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Summary

The subject of this dissertation is measuring �ngerprint sample quality using
image analysis methods that are fast to compute. Of interest are analysing the
impact of �ngertip skin moisture on quality and providing feedback if the �nger
is too dry or too wet. The goal is to propose methods that could be incorporated
in NIST Finger Image Quality version 2.0 or in ISO/IEC standards.

A dataset of 6600 samples is collected from 33 subjects using 5 sensors with
objective �ngertip moisture measurement and varying skin moisture conditions.
The impact of skin moisture on �ngerprint sample quality is analysed and a
Moisture Indication method is proposed and used with thresholds to provide
binary indication on skin dryness or wetness.

Three �ngerprint Quality Measurement Algorithms are proposed - Ridge Valley
Di�erence, Ridge Line Count and Contrast; their performance is assessed in
terms of execution time, output quality correlation with observed utility, and
using Error versus Reject Curves. The methods are compared to current state of
the art: NIST Finger Image Quality, Orientation Certainty Level, Ridge Valley
Uniformity, Local Clarity Score and Gabor Shen.

All proposed methods work and o�er acceptable performance - all are fast to
compute and provide quality that predicts samples' performance. Some pro-
posed methods are better than state of the art in terms of either execution time
or in performance prediction. The Moisture Indication method is successfully
used to classify samples as acquired from dry or wet skin with reasonable de-
tection error rates. All proposed methods can possibly be incorporated in the
ISO/IEC standards or in NFIQ 2.0.



ii



Preface
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Chapter 1

Introduction

Personal identity is questioned frequently each day these times. Is a person
authorized to access a certain resource? Is this the person he or she claims to
be? Or even � who is this person? Throughout the technological development
of mankind, several mechanisms were brought to life, be it locks and keys, secret
password or PIN�code protection, recently RFID tags and key�cards. Some of
these mechanisms are more, some less sophisticated; some o�er more security,
some are less robust. However, all these methods require special handling �
secrets, passwords and PIN codes have to be memorized; keys, key�cards and
RFID transceivers need to be carried. All these feature a common characteristic
� keys and secrets can be shared and transferred between people, unfortunately
not only on purpose.

Natural methods of recognition � recognizing faces and voice, eyes or movement
� are subconsciously performed by the human brain. Nowadays, with the de-
velopment of digital devices, the recognition can be performed automatically,
analysing one or more characteristics of the human body, e.g. iris, ear structure,
palm vein pattern, �ngerprints, etc. Using these for automatically recognizing
a person is called biometric recognition or biometrics. Di�erent characteristics
give di�erent biometric recognition performance and are di�erently accepted by
people.

Fingerprint recognition is widely accepted as samples are fairly easy to collect.
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It is also widely used in the government and industry sectors. USA has in-
troduced the US�VISIT program [usv], India the Unique Identi�cation number
[aad] and the United Nations' International Civil Aviation Organization has a
raising interest in biometrics [ica].

No biometric system is free of error and it is always of interest to limit the error
rates, so that the systems perform better. It is internationally agreed by gov-
ernment, industry and academia that the performance of a biometric system is
related the quality of samples it works with [GT07]. Indeed, poor quality sam-
ples can generate spurious or missing features which may lead to false rejections
and false acceptances of genuine and impostor comparisons respectively.

If possible the sample can be manually assessed to ensure best quality, e.g.
during check�in, an airport o�cer inspects acquired �ngerprint samples. Should
the quality be insu�cient, sample reacquisition may be necessary. Usually the
subjects would be instructed how to behave � so that the quality of the acquired
samples increases � i.e. put less pressure on the sensor platen, place the �nger
correctly, dry or moisturise the �ngertip skin. Usually these instructions would
be accurate if the o�cer is experienced.

With the development of biometric sensors, unsupervised Automatic Fingerprint
Identi�cation Systems (AFIS) were introduced, where an automatic quality mea-
surement is performed. The International Organization of Standardization and
the National Institute of Standards and Technology of the U.S. Department of
Commerce are working on standardizing the methodologies of automatic quanti-
tative �ngerprint sample quality measurements [ISO09] [ISO10] [TW05]. Many
�ngerprint sample quality measurement algorithms exist, a de facto standard is
NFIQ by NIST [TW05].

Measuring the quality allows to decrease error rates of biometric systems by
rejecting poor quality samples, yet no feedback is provided to the user on why
the quality is poor. If a sample is reacquired with unchanged conditions, the
quality may remain the same. An initial study has shown that poor quality
samples acquired from dry and wet �ngers give a distinct impression when as-
sessed manually. It is interesting to check whether these samples indeed cause
performance degradation and if so, if it is possible to automatically distinguish
them and provide accurate feedback on �nger wetness or dryness to the user.

A new version of the NFIQ standard is in development [oST], where several
algorithms are combined together to provide even better quality estimation.
The subject of this thesis is to propose Quality Measurement Algorithms that
are fast to compute and o�er good performance bene�ts when incorporated in
a biometric system. The motivation is to compete with the existing state of the
art algorithms and hopefully add to the new version of the standard. Perhaps
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it is also possible to relate the quality of acquired samples to the moisture of
�ngertip skin and if reacquisition is required provide useful feedback to the users
so that they can e.g. dry or moisten their hands so that the quality of �ngerprint
samples acquired afterwards is improved.
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Chapter 2

Biometrics

This chapter gives an overview of biometric systems. The general concept of bio-
metric recognition is introduced, performance and errors of a biometric system
are discussed. Finally, biometric �ngerprint recognition systems are described.

The concepts are illustrated accordingly to the ISO/IEC 29794�1 standard
[ISO09] developed by International Electro technical Commission of Interna-
tional Organization for Standardization (ISO/IEC). Vocabulary is used accord-
ingly to the ISO/IEC JTC 1/SC 37 Harmonized Biometric Vocabulary de�ned
in SC37 Working Group 1 for the International Standard ISO/IEC 2382�37
[ISO12].

2.1 Introduction

The word Biometrics comes from Greek bios (life) and metron (measurement).
Biometric identi�ers are anatomical and behavioural characteristics (traits) of
a human body.

Biometric recognition (biometrics) is associating these traits with an established
identity of a person and using this relation to automatically recognize individ-
uals.
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2.2 Biometric modality

Theoretically, any trait or body characteristic (also called modality) could be
used in biometrics as long as it is:

• universal � every person has it,

• distinctive � no two people have it identical,

• permanent � unchanged over time,

• collectible � it can be measured quantitatively.

In practice, a biometric trait is also evaluated based on the performance it gives
in terms of speed and recognition accuracy and ease of circumvention. It is also
important to assess how capturing a certain characteristic is accepted by people,
e.g. some people may prefer not to have their eyes scanned [MMJP09].

Several characteristics are used in biometrics successfully, some examples of
modalities are:

• Fingerprint � using ridge line structure of �ngertips,

• Iris � using iris visual texture,

• Face � using facial features size and distance,

• Vein � analysing the vein structure of the palm or �nger,

• Voice � measuring the sound characteristics of speech.

2.3 Biometric processes

Biometric recognition can be applied in several contexts, e.g. granting or deny-
ing access, con�rming claimed identity or simply for identity recognition. Di�er-
ent applications use slightly di�erent biometric processes, however all systems
have several elements in common � all systems capture and store the data,
perform signal processing, comparing and make biometric decisions.

Figure 2.1 shows a diagram of a conceptual biometric system structure with the
common elements grouped. The process of biometric recognition is also marked
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Figure 2.1: Conceptual structure of a biometric system, as de�ned in ISO/IEC
24745 (source [ISO11]).

with arrows (blue for veri�cation, green for identi�cation, red for enrolment).
This process is generally performed as follows:

1. Data Capture � biometric sensor acquires a sample from a subject,

2. Identity Claim is required in identity veri�cation to get an existing tem-
plate,

3. Signal processing � the sample is analysed and features are extracted,

• Enrolment Template � the resulted features can be saved in the
database as a biometric reference,

• or compared with one or more existing templates during Veri�cation
or Identi�cation,

4. Comparison Subsystem determines the comparison score between captured
sample and stored reference,

5. Decision is made in based on the comparison score.
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2.3.1 Enrolment

When a user interacts with a biometric system for the �rst time, the biometric
characteristic is captured to obtain a sample. If the quality of the sample is
su�cient, features are extracted to form the feature set (a biometric reference)
which is registered in the biometric system storage as a biometric enrolment
data record. The reference template is associated with the identity of a person,
so that it is known whose template it is. This process is called enrolment.

2.3.2 Recognition

The second time a person interacts with a biometric system, the biometric
characteristic is captured again and similarly as before, su�cient quality of
the sample allows feature extraction. This time however, the feature set is
a biometric query or a biometric probe. A probe is compared to a reference
template to establish a comparison score.

Depending on the application context, a biometric system is either an identi�-
cation or a veri�cation system. The term recognition is used if the application
context is not of interest. The enrolment process can be performed regardless
on the application context, but the functions of identi�cation and veri�cation
systems are di�erent.

• The veri�cation process will authenticate a person and con�rm their iden-
tity is what they claim to be. This is done by capturing a probe and
comparing it to the reference associated with the claimed identity. This
is usually a one�to�one comparison.

• The identi�cation process is a one�to�many comparison. It recognizes a
person by searching an entire database of templates to �nd a list of possible
candidates that match with the captured probe. This can be performed
in closed�set, where every person interacting with a system is expected to
have been enrolled, and in open�set where it may not be the case.

A closed�set identi�cation can usually give a positive biometric identi�ca-
tion decision and usually a non�empty set of biometric candidates.

