and a change detection example with DLR 3K
camera [6], [7] images from two time points. Section VI concludes
the paper.

Parts of the abstract, the introduction, Section II and Subsec-
tion V-A are identical to sections in [8].

II. BASIC INFORMATION THEORY

In 1948 Shannon [9] published his now classical work on
information theory. Below, we describe the information theoretical
concepts entropy, relative entropy and mutual information for discrete
stochastic variables, see also [10], [11], [12], [13].

A. Entropy

Consider a discrete stochastic variable X with probability density
function (pdf) p(X = z;), ¢ = 1,...,n, ie, the probability of
observing a particular realization x; of stochastic variable X, where
n is the number of possible outcomes or the number of bins. Let us
look for a measure of information content (or surprise if you like)
h(X = ;) in obtaining that particular realization. If z; is a very
probable value, i.e., p(X = z;) is high, we receive little information
by observing x;. If on the other hand x; is a very improbable value,
ie., p(X = x;) is low, we receive much information by observing
x;. The measure of information content should be a monotonically
decreasing function of p. This can be obtained by choosing for
example h o« 1/p.

If we observe independent realizations x; and x;, i.e., the two-
dimensional pdf p(X = z;, X = ;) equals the product of the one-
dimensional marginal pdfs p(X = z;)p(X = x;), we would like the
joint information content to equal the sum of the marginal information
contents, i.e., h(X = z;, X = z;) = h(X = ;) + h(X = z;). This
can be obtained by transformation by means of the logarithm.

Thus the desired characteristics of the measure of information or
surprise can be obtained if we define A(X = z;) as

1
p(X = ;)
The expectation H(X) of the information measure, i.e., the average

amount of information obtained by observing the stochastic variable
X, is termed the entropy

h(X =z;)=1In =—Inp(X = ).

H(X) ==Y p(X =) Inp(X = z).

In the limit where p tends to zero and Inp tends to minus infinity,
—p Inp tends to zero. H(X) = —E{lnp(X)} is nonnegative. A
discrete variable which takes on one value only has zero entropy; a
uniform discrete variable has maximum entropy (equal to Inn). For
the joint entropy of two discrete stochastic variables X and Y we get

HX,Y) ==Y p(X =2,V =y;) Inp(X =2:,Y =y,),
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Probability density functions, information content and entropy
may be defined for continuous variables also (and so may relative
entropy and mutual information mentioned below). In this case the
entropy

H(X) = - / p(e) In(p(x))dx 0

is termed differential entropy. Since p(x) here may be greater than
1, H(X) in the continuous case may be negative (or infinite).

B. Empirical Entropy

Empirical entropy H(X) is an estimator of H(X) in (1). The
estimator is defined as

N

. 1

H(X) =+ D p(X =) )
i=1

i.e., the average of — In p defined over a finite sample {xl}fil of X,
where N is the number of samples. This estimator is not based on
any binning of the data.

C. Relative Entropy

The relative entropy also known as the Kullback-Leibler diver-
gence [14] between two pdfs p(X = z;) and ¢(X = x;) defined on
the same set of outcomes (or bins) is

Dia(p ) = 3 p(X = 2) n B =2

. 3
q(X =) ©)

This is the expectation of the logarithmic difference between p and
q. Typically p represents the “true” distribution of data or a precisely
calculated theoretical distribution and ¢ typically represents a model
or an approximation of p. The relative entropy is a measure of the
proximity of ¢ and p, and it satisfies the so-called Gibbs’ inequality
Dy > 0 with equality for p(X = z;) = ¢(X = ;) only. The
relative entropy is not symmetric in p and ¢ (and therefore it is not
a metric).