Open�set identi�cation may well give an empty set of biometric candidates
and a negative identi�cation decision � a person may not be enrolled in
the database and no template would be found.
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2.3.3 Biometric comparison

The one�to�one comparison of veri�cation and each of the one�to�many com-
parisons performed during identi�cation are all the process of calculating the
similarity or dissimilarity between two biometric samples � the probe and the
reference [ISO12]. If a biometric comparison is done between two samples that
are taken from the same characteristic of the same person, it is a mated com-
parison, otherwise the comparison is non�mated. ISO/IEC 2382�37 de�nes this
as follows:

• mated � "a comparison of a paired probe and reference from the same
characteristic of the same data subject" [ISO12].

• non�mated � "a comparison of a probe and a reference from the same
characteristic of di�erent data subjects" [ISO12].

2.3.4 Biometric decision

The comparison score is used to give the comparison decision based on whether
the score is above or below a certain threshold as follows:

• match � score above the threshold gives a positive comparison decision
"stating that the biometric probe and the biometric reference are from
the same source" [ISO12].

• non�match � score below the threshold gives a negative comparison deci-
sion "stating that the biometric probe and the biometric reference are not
from the same source" [ISO12].

2.4 Biometric system errors

Even though biometric systems use sophisticated hardware and state of the art
algorithms, sometimes errors are inevitable. A comparison decision is not always
correct � sometimes mated samples are rejected and non�mated accepted, which
results in the following errors:

• False Rejection � biometric decision of a non�match from a comparison
of mated samples. De�ned as: "error of rejecting a biometric claim that
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should have been accepted in accordance with an authoritative statement
on the origin of the biometric probe and the biometric reference" [ISO12].

• False Acceptance � biometric decision of a match from a comparison of
non�mated samples. De�ned as: "error of accepting a biometric claim that
should have been rejected in accordance with an authoritative statement
on the origin of the biometric probe and the biometric reference" [ISO12].

Errors of biometric systems that were not caused during the comparison proce-
dure are also speci�ed, as de�ned by ISO/IEC 2382�37 [ISO12]:

• Fail To Capture (FTC) � the capturing module may fail to properly cap-
ture the sample.

• Fail To Process (FTP) � the feature extraction module may fail to process
a sample.

• Fail To Acquire (FTA) � a combination of �rst three errors � FDC, FTC,
FTP � a general failure in sample acquisition.

• Fail To Enrol (FTE) � the template generation module can fail to extract
a template resulting in an enrolment failure.

2.5 Biometric system performance

The performance of biometric systems is related to the error rates it gives and
it can be assessed in several ways, since there are di�erent errors that can
occur. However, most modern systems are sophisticated and do not give a lot
of FTA or FTE errors if the environment conditions are good. Hence, typically
the matching error rates are of interest in performance assessment. Figure 2.2
shows the distribution of comparison scores in a theoretical biometric system:

• genuine distribution of non�mated samples' comparison scores,

• impostor distribution of mated samples' comparison scores.

In a perfect system working with ideal samples, the impostor and genuine com-
parison score distributions could be separated completely. Practically, both dis-
tributions overlap in the middle because some mated samples will give compar-
ison scores relatively lower than some other non�mated samples. The threshold
used to determine the decision boundary gives rise to the following error rates:
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Figure 2.2: Impostor and genuine comparison scores' distributions. FNMR
and FMR for a given threshold t. Source [MMJP09] page 17.

• False Non�Match Rate (FNMR) � the rate of mated comparisons that get
falsely rejected because the comparison score is below the threshold,

• False Match Rate (FMR) � the rate of non�mated comparisons that get
falsely accepted because the comparison score is above the threshold.

The biometric threshold is chosen accordingly to the required security. The
middle point is called Equal Error Rate (EER), where the threshold is chosen
such that FNMR is equal to FMR.

If high security is required, e.g. in a bank, the threshold would be chosen high
so that False Match Rate is very small and the probability of impostors gaining
access is low. On the contrary, low security will require a low threshold so that
false rejections will not occur frequently, e.g. for classroom access, where some
impostors are allowed.

2.6 Fingerprint recognition systems

Biometric �ngerprint recognition systems use the anatomical characteristic of
a person's �ngertip skin. The surface of the epidermal skin layer that covers
�ngertips is covered with small ridges and valleys. On a typical �ngerprint
sample, ridges are represented by dark lines on a white background. Figure 2.3
shows examples of �ngerprint samples acquired using di�erent sensors.
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(a) (b) (c)

Figure 2.3: Fingerprint sample excerpts acquired from the same �nger us-
ing di�erent live scanners: a) FTIR optical scanner, b) solid�
state capacitive scanner, c) solid�state thermal scanner (source:
[MMJP09]).

Identifying criminals by their �ngerprints was introduced in 1860s by Sir William
James Hershel. The probability of identical �ngerprints between two di�erent
people was �rst scienti�cally analysed by Sir Francis Galton. He also introduced
a classi�cation of �ngerprints. By 1920s, �ngerprint identi�cation was widely
used as a form of personal identi�cation by American police and FBI.

2.7 Fingerprint sample acquisition

In order to perform biometric �ngerprint recognition, the sample has �rst to
be acquired. Historically before the development of digitals systems and Au-
tomated Fingerprint Identi�cation Systems (AFIS), this was done o��line by
smearing �ngertips with black ink and pressing or rolling them against a paper
card. Forensic application included collecting latent �ngerprints e.g. impres-
sions left on objects at crime scenes.

Modern AFIS utilise scanners (also called sensors) which allow on�line, live
sample capturing. This way when the �nger is placed on the platen surface, the
capture module of an AFIS detects �nger presence and immediately captures
one or more samples.

Di�erent technologies are used for live�scan �ngerprint sensing; most technologi-
cally mature and widely used sensors are either optical or solid�state [MMJP09].
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2.7.1 Optical sensors

Optical sensors use the Frustrated Total Internal Re�ection (FTIR) method.
The �nger platen a side of a glass or plastic prism. Light is projected from one
side of the prism to the �nger, projecting the image of the �ngerprint to the
opposing side of the prism which contains a CCD or CMOS camera. Skin ridges
touch the surface of the prism but valleys remain in a distance. Light is thus
re�ected where the valleys are and absorbed (scattered) at ridges. This results
in an image of dark ridge lines on a light background.

Optical sensors o�er high quality of �ngerprint samples and if the size of the
prism is large enough, a four��nger slap scan may be possible. A modi�ed
version of an optical sensor may use a sheet prism or optical �ber. This way the
sensor would be a bit smaller, but the quality of acquired samples may degrade
[MMJP09].

2.7.2 Solid�state

Solid�state sensors (also called silicon) are smaller and cheaper to manufacture
than optical sensors, but they do not o�er the same quality. The sensor platen
is an array of several smaller sensors, each producing a pixel of the acquired
sample [MMJP09]. Three types of silicon sensors exist: capacitive, thermal and
electric �eld.

Solid state sensors allow to acquire the �ngerprint sample by swiping it against
the sensor instead of placing the �nger on the platen. This was introduced with
the thermal type, where the swiping was necessary to keep the temperature of
the sensor changing. Swiping has a bene�t of self�cleaning the sensor and allows
to make the sensor even smaller (a few pixel rows), but requires processing to
compose the �nal sample from the several acquired pixel rows.

2.8 Fingerprint comparison

When a �ngerprint probe is acquired, it can be matched with �ngerprint tem-
plates. Biometric identi�cation and veri�cation are similar in this step as the
one�to�many comparisons performed in identi�cation can be viewed as several
one�to�one veri�cation comparisons. Comparison of �ngerprint template and
probe samples can be done as follows:
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(a) (b) (c) (d)

Figure 2.4: Examples of �ngerprint features marked in red: a) delta, b) core,
c) minutiae (ridge endings), d) local ridge orientation.

• Comparison by correlation � two images are superimposed and pixel cor-
relation is measured,

• Minutiae based comparison � measuring the alignment between probe and
reference feature sets,

• Non�minutiae based comparison � measuring local ridge orientation or
frequency, texture information, etc.

Most widely known and utilised are minutiae comparison methods [MMJP09],
but they require feature set extraction performed prior to comparison.

2.9 Fingerprint features

The ridges present on the �ngertip skin form into a pattern with characteristic
features, that can be categorized into three levels described below. Figure 2.4
shows examples of �ngerprint features.

1. Singular points � core which is always present and delta which may be
present,

2. Minutiae � local ridge characteristics, i.e. ridge line endings, bifurcations,
lakes, islands, crossovers, etc.

3. Sweat pores � or other intra�ridge details � width, shape, curvature.

2.9.1 Local Ridge Orientation

Ridge orientation is a non�minutiae feature that represents the direction of the
ridges. It can be measured at each pixel of a sample, or locally for small blocks
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of a sample to increase computational e�ciency.

Local Ridge Orientation at pixel "represents the angle at which the �ngerprint
ridges cross with the horizontal axis" [MMJP09].
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Chapter 3

Biometric sample quality

This chapter discusses the biometric sample quality according to ISO/IEC 29794�
1 [ISO09] de�nitions. First the concept is introduced, secondly the uses of qual-
ity measure are discussed with possible applications. Finally, the quality of
�ngerprint samples is described and related to the earlier introduced concepts.

3.1 Introduction

As described in sections 2.4 and 2.5, the comparison modules in biometric
systems are far from perfect and sometimes falsely match non�mated or other-
wise falsely reject mated samples. An overlap is seen between the Impostor and
Genuine distributions. What is the reason behind it? Some samples give good
recognition performance, some lead to false decisions. Depending on several
factors, some samples simply have better quality than others.

Indeed, it is now internationally agreed in industry, government and academia
that the "quality of a sample should be related to its recognition performance"
[GT07]. In other words, a biometric system working with highest quality sam-
ples will have better (smaller) error rates than that same system working with
poorest quality samples.
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3.2 ISO quality de�nition

One measure of quality could describe some properties of a sample that are
useful in one application, but provide no information for a di�erent system.
Grother and Tabassi [GT07] give a good example for �ngerprints recognition
where a sample may have high quality if it has sharp and clearly visible ridges,
but perform poor in a minutiae�comparison system if it has few minutiae.

The term "quality" is generally broad and might be used to describe several
attributes of a biometric sample. ISO/IEC 29794�1 gives a concrete de�nition
of quality of a biometric sample as the predictor of its biometric performance:

"Biometric sample quality is the degree to which a biometric sample ful�ls
speci�ed requirements for a targeted application." [ISO09]

3.2.1 Quality components

The performance of a sample in a biometric system depends on the source of
the sample, and how well the sample represents its source.

Low performance might be caused by poor quality of the source, e.g. low quality
�ngerprint due to skin scars or disease, or by the fact that the sample does not
capture the source well, e.g. the sample is blurry. These components of sample
quality are de�ned by ISO/IEC 29794�1 [ISO09] as follows:

1. Character of a sample, "attributable to inherent features of the source
from which the sample is derived". For example, �ngerprints with scars
or blisters have poor character.

2. Fidelity of a sample to its source, "re�ects the degree of similarity between
a sample and the source from which it is derived". Several aspects in�uence
�delity: user behaviour, environment conditions, capturing and feature
extraction modules, etc.

3. Utility of a sample within a biometric system, the "observed performance
of a biometric sample (or a set of samples) in one or more biometric
systems". Utility depends on both the character and �delity of a sample
and is intended to predict the FNMR, FMR and also FTA and FTE rates.
The utility�based quality shows the negative or positive contribution of a
sample to the overall system performance.
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Figure 3.1: Quality reference model as de�ned in ISO/IEC 29794�1 (source
[ISO09]).

Figure 3.1 shows the reference model as de�ned in ISO/IEC 29794�1 [ISO09];
it shows the relation between quality components character and �delity, where
character depends solely on the source and �delity is a�ected by acquisition,
image processing and feature extraction.

3.3 Quality purpose

The information about sample quality can be applied in several ways in bio-
metric systems. Quality can be assessed on�line after sample acquisition and
utilised immediately, or computed o��line on an existing set of earlier acquired
samples.

Output of di�erent quality metrics can be combined together in various man-
ners, since using the same quality metrics in di�erent applications is challenging
� as described earlier, di�erent systems may bene�t from utilising di�erent qual-
ity information [ISO09]. Quality can also be useful in a slightly di�erent way
depending on the application context: enrolment, veri�cation, identi�cation,
survey, etc. This is described in the following sections.

3.3.1 Enrolment

In the enrolment process, if poor quality is detected the sample can be rejected
or recaptured. If this repeats, the Failure To Acquire or Failure To Enrol errors
can be declared. Another possibility is template replacement in case a newly
acquired sample has quality higher than that of the current template.

This is the case both in supervised an unsupervised systems. In the �rst case,
the quality information can be helpful for the operator; in the latter it would
allow an automatic decision.
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3.3.2 Veri�cation and Identi�cation

Generally poor quality samples cause the degradation of biometric system per-
formance. Veri�cation and identi�cation systems bene�t from poor quality sam-
ples rejection since the False Non�Match Rate and False Match Rate would be
lowered [GT07].

Assuring only well�performing samples are used in identi�cation systems would
allow to set the comparison threshold higher. This would reduce the False Match
Rate [GT07].

In negative identi�cation systems, rejecting poor�performing samples would
"prevent attempts of defeating detection", although comparing non�mated sam-
ples is expected to give low comparison scores both when the samples' quality
is poor and good [GT07].

3.3.3 Conditional processing

Quality could be used to di�erentiate processing of a sample in the following
ways [GT07]. Stronger but slower image enhancement algorithms may be used
in case of poor quality in the pre�processing stage. Similarly in the comparison
phase, stronger but slower comparison algorithms may be used to correctly
match poor quality samples. Decision phase could use a di�erent threshold for
poor quality samples.

Additionally, �ngerprint sample processing without human supervision (lights�
out) in forensics is only justi�ed if sample quality is good.

3.3.4 Survey and diagnosis

Quality information may be extracted from samples which had previously been
captured [ISO09]. This is useful for survey statistics where scores from e.g.
di�erent operational sites are aggregated and compared or analysed to identify
trends or anomalies in performance.

Another use of o��line quality information is correlation between quality and
di�erent system metrics. This may help in problems diagnosis or show areas
where performance could be improved.
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3.4 Observed utility calculation

Quality is a performance predictor and utility�based quality component is more
predictive in terms of FNMR, FMR, FTA and FTE rates than quality based
only on character or �delity. In fact, utility�based quality depends on character
and �delity as well.

Having a dataset of biometric samples and a set of comparison algorithms, it
is possible to extract performance�based quality scores (observed utility) for
these samples. This performance�based quality will be directly related to the
performance in systems that feature the comparison algorithms used. ISO/IEC
29794�1 [ISO09] de�nes the procedure of calculating these utility values as fol-
lows.

1. Gather the reference dataset and comparators.

A reference biometric dataset containingNi ≥ 2 samples, d
(1)
i , d

(2)
i , ..., d

(N)
i ,

for each of M subjects i = 1, ...,M . Each sample is assumed to contain
only one biometric characteristic.

A non�empty set of comparators, where Vk is the k�th comparator from
all available k = 1, ...,K comparators.

2. Generate mated comparison scores for each available comparator Vk and

for each sample d
(u)
i (uth sample of subject i):

Sii = {su,vi,i | s
u,v
i,i = Vk(d

(u)
i , d

(v)
i )}

u = 1, ..., Ni and v = u+ 1, ..., Ni

i = 1, ...,M

3. For each available comparator Vk, generate all the possible non�mated
comparison scores for samples from person i with samples from all j =
1, ...,M and j 6= i other persons:

Sij = {su,vi,j | s
u,v
i,j = Vk(d

(u)
i , d

(v)
j )}

u = 1, ..., Ni and v = 1, ..., Nj

i = 1, ...,M and j = 1, ...,M and i 6= j

4. Compute the mean mmated
i,u of sample d

(u)
i mated comparison scores:

mmated
i,u =

Ni∑
v=1
v 6=u

su,vi,i

Ni − 1
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5. Compute the mean mnon−mated
i,u of sample d

(u)
i non�mated comparison

scores:

mnon−mated
i,u =

M∑
j=1
j 6=i

Nj∑
v=1

su,vi,j

M∑
j=1
j 6=i

Nj

6. Compute the standard deviation σmatedi,u of sample d
(u)
i mated comparison

scores:

σmatedi,u =

√√√√√√
Ni∑
v=1
v 6=u

(su,vi,i −mmated
i,u )2

Ni − 1

7. Compute the standard deviation σnon−matedi,u of sample d
(u)
i non�mated

comparison scores:

σnon−matedi,u =

√√√√√√√√√√√

M∑
j=1
j 6=i

Nj∑
v=1

(su,vi,j −m
non−mated
i,u )2

M∑
j=1
j 6=i

Nj

8. Finally, for each sample d
(u)
i , compute the target utility as:

utilityui =
mmated
i,u −mnon−mated

i,u

σmatedi,u + σnon−matedi,u

3.5 Quality estimation

In di�erent biometric systems, quality estimation methods di�er depending on
the biometric characteristic that is used. However, all systems use the common
principle of a Quality Measurement Algorithm (QMA) producing a scalar quality
score q, given an input sample x :

quality = QMA(x)

Figure 3.2 shows the relation between quality and system performance. Quality
expresses the predicted utility, which is in correlation with the observed utility.
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Figure 3.2: Quality, utility and system performance relation [ISO10].

3.5.1 Quality estimation e�ectiveness

The correlation between quality and observed utility (marked with a red curvy
arrow in �gure 3.2) conveys the performance of the Quality Measurement Al-
gorithm. The better the QMA, the higher the correlation, and hence better
prediction of biometric system performance related to the quality of samples
used.

3.5.1.1 Spearman correlation

Given a dataset of samples with computed comparison scores and calculated ob-
served utility, one method of measuring the e�ectiveness of a quality estimation
method is to calculate the Spearman's rank correlation coe�cient ρ between the
quality and the observed utility.

The ρ coe�cient will be bigger if the two variables are related monotonically,
even if the relation is not linear (which is not a requirement). A positive value
indicates that both feature the same monotonicity, whereas negative value indi-
cates opposite monotonicity.
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This method is good to indicate whether a certain quality estimation method
increases or decreases with utility, but it does not capture their non�monotonic
dependency. However, it can also be used to compare two quality methods, i.e.
if they show good correlation with utility, but do not correlate between each
other, it means they are complementary and could be combined.

3.5.1.2 Error versus Reject Curves

Error vs. Reject Curves (ERC) is a method of QMA evaluation proposed by
Grother and Tabassi [GT07] in 2007. As opposed to the correlation coe�cient,
it can show the non�monotonic dependency between quality and biometric per-
formance. In fact, it shows precisely how rejection of poor quality samples in-
�uences the performance of a biometric system, as it plots the False Non�Match
Rate against the fraction of samples rejected due to poor quality.

The idea behind ERC is to "model the operational case where quality is main-
tained by reacquisition" [GT07] of poor quality samples. When rejecting and
reacquiring such samples until quality is good the performance of a biometric
system improves in terms of lowering the False Non�Match Rate. This is be-
cause samples of very poor quality give genuine comparison scores in the lowest
range � below the biometric threshold � and hence are falsely rejected.

The analysis of ERC curves gives a good overview of practical performance
bene�ts. The ERC plot can show the behaviour of FNMR depending on the
fraction of rejected samples � from zero to one. Rejecting more than one third
of the samples (fraction rejected > 0.33) models a situation where on average,
more than every third acquisition has to be repeated, probably leading to user
frustration. Therefore, the most interesting part of the ERC plot is only until
fraction rejected is roughly one third, e.g. 35%.

Given a dataset of samples and a quality estimation procedure Q, the procedure
of generating an ERC curve is as follows ([GT07]):

1. Generate quality scores qi = Q(xi) for all x
k
i samples where i denotes the

subject and k is the acquisition number of the sample.