D. Mutual Information

The extent to which two discrete stochastic variables X and Y
are not independent, which is a measure of their mutual information
content, may be expressed as the relative entropy or the Kullback-
Leibler divergence between the two-dimensional pdf p(X = z;,Y =
y;) and the product of the one-dimensional marginal pdfs p(X =

zi)p(Y = y;), ie.,
Drr(p(X,Y),p(X)p(Y)) =

X = i7Yz j
S 0 = gt =T =00
0,7

p(X =zi)p(Y =y;)

This sum defines the mutual information I(X,Y) =

D (p(X,Y),p(X)p(Y)) of the stochastic variables X and Y.
Mutual information equals the sum of the two marginal entropies
minus the joint entropy

I(X,Y)=H(X)+H(Y) - H(X,Y). )

Unlike the general Kullback-Leibler divergence in (3) this measure is
symmetric. Mutual information is always nonnegative, it is zero for
independent stochastic variables only.

Obviously we need to estimate marginal as well as joint pdfs
to obtain the mutual information estimate in (4). We employ kernel

density estimation, which uses IV data samples to estimate these pdfs.
Mutual information is subsequently estimated using the same N data
points. This is possible in practice only due to a very fast estimation
of pdfs. Note, that this is in contrast to [15] where the sample is
divided into smaller portions in order to lessen the computational
burden.

III. APPROXIMATE ENTROPY ESTIMATION

Estimation of marginal and joint entropies is the main bottleneck
in maximization of mutual information. Since it is based on pairwise
distances, it has a computational complexity in the order of O(N?).
In [16] a fast approximate marginal (1D) entropy estimator with a
complexity in the order of O(NV log N) is proposed. For the purpose
of canonical information analysis we generalize this approximate
entropy estimator to joint entropy (2D).

Approximate entropy estimation is a convolution based modifica-
tion of Parzen window density estimation. Convolutions can run in
the order of O(NN log N) on a regular grid. The estimation procedure
therefore (1) quantizes the irregular samples to a regular grid, (2)
convolves with a Gaussian kernel on this grid, and (3) interpolates
back onto the original positions of the samples to get an estimate of
the empirical entropy in (2). See also [2].

IV. MAXIMIZATION OF MUTUAL INFORMATION

The kernel density estimates of one- and two-dimensional pdfs
by means of the method sketched above are independent of additive
and multiplicative transformations of each of the original variables.
Therefore the maximization of the mutual information between the
two linear combinations can be carried out without constraints. This
means that very many optimization schemes may be applied.

Maximization of mutual information is inherently non-convex.
For problems where it is not crucial to converge to the global
optimum we suggest to use a local solver, e.g., either the downhill
simplex method [17] or Newton’s method with the BEGS update [18]
depending on whether one wishes to rely purely on function values or
whether one wants to include gradient information also. For problems
where convergence to the global optimum is important, we propose
to use a genetic algorithm at the cost of significantly more function
evaluations, see for example [19].

The choice of starting point is crucial when using local methods
for global optimization. We have experimented with two different sets
of starting points for each case, one being the optimum determined
by canonical correlation analysis. The second set of starting points is
constructed by letting the initial projections be unit vectors of length
k and ¢ respectively, with an equal weighting on all variables. It is
often a good strategy to use several different starting points.

V. CASE STUDIES

We first give a toy example as a proof of concept. This is followed
by a change detection example with bi-temporal image data from the
DLR 3K camera system [6], [7].

A. Toy Example

In a simple, illustrative example consider = and z®. On the
interval [0,1] the correlation between the two is 1/15/16, close to
one. On the interval [-1,1] the correlation is zero, but of course
the two are still functionally associated. Let us hide the parabola



in noise: consider a variable 1 sampled equidistantly on the interval
[0,1]. Let another variable x2 be random Gaussian noise with mean
zero and standard deviation one. Let y; be 2 with random Gaussian
noise with mean zero and standard deviation one tenth added. Let
y2 be random Gaussian noise with mean zero and standard deviation
one. For all variables we have 1000 samples. Let the first set of
variables consist of x; and z2, and the second set consist of i
and yo. In this case the leading canonical correlation is 0.9166
and (after sphering the input) the leading eigenvector for the first
set is [1.0000 0.0064] and for the second set [1.0000 0.0143]. So
in this case canonical correlation analysis makes sense: we get a
high canonical correlation and eigenvectors that isolate the signal in
21 and y;. Maximal mutual information is 0.7867 and the leading
eigenvectors are [1.0000 0.0075] and [1.0000 —0.0043] respectively.