2. Generate genuine comparison scores s
(m)
ii for allN pairs of samples (x1i , x

2
i )

from the same subject

3. For all N pairs of samples (x1i , x
2
i ) from the same subject take the two

quality scores q
(1)
i and q

(2)
i and to simplify the analysis combine as follows:
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qi = H

(
q
(1)
i , q

(2)
i

)
, e.g. H =

√
q1q2.

4. Introduce quality threshold u that de�nes levels of acceptable quality.
De�ne the set of low quality entries as:

R(u) =

{
j : H(q

(1)
i , q

(2)
i ) < u

}
5. Using the quantile function (empirical cumulative distribution function)
M−1 of the genuine comparison scores, determine a biometric threshold t
that will result in a reasonable False Non�Match Rate f, e.g. 3% or 10%:
t =M−1(f).

6. For each quality threshold qt, determine the set R and calculate:

• set A of samples rejected due to quality below threshold qt,

• set B of samples left due to quality above threshold qt,

• fraction of rejected samples � the proportion of | A | and the number
of all samples,

• set C of samples from B, but that had comparison scores below the
biometric threshold t,

• False Non�Match Rate � the proportion of | C | and | B | � the
number of samples with poor comparison scores that should have
been rejected due to poor quality:

FNMR(t, u) =
| sjj : sjj ≤ t, j /∈ R(u) |
| sjj : sjj ≤ ∞, j /∈ R(u) |

In an ideal case, where the quality is a perfect predictor of performance, picking
a biometric threshold to have FNMR of say 10% and rejecting 10% of the lowest
quality samples will result in a zero FNMR. This is because all the samples with
genuine comparison scores below the threshold would be rejected.

In practice, the quality does not correlate with performance perfectly, but it
is a good predictor. Figure 3.3 shows an example ERC plot. The horizontal
axis represents the fraction rejected, (from zero to 35%), the vertical axis is the
FNMR, starting at zero and reaching 10%.

The ideal case is modelled with a straight green line that goes from FNMR of
10% to zero for fraction rejected of 10%. The remaining two curves, red and
blue, represent two QMAs with di�erent performance. The lower curve (red) is
lower and closer to the ideal case, the blue curve is higher. Hence, the QMA
represented by the red curve performs better.
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Figure 3.3: Example Error versus Reject curves for two quality measures, blue
(good) and red (better). Green line indicates ideal behaviour.

3.6 Fingerprint sample quality

Fingerprint biometric recognition systems use the �ngertip skin ridges as the
biometric characteristic. Two �ngerprint samples are never identical, the cap-
tured image depends highly on several factors such as:

• skin defects: blisters, wrinkles, scars, creases,

• condition of the skin: moisture, roughness,

• user behaviour: �nger alignment, pressure, elastic deformation,

• environmental conditions: sensor platen cleanness, temperature, lightning.

Some conditions are inherent to the �ngerprint source (skin) and cannot be
changed, i.e. creases, scars and wrinkles cannot be removed. However, dirtiness,
moisture level or user behaviour are not permanent and can be altered to �t the
requirements.

Figure 3.4 shows �ngerprints acquired from the same �nger in varying behaviour
(moisture, pressure, cleanliness) conditions and examples of �ngerprint samples
acquired from �ngers with di�erent skin character.

Both behaviour and character can heavily in�uence the impression. A good
character �nger with normal moisture level of the skin gives a good sample, as
shown in �gure 3.4c. Drying the skin and reacquiring results in a very poor
impression, shown in �gure 3.4b.

If additional moisture or pressure is applied, the samples are also bad, this is
shown in �gures 3.4e and 3.4a respectively. In fact, it may be di�cult to
distinguish these cases, as the impressions are very similar.
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Dirty skin leads to sample impressions that are very peculiar, such as the one
shown in �gure 3.4d, where some parts of the foreground ridges are intercon-
nected due to moisture and others are missing due to dirt artefacts present on
the skin.

A big di�erence in �ngerprint sample impression is seen due to moisture, pres-
sure and dirtiness variation. However, these factors can be normalized and it is
possible to reacquire the �ngerprint with an improved quality. Unfortunately,
with �ngers of bad character, this is not the case and no matter what behaviour,
the quality will always be poor if the source is poor.
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(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 3.4: Examples of �ngerprint samples acquired with an optical scanner
from the same �nger in di�erent conditions:
a) too much pressure,
b) dry skin,
c) normal conditions,
d) dirty skin,
e) wet skin.
Examples of �ngerprint samples acquired with an optical scanner
from di�erent �ngers with varying character:
f) skin with a few creases,
g) �ngertip with more creases,
h) very poor �ngertip skin



Chapter 4

State of the art in

�ngerprint quality metrics

This chapter describes state of the art algorithms measuring �ngerprint sample
quality and an algorithm used for �ngerprint foreground segmentation. Sev-
eral methods of �ngerprint quality assessment exist [LJY02] [XYYP08] [ISO10]
[n�b], the de facto standard is NIST Finger Image Quality (NFIQ) [TW05].

4.1 Introduction

As described in section 3.6, �ngerprint sample quality varies due to behavioural,
environment conditions (moisture, pressure of the �nger to sensor platen, etc.)
and skin character and conditions. As far as the latter is di�cult to improve,
the former can be quickly altered so that a sample is recaptured with improved
quality to �t the quality requirements.

However, in order to decide whether the quality is poor and recapturing is
required, it �rst has to be measured based on the sample impression. Several
methods of measuring �ngerprint sample quality exist.

A good overview of existing methods is given in the NFIQ 2.0 Features De�ni-
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tion document [n�b], with de�nitions mostly identical to the ISO/IEC 29794�4
[ISO10] speci�cation. A comparative evaluation was performed in NFIQ 2.0
Features Evaluation [n�a] and by Alonso�Fernandez et al. [AFFOG+07], who
also introduced a categorization, later followed by ISO/IEC:

• global features analysis methods, assessing the sample as a whole and
generating the score,

• local features analysis methods, analysing smaller portions of the sample
individually to generate partial scores and �nally aggregating to produce
one scalar.

• classi�cation, addressing quality assessment as a classi�cation problem
(this class is not distinguished by ISO).

The following state of the art �ngerprint Quality Measurement Algorithms
(QMAs), chosen as best performing accordingly to the NFIQ 2.0 Features Eval-
uation [n�a] are introduced:

• Orientation Certainty Level, section 4.2,

• Ridge Valley Uniformity, section 4.3,

• Local Clarity Score, section 4.4,

• Gabor Shen, section 4.5,

• NIST Finger Image Quality, section 4.6.

4.2 Orientation Certainty Level

Orientation Certainty Level (OCL) is a method of �ngerprint quality estimation
�rst introduced by Lim et al. in 2002 [LJY02], de�ned in ISO/IEC 29794�4
[ISO10] and described for NFIQ 2.0 Features [n�b].

Fingerprint samples feature dark ridge lines �owing through the image in a
certain pattern at varying angles. Local areas of the sample feature a certain
orientation of this �ow, as shown in �gure 4.1.

Good quality samples with well de�ned ridge �ow texture allow to determine
this �ow with high certainty, whereas poor ridge texture results in uncertain
measurement. This certainty is used as a quality indication.
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Figure 4.1: Fingerprint sample with ridge orientation marked locally using
red lines that are perpendicular to the orientation. Source of the
original [ISO10].

4.2.1 OCL calculation procedure

According to the NFIQ 2.0 Features De�nition document [n�b], OCL is com-
puted as follows. First, the image is divided into blocks of size of 32× 32 pixels.
For each block, the following steps are performed:

1. Grey level gradient of the image intensity is computed by applying a 3×3
Sobel operator to the sample. The gradient (dx, dy) shows the orientation
and strength of the image at the pixel (x, y).

2. Principal Component Analysis [Pea01] is performed on the gradients of
the block to �nd eigenvalues and eigenvectors. This procedure rotates the
data such that "maximum variability is projected onto orthogonal axes".

The result is two principal components, �rst containing largest variance
and orthogonal to the ridge orientation, with the corresponding �rst eigen-
value λmax. The second principal component shows the smallest gradient
change and is parallel to ridge orientation, with the second eigenvalue
λmin.

3. Covariance matrix is computed as:

C =
1

N

∑
N

{[
dx

dy

] [
dx dy

]}
=

[
a c

c b

]

4. From the covariance matrix, the eigenvalues λ are computed as follows:

λmax =
(a+ b) +

√
(a− b)2 + 4c2

2

λmin =
(a+ b)−

√
(a− b)2 + 4c2

2
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Orientation Certainty level processing steps for two �ngerprint
samples of di�erent quality: a,b) full sample with marked block,
c,d) zoomed view of the block with ridge orientation marked as
an ellipse with eccentricity corresponding to the OCL value of
that block. e,f) map of OCL scores for each block, high intensity
corresponds to a high score. Source ISO/IEC 29794�4 [ISO10].

5. The ratio between the eigenvalues is the certainty of orientation:

OCL = 1− λmin
λmax

The �nal quality of a sample is aggregated by calculating the mean of all blocks'
OCL values. Figure 4.2 shows an example of the LCS quality calculation pro-
cedure.

4.3 Ridge Valley Uniformity

Ridge Valley Uniformity (RVU) is de�ned by ISO/IEC 29794�4 [ISO10] as a
quality metric related to the separation of ridges and valleys. The measurement
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of quality proposed in the ISO de�nition is ridge thickness to valley thickness
ratio. An assumption is made that a good quality sample should show consis-
tency in this ratio. Therefore small standard deviation of this ratio throughout
the image is indicative of good quality.

4.3.1 RVU calculation procedure

The Ridge Valley Uniformity QMA is similarly speci�ed in the Quality Feature
De�nitions for NFIQ 2.0 as the "measure of consistency of the ridge and valley
widths" [n�b].

The procedure is de�ned as follows. First, the image is divided into blocks of
size of 32 × 32 pixels. Then, the following steps are carried out for each block
V0:

1. Find the orientation angle of ridge lines (as described in section 2.9.1)
and create a line perpendicular to this orientation,

2. Rotate the block so that the orientation line is horizontal to obtain V1,

3. From the rotated block V1, extract V2, a block centred at the orientation
line,

4. Compute the average intensity pro�le V3(x) =
∑
y=1MV2(x,y)

M ,

5. Apply linear regression to V3 to determine a threshold DT ,

6. Binarize the image V3 with the obtained threshold,

7. Find location of background�foreground change, if nothing is found return
an empty ratio,

8. Remove incomplete ridges and valleys from the borders of the V3 block,

9. Return an empty ratio if there were no changes in the last step,

10. Calculate the ratio between ridges and valleys thickness for that block,

The �nal quality is obtained by calculating standard deviation of all block ratios.
Figure 4.3 shows an example of the procedure performed on two samples with
di�erent quality.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Ridge Valley Uniformity processing steps for two �ngerprint sam-
ples of di�erent quality: a,b) full sample with marked block,
c,d) rotated and cropped block, e,f) pro�le of mean intensity
with threshold marked in red, g,h) cleaned segmentation. Source
ISO/IEC 29794�4 [ISO10].

4.4 Local Clarity Score

Local Clarity Score (LCS) operates on the characteristics of ridges and valleys. A
normalized ridge and valley width per block is used to assess how many pixels are
misclassi�ed as ridge or valley by to the average intensity pro�le segmentation.

ISO/IEC 29794�4 [ISO10] and the Quality Features De�nition of NFIQ 2.0 [n�b]
document give a similar de�nition of LCS with a single di�erence in the �nal
quality score, which is low (ISO) or high (NFIQ 2.0, described below) for good
quality samples.

4.4.1 LCS calculation procedure

The image is divided into blocks of size of 32 × 32 pixels. Then, the following
steps are carried out for each block V0 (�rst 5 steps are the same as for RVU ):
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1. Find the orientation of ridges (analyse the covariance matrix of the two�
dimensional numerical gradient) and create a line perpendicular to this
orientation,

2. Rotate the block so that the orientation line is horizontal to obtain V1.
From the rotated block V1, extract V2, a block centred at the orientation
line,

3. Compute the average intensity pro�le V3(x) =
∑
y=1MV2(x,y)

M and apply
linear regression to determine a threshold DT � see �gure 4.4,

Figure 4.4: Segmentation of V2 into ridge and valley accordingly to the thresh-
old DT calculated by linear regression of the average intensity
pro�le V3.

4. For the block V2, count the number of valley pixels νT , number of ridge
pixels rT . Count also the number of valley pixels νB that are below the
threshold DT , and similarly ridge pixels count rB above that threshold.

5. Determine the proportion of misclassi�ed ridge pixels β = rB
rT

and mis-
classi�ed valley pixels α = νB

νT
.

6. Determine the normalized ridge widthW ν = Wν

( S
125 )W

max andW r =
Wr

( S
125 )W

max ,

where Wr and Wν are the observed ridge and valley widths; S is the scan-
ner resolution in dpi; and Wmax is the estimated ridge or valley width a
reasonable value of Wmax = 5 for 125 dpi resolution de�ned by ISO.

7. Determine the minimum and maximum values for the normalized ridge
and valley widths as Wnmin

r , Wnmin
ν , Wnmax

r and Wnmax
ν and compute

the �nal score:

QLCS =


(1− (α+β2 )) ∗ 100, (Wnmin

ν < W ν < Wnmax
ν )

∧ (Wnmin
r < W r < Wnmax

r )

0, otherwise
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The �nal quality of a sample is aggregated by calculating the mean of all blocks'
LCS values. Figure 4.5 shows an example of the LCS quality calculation pro-
cedure.

(a) (b)

(c) (d)

Figure 4.5: Local Clarity Score block wise scores steps for two �ngerprint sam-
ples of di�erent quality. a,b) full �ngerprint sample, c,d) map
of block wise local clarity scores, high intensity is better quality.
Source ISO/IEC 29794�4 [ISO10].

4.5 Gabor Shen

First proposed by Shen et al. in 2001 [SKK01], still one of the best performing
�ngerprint quality estimation methods accordingly to the NFIQ 2.0 Features
Evaluation [n�a], where it is named as Gabor Shen (GSH). This method is also
de�ned in the ISO/IEC 29794�4 [ISO10] standard.

Sample quality is estimated by analysing the standard deviation of Gabor �lter
response at several angles. Image blocks are segmented into foreground and
background and separated into two classes � good and bad. Quality is the ratio
of poor blocks in the foreground. An example is shown in �gure 4.6.

4.5.1 Gabor Shen calculation procedure

The procedure is identical between ISO and NFIQ 2.0 features and performed
as follows. The image is divided into 30px× 30px blocks and for each block:
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(a) (b) (c)

Figure 4.6: Gabor Shen quality calculation: a) original �ngerprint sample,
b) block wise standard deviation of m Gabor �lter responses, c)
segmentation of image foreground. Source [SKK01].

1. Gabor �lters are calculated as:

h(x, y, θk, f, σx, σy) = exp[−1

2
(
x2θk
σ2
x

+
y2θk
σ2
y

)]× exp(i2πfxθk)

• θk = π(k − 1)/m, k = 1, ...,m,

• f = 0.12 is the sinusoidal plane wave frequency,

• m = 8 is the number of orientations,

• σx = σy = 4 are the standard deviations of the Gaussian envelope
along x and y axes respectively,

• xθk = xcosθk + ysinθk and yθk = xsinθk − ycosθk.

2. For each computed �lter, Gabor �lter responses centred ar (X,Y ) are com-
puted for the block. The standard deviation of the responses is calculated
as follows:

G =

√√√√( 1

m− 1

m∑
k=1

(gθk − gθ)2
)
, gθ =

1

m

m∑
k=1

gθk

3. The block is in the set of foreground blocks VF if the standard deviation
is over the segmentation threshold G > Tb where Tb = 1,

4. The block is in the set of poor quality foreground blocks VP if the standard
deviation is also below the quality threshold G > Tb ∧ G < Tq where
Tq = 2,

Finally the quality is the ratio between the size of the VF and VP sets:

QGABORSHEN = 1− | VF |
| VP |
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4.6 NIST Finger Image Quality

Proposed by Tabassi, Wilson and Watson in 2004, NIST Finger Image Quality
(NFIQ) [TW05] is currently the most popular approach to quality estimation
according to Maltoni et al. [MMJP09]. It is also best performing method
according to the NFIQ 2.0 Features Evaluation [n�a].

It gives a good performance prediction for diverse comparison algorithms and
it performs the quality estimation fast enough to be incorporated in a live �n-
gerprint scanner [TW05] [MMJP09] [n�a].

This method is di�erent from QMAs described earlier as it classi�es of a �nger-
print sample into �ve quality levels: excellent, very good, good, fair, poor.

Several features of an image are analysed to produce a feature vector, which is
converted to a quality score using an arti�cial neural network classi�er [TW05].
The image features used for NFIQ are extracted using the NIST Biometric
Image Software (NBIS) [n�c], which includes several general purpose image
utilities and a minutiae detector called MINDTCT.

4.6.1 NFIQ calculation procedure

The quality estimation procedure is as follows. First, an image quality map
is generated based on inconsistency in the following characteristics: local ridge
orientation, local contrast and local curvature.

Then, minutiae are extracted and each one is associated with a quality value
accordingly to the measure of mean and standard deviation of pixel intensity in
its closest neighbourhood.

Finally, each minutia is given a new quality value calculated as a composition
of the old value and a value extracted from the quality map at the minutia
location.

The next step is generating the feature vector. This is performed using the
minutiae�quality pairs and the image quality map. Table 4.1 describes the 11
features that compose that vector.

The �nal quality score generation is a classi�cation performed with a neural
network. NFIQ was trained on a subset of images extracted from 5 very di�erent
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1 number of blocks with quality 1 or more
2 total number of found minutia
3 no. of minutia with quality 0.5 or more
4 no. of minutia with quality 0.6 or more
5 no. of minutia with quality 0.75 or more
6 no. of minutia with quality 0.8 or more
7 no. of minutia with quality 0.9 or more
8 percentage of quality map foreground blocks with quality 1
9 percentage of quality map foreground blocks with quality 2
10 percentage of quality map foreground blocks with quality 3
11 percentage of quality map foreground blocks with quality 4

Table 4.1: NFIQ feature vector components [TW05] [MMJP09]

datasets. This assured di�erent acquisition conditions and a big variation of
quality.

4.6.2 NFIQ 2.0 development

A second version of the NIST Finger Image Quality algorithm � NFIQ 2.0 [oST]
� is currently being developed collaboratively by several institutions in the US
and Germany:

• NIST [NIS],

• BSI [BSI],

• BKA [BKA],

• Fraunhofer IGD [Fra],

• Hochschule Darmstadt [hda] � CASED [CASa],

• secunet Security Networks AG [sec].

4.7 Image segmentation

Fingerprint sample images acquired with optical sensors (see section 2.7) con-
tain dark lines (representing �ngertip skin ridges) on a bright (usually white)
background.
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How much of the whole sample is covered with these dark lines depends on
�nger size, user behavior and sensor platen size. If the �nger is small or only
a small part of the �ngertip touches the sensor, then only part of the sample
will contain ridges. Similarly, if a sensor uses a platen that is bigged than the
�ngertip, the ridges will cover only a portion of the sample.

The background of a �ngerprint may not be plainly white but may contain some
noise from dirt or latent �ngerprint ridges. In order to improve the performance
of �ngerprint sample comparison, the valid �ngerprint region has to be separated
from the background.

This way, the comparison procedure will only work on the foreground [MMJP09].
Similarly, for quality value to better predict the comparing performance, it
should only assess the foreground.