Let us now redo the analysis with 1 sampled equidistantly on the
interval [—1,1]. In this case the leading canonical correlation is 0.0532
and the leading eigenvector for the first set is [0.0391 0.9992] and for
the second set [—0.8955 0.4450]. In this case canonical correlation
analysis makes no sense: we get a very low canonical correlation
and eigenvectors that do not isolate the signal in 1 and y;. Here
maximal mutual information is 0.5856 and the leading eigenvectors
are [1.0000 — 0.0082] and [1.0000 — 0.0086] respectively.

For the latter case (x1 sampled equidistantly on the interval [-
1,1]), three-dimensional contours of the estimated joint pdfs and
scatter plots of the leading canonical variates are shown in Figure 1
top (correlation based) and bottom (mutual information based). The
left figure reveals no structure whereas in the right figure we clearly
recognize the noisy parabola originally in variables x1 and y;.

B. DLR 3K Camera Data

The images used in this example were recorded with the airborne
DLR 3K camera system [6], [7] from the German Aerospace Cen-
ter, DLR. This system consists of three commercially available 16
megapixel cameras arranged on a mount and a navigation unit with
which it is possible to record time series of images covering large
areas at frequencies up to 3 Hz. The 1000 rows by 1000 columns
example images acquired 0.7 seconds apart cover a busy motorway.
These data have previously been treated in [2], [20], [21]. The original
RGB images can be seen in [21]. The data at the two time points were
orthoprojected using global positioning system/inertial measurement
unit (GPS/IMU) measurements and a digital elevation model (DEM).
For flat terrain like here one pixel accuracy was obtained. In these
data, the change occurring between the two time points will be
dominated by the movement of the cars on the motorway. Undesired,
apparent change will occur due to the movement of the aircraft and
the different viewing positions at the two time points.

Using canonical information analysis as a tool for change detec-
tion, Figure 2 bottom shows the difference image between the first
set of mutual information canonical variates (MICVs). Previously, a
method for change detection based on canonical correlation analysis
termed MAD has been proposed [22]. Comparing with the solution
obtained by canonical correlation analysis in Figure 2 top it is
evident that better change information is obtained by using CIA:
the background is much smoother and clearly distinguishable from
the areas of change (the cars) and the extreme values are present
only where change has actually occurred. An iterated version of the
MAD method was reported on in [23]. For space limitation reasons
a comparison with results from this extension of MAD is not shown
here.
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Fig. 1. 3D contours of estimated joint pdfs and scatter plots for leading
canonical variates, correlation based (top) and mutual information based
(bottom).

To quantify the difference between the solutions, a region marked
by a red rectangle in the canonical difference image has been selected.
This region is known not to have changed between the two acquisition
times. The variance in this region for the solution produced by CIA
is 0.265, while it is 0.878 for the correlation based solution, i.e.,
the ratio is 3.319. This verifies the subjective evaluation that a more
homogeneous no-change background is obtained using the proposed
mutual information based method. A correlation of 0.982 and 0.945
between the leading pair of canonical variates was obtained using
CCA and CIA respectively, which demonstrates that a high correlation
is not always the best measure for similarity. A mutual information of
1.034 and 1.335 between the leading pair of canonical variates was
obtained using CCA and CIA respectively.

VI. CONCLUSIONS

In the toy example the correlation based solution makes no sense
on the interval [—1,1], whereas the mutual information based solution
finds the noisy parabola in the variables analysed.

In the DLR 3K camera case we see that the mutual information
based canonical analysis offers less noise and a better discrimination
between moving cars and the remainder of the image.



Fig. 2.

Difference images of the first set of MICVs for DLR 3K data

using canonical correlation analysis (top) and canonical information analysis
(bottom) respectively. The display range of the intensity values is within +
three standard deviations of the mean. The marked region is used to quantify
the no-change noise variance.

Other examples (not shown here) give a similarly better perfor-

mance for the mutual information based analysis.
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