The process of extracting the foreground region is called segmentation. Several
�ngerprint segmentation methods were proposed over time [MMJP09], one of
them was described in section 4.5 where Gabor �lter was used for sample quality
estimation � and the response of the �lter was also used for segmentation.

4.7.1 Segmentation procedure

Another method, which does not require the computationally expensive Gabor
�lter response, is based on variance. Fingerprint foreground region shows high
variance because ridges are represented by dark lines and valleys by bright lines.
Background of a �ngerprint sample has lower variance, unless extreme noise is
present which is usually not the case.

Therefore it is possible to segment the image based on the local variance. This
is performed as follows:

1. divide the sample image into k blocks of size 32× 32 pixels,

2. for each block, compute the variance V (k) as:

V (k) =
1

W 2

W−1∑
i=0

W−1∑
j=0

(I(i, j)−M(k))2

where I(i, j) is the grey level value at pixel (i, j) and M(k) is the mean of
grey level of the block k. [Meh93]

3. mark blocks as foreground if their computed variance is over a threshold
V (k) > 0.1
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Figure 4.7 shows example �ngerprint samples with segmentation mask super-
imposed in red. Segmentation is shown for both block sizes 32 × 32 and 8 × 8
pixels.

Samples with well de�ned ridges and a clear white background are easy to
segment correctly. Dry impression (�gure 4.7d) causes some foreground to be
falsely segmented as background.

Segmentation of a sample (�gure 4.7c) with a noisy background (older generation
optical sensor) results in a poor segmentation where background is marked as
foreground.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: Block variance based segmentation procedure:
a) b) c) Sample before segmentation,
d) e) f) Segmentation with 8× 8 px block (superimposed in red),
g) h) i) Segmentation with 32× 32 px block (red).



Chapter 5

Proposed Fingerprint

Analysis Methods

This chapter describes the following proposed �ngerprint analysis methods:

• Fingerprint sample Quality Measurement Algorithms:

� Ridge Valley Di�erence (section 5.2),

� Ridge Line Count (section 5.1),

� Contrast (section 5.3).

• Moisture Indication method (section 5.4).

The proposed Quality Measurement Algorithms perform �ngerprint sample qual-
ity estimation. Given a grey level �ngerprint sample image, they produce a
quality scalar. The function of these methods is identical as all state of the
art QMAs described in chapter 4 � the output quality values are performance
predictors of a biometric system working with the analysed �ngerprint samples.

The proposed Moisture Indication method performs an analysis of a �ngerprint
sample and similarly produces a scalar score given a grey level �ngerprint image.
However, the scalar produced does not convey quality, it expresses skin moisture
of the �ngertip that touched the sensor platen to acquire the analysed sample.
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5.1 Ridge Line Count (RLC)

The �rst proposed method is based on the count of the dark ridge lines locally
passing through each block of a �ngerprint sample. The motivation for such
measure is that �ngerprints with good quality should have a constant number
of ridges in the range 3�4, as empirical analysis shows. With the degradation of
quality, the local ridges count is expected to fall as the detection will be more
di�cult on poor quality samples.

The Ridge Line Count Quality Measurement Algorithm analyses the count of
ridges for blocks of size 32× 32 pixels. The count of ridges is extracted from an
edge map of the block. This is performed by counting the edge pixels passing
through the middle of a block that is �rst rotated so that the ridge lines are
vertical.

The edges are found using a Laplacian of Gaussian (LoG) convolution �lter.
This �lter applies a Gaussian blur and the Laplacian �lter and marks edges
where zero crossings occur, i.e. value changing from positive to negative or vice
versa.

The LoG edges �nding method is best for counting ridge lines in initial tests.
The reason for this may be that it has low�pass �ltering integrated which reduces
noise that otherwise may lead to spurious edges.

5.1.1 Block�wise score aggregation

The Ridge Line Count quality estimation method produces a block�wise score
map. To give a �nal quality score scalar, this map must be aggregated. Three
methods are proposed for this aggregation, constituting three QMAs based on
Ridge Line Count:

• Ridge Line Count Mean (RLCM),

• Ridge Line Count Number of Good blocks (RLCNG),

• Ridge Line Count Entropy (RLCE),



5.1 Ridge Line Count (RLC) 45

5.1.2 Ridge Line Count calculation procedure

The procedure of quality estimation using the Ridge Line Count QMA is de-
scribed below. Figure 5.2 shows example processing on three �ngerprint samples
with varying quality; the respective quality scores per sample after aggregation
with all proposed methods are shown in table 5.1.

1. using blocks of size 32 × 32 pixels determine the segmentation mask as
described in section 4.7.1,

2. convert the greyscale sample image into a binary image, based on a Otsu's
threshold [Ots79]1

3. divide the image into blocks of size 32× 32 pixels, for each block marked
as foreground:

(a) determine the orientation of the block:

• calculate the grey level gradient of the image,

• �nd covariance matrix coe�cients of the grey level gradients by
performing Principal Component Analysis [Pea01],

• the covariance matrix is computed as:

C =
1

N

∑
N

{[
dx

dy

] [
dx dy

]}
=

[
a c

c b

]

• the orientation angle (in radians) of the block is computed as:

angle = tan−1(
c√

c2 + (a− b)2
a− b√

c2 + (a− b)2
)

(b) rotate the block so that the ridges are vertical, crop the block so it
does not have invalid regions,

(c) �nd edges of the block by �nding zero crossings after applying the
Laplacian of Gaussian �lter shown in �gure 5.1 calculated with the
following equation:

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2

where LoG(x, y) is the response at pixel (x, y) and σ = 2.

1The binarization with Otsu's threshold is chosen to minimize the intra class variance of
the black and white pixels, as this has proven to improve the performance of the RLC method
in initial tests.
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Figure 5.1: Laplacian of Gaussian �lter used for edge detection.

(d) count edge (white) pixels that go through the middle of the rotated
image. These are pixels crossing a horizontal line as shown in �g-
ure 5.2h,

(e) divide the number of edges by 2 to get the number of ridge lines. It
is accepted that an image could have half of a ridge, no edges are
discarded.

4. From blocks that are marked as foreground with the segmentation mask,
aggregate scores via one of the following methods to compute the �-
nal quality via one the following constituted Quality Measurement Al-
gorithms:

• RLCM � mean of all foreground block values

• RLCNG � count of blocks with score above empirically chosen thresh-
old t = 2.9

• RLCE � block wise score entropy calculated as:

e = abs
( i<X,j<Y∑

i,j=0

S(i, j) ∗ log2(S(i, j))
)

where S(i, j) is the block score at block (i, j), X and Y is the hori-
zontal and vertical sizes of the block wise map respectively.

5.2 Ridge Valley Di�erence (RVD)

The second proposed method is based on the local di�erences between the pro-
portion of ridges and valleys of a �ngerprint sample. The idea behind this QMA
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RLCM RLCNG RLCE
Sample 5.2a 1.9263 0.19658 229.1521
Sample 5.2b 2.8068 0.48485 585.0143
Sample 5.2c 2.0182 0.22667 335.3489

Table 5.1: Fingerprint sample quality scores assigned to three �ngerprints from
�gure 5.2 using Ridge Line Count QMA with di�erent aggregation
methods: mean, number of good elements and entropy.

is similar to that of the Ridge Valley Uniformity QMA described in section 4.3
and as follows. Fingerprint samples of best quality feature ridges and valleys
of similar thickness. With the degradation of sample quality, the ratio between
ridges and valleys is expected to change.

This method analyses the ridge and valley thickness by calculating the di�erence
of black and white pixel proportions in each image block. Since a �ngerprint
sample is a grey level image, in order to correctly classify the pixels as black
or white, a threshold is required. In order to assess di�erent samples with
equal conditions, a static binarization threshold t = 0.5 is used (for images with
luminance in the range 0 to 1).

The di�erence between white and black pixels ratio may give negative values,
hence an absolute value is used to avoid this. The result is subtracted from 1.
This way, if the ratio of both white and black pixels is equal, the quality score
assigned to the block will be 1 (highest), and if e.g. the block is only black
pixels, the quality will be zero (lowest).

5.2.1 Block�wise score aggregation

The Ridge Valley Di�erence quality estimation method produces a block�wise
score map. To give a �nal quality score scalar, this map must be aggregated.
Three methods are proposed for this aggregation, constituting three QMAs
based on Ridge Line Count:

• Ridge Valley Di�erence Mean (RVDM),

• Ridge Valley Di�erence Number of Good blocks (RVDNG),

• Ridge Valley Di�erence Entropy (RVDE),



48 Proposed Fingerprint Analysis Methods

5.2.2 RVD calculation procedure

The procedure of quality estimation using the Ridge Valley Di�erence QMA
is described below. Figure 5.3 shows example processing on three �ngerprint
samples with varying quality; the respective quality scores per sample after
aggregation with all proposed methods are shown in table 5.2.

1. Using blocks of size 32 × 32 pixels determine the segmentation mask as
described in section 4.7.1,

2. convert the greyscale sample image into a binary image based on a thresh-
old of t = 0.5,

3. divide the image into blocks of size 32× 32 pixels, for each block marked
as foreground:

(a) count the proportion of white pixels W in the block as:

W =

k<32,l<32∑
k=0,l=0

S(k, l)[S(k, l) = 1]

| S |

where S is the block of size 32×32 pixels, S(k, l) is the value at pixel
(k, l) and | S | is the count of all pixels in the block (322 = 1024),

(b) similarly, count the proportion of black pixels B in the block as:

B =

k<32,l<32∑
k=0,l=0

S(k, l)[S(k, l) 6= 1]

| S |

where S is the block of size 32×32 pixels, S(k, l) is the value at pixel
(k, l) and | S | is the count of all pixels in the block (322 = 1024),

(c) calculate the quality score Q of that block as one minus the absolute
di�erence of the white and black pixel proportions:

Q = 1− abs(B −W )

4. From blocks that are marked as foreground with the segmentation mask,
aggregate scores via one of the following methods to compute the �-
nal quality via one the following constituted Quality Measurement Al-
gorithms:

• RVDM � mean of all foreground block values
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• RVDNG � count of blocks with score above an empirically chosen
threshold t = 0.45

• RVDE � block wise score entropy calculated as:

e = abs
( i<X,j<Y∑

i,j=0

S(i, j) ∗ log2(S(i, j))
)

where S(i, j) is the block score at block (i, j), X and Y is the horizonal
and vertical sizes of the block wise map respectively.

RVDM RVDNG RVDE
Sample 5.3a 0.11066 0.008547 28.8191
Sample 5.3b 2.8068 0.6303 40.285
Sample 5.3c 0.63961 0.35333 62.6214

Table 5.2: Fingerprint sample quality scores assigned to three �ngerprints from
�gure 5.3 using Ridge Valley Di�erence QMA with di�erent aggre-
gation methods: mean, number of good elements and entropy.

5.3 Contrast (CNT)

The third proposed Quality Measurement Algorithm is based on the measure of
luminance contrast.

In a �ngerprint sample ridges form a pattern of dark ridges and bright valleys.
The contrast is measured using Michelson's method, which measures the relation
between the spread and the sum of bright and dark luminance values. This
should be useful since for good quality samples both bright and dark features
cover similar fractions of the sample foreground. With quality degradation the
value is expected to fall.

5.3.1 Block�wise score aggregation

The Contrast quality estimation method produces a block�wise score map. To
give a �nal quality score scalar, this map must be aggregated. Three methods
are proposed for this aggregation, constituting three QMAs based on Ridge Line
Count:
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• Contrast Mean (RVDM),

• Contrast Number of Good blocks (RVDNG),

• Contrast Entropy (RVDE),

5.3.2 CNT calculation procedure

The procedure of quality estimation using the Contrast QMA is described below.
Figure 5.4 shows example processing on three �ngerprint samples with varying
moisture level of the �ngertip skin during acquisition; quality scores per sample
after aggregation with all proposed methods are shown in table 5.4.

1. Using blocks of size 8 × 8 pixels determine the segmentation mask as
described in section 4.7.1,

2. divide the image into blocks of size 8× 8 pixels, for each block marked as
foreground:

(a) calculate the Michelson contrast c of the block:

c =
Imax − Imin
Imax + Imin

where Imax and Imin represent the highest and lowest luminance

(b) the quality Q indication of the block is equal to the calculated con-
trast Q = c.

3. From blocks that are marked as foreground with the segmentation mask,
aggregate scores via one of the following methods to compute the �-
nal quality via one the following constituted Quality Measurement Al-
gorithms:

• CNTM � mean of all foreground block values

• CNTNG � count of blocks with score above an empirically chosen
threshold t = 0.6

• CNTE � block wise score entropy calculated as:

e = abs
( i<X,j<Y∑

i,j=0

S(i, j) ∗ log2(S(i, j))
)

where S(i, j) is the block score at block (i, j), X and Y is the horizonal
and vertical sizes of the block wise map respectively.
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CNTM CNTNG CNTE
Sample 5.4a 0.39257 0.0451 39449.7755
Sample 5.4b 0.60399 0.46221 55778.8541
Sample 5.4c 0.66025 0.67849 49944.2721

Table 5.3: Fingerprint sample quality scores assigned to three �ngerprints from
�gure 5.4 using Contrast QMA with di�erent aggregation methods:
mean, number of good elements and entropy.

5.4 Moisture Indication method

The fourth proposed method, Moisture Indication, does not compute the �nger-
print sample quality as performance predictor. Instead, it relates the �ngerprint
sample to the moisture of the �ngertip skin presented to the sensor platen during
acquisition.

The motivation behind such a method is to provide feedback to users, in case if
the �ngertip skin moisture is extremely low or extremely high, possibly leading
to quality degradation. If the quality of an acquired sample is indeed measured
as very poor, reacquisition may be necessary. However, if the cause behind poor
quality is extreme skin moisture, without proper feedback the reacquisition will
lead to the same poor quality again, because the conditions are unchanged.

Providing proper feedback allows the user to immediately alter the moisture level
of the �ngertip skin and hence increases the probability of quality improvement
upon sample reacquisition.

Empirical analysis of �ngerprint samples acquired from �ngertip skin with dif-
ferent moisture level shows that dry �ngers produce less contact with sensor
platen, leading to broken ridges or even missing parts of a �ngerprint. Simi-
larly, wet �ngers give an opposite e�ect where the sample looks very dark. An
example of this is shown in �gures 5.5a and 5.5c showing samples acquired
from the same �nger when it was dry and wet respectively.

The Moisture Indication method relates this impression to the moisture of the
�ngertip skin. This is performed similarly as for the Ridge Valley Di�erence
QMA described in section 5.2. The local ratios of white pixels are found for
blocks of a �ngerprint sample. The indication is the mean of these block�
wise values. This way, dry skin gives high indication and wet skin gives low
indication. Fingerprints acquired from normal conditions skin are expected to
give indications in the middle range.
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5.4.1 MI calculation procedure

The procedure of �ngerprint skin moisture estimation using the Moisture Indi-
cation �ngerprint analysis method is described below. Figure 5.5 shows example
processing on three �ngerprint samples acquired from �ngers with di�erent skin
moisture.

1. Using blocks of size 32 × 32 pixels determine the segmentation mask as
described in section 4.7.1,

2. convert the greyscale sample image into a binary image based on a thresh-
old chosen to minimize the intra�class variance of the black and white
pixels (Otsu's method [Ots79]),

3. divide the image into blocks of size 32× 32 pixels, for each block marked
as foreground:

(a) calculate the moisture indication score MI of that block as the pro-
portion of white pixels in the block:

MI =

k<32,l<32∑
k=0,l=0

S(k, l)[S(k, l) = 1]

| S |

where S is the block of size 32×32 pixels, S(k, l) is the value at pixel
(k, l) and | S | is the count of all pixels in the block (322 = 1024).

4. From blocks that are marked as foreground with the segmentation mask,
aggregate scores via mean of all block�wise scores to compute the �nal
Moisture Indication scalar score of that sample.

Moisture Indication skin moisture impression
Sample 5.4a 0.945 dry
Sample 5.4b 0.668 normal
Sample 5.4c 0.306 wet

Table 5.4: Fingerprint sample Moisture Indication scores of three �ngerprints
from �gure 5.5.



5.4 Moisture Indication method 53

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.2: Ridge Line Count quality calculation steps for di�erent �ngerprint
samples:
a) b) c) Fingerprint sample with analysed block marked in red,
d) e) f) Analysed block,
g) h) i) Edges extracted from rotated and cropped block, red line
shows which white pixels are counted,
j) k) l) Block wise RLC map.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: Ridge Valley Di�erence quality calculation steps for di�erent �n-
gerprint samples:
a) b) c) Fingerprint sample with analysed block marked in red,
d) e) f) Analysed block,
g) h) i) Block wise RVD map.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.4: Contrast quality calculation steps for di�erent �ngerprint samples:
a) b) c) Fingerprint sample with analysed block marked in red,
d) e) f) Analysed block,
g) h) i) Block wise CNT map.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: Moisture Indication score calculation steps for di�erent �ngerprint
samples:
a) b) c) Fingerprint sample with analysed block marked in red,
d) e) f) Analysed block,
g) h) i) Block wise Moisture�Indication map.
a) dry �nger, b) normal skin moisture, c) wet �nger.



Chapter 6

Experimental setup

This chapter describes the experiment carried out for this project. Section 6.1
describes the project purpose and motivation behind it. Target biometric �nger-
print sensor technology is chosen in section 6.2. The procedure of the experiment
is brie�y introduced in section 6.3, this discusses preparation, calculation, QMA
assessment and moisture impact analysis.

Fingerprint sample dataset choice and collecting new dataset are described in
sections 6.4 and 6.5. Calculation of quality values, comparison scores, and utility
values is described in section 6.6. Performance assessment of the proposed
Quality Measurement Algorithms (see chapter 5) is described in section 6.7.

Finally, section 6.8 introduces the analysis of the skin moisture impact on �nger-
print sample quality and section 6.8.2 describes the procedure of performance
assessment of the Wetness and Dryness Indication method introduced in chap-
ter 5.
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6.1 Project purpose and motivation

The main purpose of this project is to propose new methods of �ngerprint
quality estimation. The goal is to introduce methods that would be competitive
with the current state of the art, so that they could possibly be incorporated
in ISO/IEC 29794�4 [ISO10] and NFIQ 2.0 [oST], the second version of NFIQ,
which is the de facto standard.

Of additional interest is assessment whether extreme skin moisture indeed causes
biometric performance degradation [SKK01] [AFFOG+07] [MMJP09] and �nd-
ing a method that will allow to indicate such extreme moisture based on the
acquired �ngerprint sample.

The motivation for the second part is such that in case of poor sample quality
due to extreme moisture, reacquisition with unchanged conditions is likely to
result in the same impression � over and over again, leading to user frustration.
Indicating extreme moisture levels would allow the user to immediately �x the
conditions to meet requirements (e.g. wiping the �nger with cloth if it is too
moist), so that the quality will improve immediately.

6.2 Target sensor technology

As described in section 2.7, several device types can be used in order to capture
a biometric �ngerprint sample. Examples given in �gure 2.3 show that samples
di�er signi�cantly depending on the technology used for acquisition.

This project focuses on optical sensors, although it is certainly interesting to
extend to several sensor technologies. This decision is supported as follows:

• Optical sensors are oldest and most commonly used, o�er highest res-
olution and feature largest platens, allowing to capture four��nger slap
impressions as well as single �nger samples. [MMJP09] [der] [cro].

• Some optical �ngerprint systems are harder to spoof as they feature live-
ness detection methods [lum07], e.g. Dermalog LF10 [der].

• The Unique Identi�cation Number (UID) project (Aadhaar) [aad] of Unique
Identi�cation Authority of India (UIDAI) de�nes standards for �ngerprint
sensors [uid] with a recommendation that used biometric devices are cer-
ti�ed by Indian Standardization Testing and Quality Certi�cation Direc-
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torate (STQC) (most of the certi�ed devices use the optical technology)
[stq].

• The US�VISIT program of Department of Homeland Security explicitly
de�nes an optical scanner to be used for the project � a CrossMatch
Guardian FW [usv] [cro].

6.3 Procedure of the experiment

The experiment procedure is divided into three parts:

1. Preparation of data and algorithms (sections 6.4 and 6.5):

• �ngerprint sample datasets (at least one with moisture information),

• at least one �ngerprint comparator (black box or algorithm),

• at least one state of the art �ngerprint reference QMA.

2. Calculation of scores by running algorithms on the data (section 6.6):

• genuine and impostor comparison scores (via all comparators),

• observed utility scores of each �ngerprint (per comparator),

• quality indication of each �ngerprint sample.

3. Assessment of proposed QMAs performance (sections 6.7):

Performance of each proposed Quality Measurement Algorithm is to be
analyzed in terms of:

• improvement in FNMR with poor samples rejection � section 6.7.3,

• correlation of quality scores with observed utility � section 6.7.2,

• average execution time � section 6.7.1.

4. Analysis of moisture impact on comparison scores and utility (section 6.8).

Assessment of Moisture Indication method performance: (section 6.8.2):

• correlation of wetness indication with measured moisture,

• error of threshold based binary labelling of samples as dry or wet,

• average execution time.
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6.4 Existing �ngerprint dataset choice

The main part of the project, proposing good Fingerprint Quality Measurement
Algorithms, requires a dataset of �ngerprint samples.

In order to ensure fair assessment of proposed methods and a good comparison
of performance with the reference state of the art, the dataset should feature
a signi�cant amount of �ngerprints with varying quality of samples, possibly
captured from a big number of subjects with varying background (physical or
o�ce workers, etc.). This would ensure not only the �delity component of
quality is varied but also the character. As the target technology is optical
sensors, the comparison and assessment should be performed on a dataset with
samples acquired using such sensors.

Several biometric databases are available in the Center for Advanced Security
Research Darmstadt (CASED), including datasets of many biometric traits. Fol-
lowing �ngerprint sample datasets are available:

• BIOSECURE multimodal datasets [FaOgTtGr07] of the BioSecure Foun-
dation [bio]. Two multimodal datasets with �ngerprint sample subsets
(indoor and outdoor) acquired in 2 sessions each, from 667 and 713 sub-
jects respectively. Samples acquired using several sensors, unfortunately
mixed such that extraction of images acquired with optical sensors is dif-
�cult.

• SD29 dataset of NIST [NIS], containing scans of �ngerprints acquired using
o��line ink and paper method (does not include on�line acquired images).

• Ministerio de Ciencia y Tecnologia (MCYT) [OGFAS+03] database sub-
set with �ngerprints, containing samples acquired using capacitive and
optical technology from 330 subjects in several sessions resulting in nearly
40 thousand samples. O�ers highest sample count but is not publicly
available.

• Fingerprint Veri�cation Competition datasets (years 2000, 2002, 2004) �
available publicly on�line, o�er good quality degradation (also moisture
based in 2004). However, small subsets of samples around 880 samples for
years 2000 and 2002, 1440 for 2004 would require additional aggregation
of results. These datasets include samples from one �nger per person.
Moisture based quality degradation is not indicated � manual assessment
is needed to know which samples are acquired from moist �ngers.

• CASIA Fingerprint Image Database Version 5.0 (or CASIA�FingerprintV5)
[casb], big database available publicly on�line. Developed in the Institute
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of Automation of the Chinese Academy of Sciences, contains samples cap-
tured with DigitalPersona URU4000 optical �ngerprint sensor (500ppi res-
olution, size 328×356 pixels) from 500 subjects with di�erent background,
i.e. students, workers, waiters, etc. Five images per �nger, from 8 �ngers
(without the small �ngers) � 40 samples per subject, 20000 samples in
total, acquired with varying rotation and pressure.

Both MCYT and CASIA Fingerprint V5 datasets o�er a very big number of
samples, signi�cantly higher than other datasets. However, CASIA has images
captured from more subjects than MCYT, and is widely available � the choice of
a public dataset allows anyone to compare their results easily without registering
or paying for access.

Figure 6.1: Example �ngerprint samples from the CASIA FP V5 database.

CASIA Fingerprint Version 5.0 o�ers good character based quality degrada-
tion due to a signi�cant variation in subjects background and behaviour (�nger
rotation and pressure variation). Figure 6.1 shows example �ngerprints from
this dataset. Additionally, such a big dataset with big variation of quality, ac-
quired from di�erent subjects de�nitely supports a fair comparison of proposed
�ngerprint Quality Measurement Algorithms with state of the art methods.

6.5 New �ngerprint dataset collection

The second part of this project is assessing whether extreme �nger moisture
leads to utility degradation of �ngerprints acquired from that �nger and indi-
cating �nger skin moisture based on the impression of the acquired sample.

This requires a �ngerprint dataset with ground truth information about the
moisture of the �ngertip during �ngerprint acquisition. No available dataset
o�ers such moisture information. Manual o��line mark�up of samples could
be performed on one of the existing datasets, and this is usually the case �
a sample is either marked as dry, normal or wet [SKK01] [LJY02] [XYYP08]
[AFFOG+07] [MMJP09] by a person.
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However, o��line assessment may actually not correlate with the skin moisture
of the �nger presented during acquisition. In fact, manual mark�up does not
indicate whether it was indeed moisture that caused the impression, or for ex-
ample high force applied to the sensor platen � this is shown in �gure 6.2, where
a sample acquired from a wet �nger (6.2c) looks similar to the sample acquired
with pressure (6.2d) to an untrained eye. This project covers moisture variation,
though it is certainly interesting to investigate pressure and moisture�pressure
variation as well.

(a) dry

62.5%

(b) normal

84.6%

(c) wet

99.9%

(d) pressure

84.6%

Figure 6.2: Fingerprint samples acquired with an optical scanner from the
same �nger with di�erent skin moisture and at varying pressure.
Giving di�erent impressions: a) dry, b) normal, c) wet, d) pressure.

Therefore, a dataset collection is performed, with ground�truth indication of
skin moisture during acquisition. This ground truth can be measured subjec-
tively by a person, but this would be limited to few categories (dry, normal,
wet) to avoid errors and thus precision would be low. Thus, the moisture of the
�ngertip skin is measured objectively using a digital device.

The collected �ngerprint sample dataset is referred to as WDSET (abbreviated
Wet Dry Dataset).

6.5.1 Moisture measurement

The outermost layer of the human skin is called epidermis. It is composed of
several layers with the stratum corneum layer on the surface. Several commer-
cial devices measuring the moisture of stratum corneum skin layer perform the
measurement either by analysing the capacitance or the conductance of the skin
[CB12] [ANN+].

Clarys et al. [CB12] have analysed both approaches, their analysis can be



6.5 New �ngerprint dataset collection 63

summarised as follows:

• measurements done via both types of devices are similarly a�ected by the
dielectric constant of the moisture which covers the skin surface.

• fat (mineral oil) has lower dielectric constant (2) than ethanol (50) or
water (80) and thus the measurement is more in�uenced on the latter,

• capacitance method carries information from deeper parts of the skin than
impedance (45µm vs. 15µm),

• both measurement approaches show high correlation (r=0.97)

Professional skin moisture measurement devices specialized for medical or cos-
metic purposes are di�cult to purchase and rather expensive. Fortunately, it is
possible to obtain cheaper alternatives of Chinese production via most popular
auction services. Wide availability and low cost of these would support the ease
of reproducibility of the experiment.

Figure 6.3: Face Care Moisture Monitor SK�3 [ske]

For this experiment, a moisture measuring device "Moisture Meter SK�3" pro-
duced by Chinese company Face Care in the Shenzhen Kier Electronic Appa-
ratus Factory [ske] is chosen. It is shown in �gure 6.3. This device uses the
conductance method to give a percentage score; it is cheap to purchase, light
(40g), small and portable.

Example �ngerprint samples with measurements from this device are shown in
�gure 6.2. Extreme moisture levels, when the �nger skin is covered with water
are indicated by 99.9% (over the range).

The Moisture Meter SK�3 takes around 10 seconds per �nger to measure skin
moisture. It performs calibration before each measurement and initial tests have
shown that in cases of extreme moisture where the probe is soaked with water,
the device may become inoperable until it fully dries.
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6.5.2 Fingerprint sensors

For the data collection the following �ve optical �ngerprint scanners with reso-
lution of 500dpi are used:

• LScan 100 by Cross Match Technologies Inc. [cro],

• DFR�2100 Single Finger Reader by L�1 Identity Solutions Inc. (acquired
by Safran S.A.) [mor],

• ZF�1 by Dermalog Identi�cation Systems GmbH [der],

• Patrol ID by Cross Match Technologies Inc. [cro],

• Guardian by Cross Match Technologies Inc. [cro].

Figure 6.4 shows the sensors and technical speci�cations are given in table 6.1.

(a) (b) (c) (d) (e)

Figure 6.4: Fingerprint sensors used for data collection:
a) Dermalog ZF�1
b) CrossMatch PatrolID
c) CrossMatch LScan100
d) CrossMatch Guardian
e) Safran (L�1) DFR�2100

6.5.3 Skin conditions variation

For the dataset, of interest are �ngerprints acquired from �ngers with varying
skin moisture under constant force (pressure) applied to the sensor.
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Sensor Platen size Image size Operating humidity
L SCAN 100 31.5× 31.5mm 620× 620px 10-80% (non-condensing)
DFR 2100 25× 25mm 500× 500px 20-80% (non-condensing)
Patrol ID 81× 76mm 800× 750px 10-90% (non-condensing)
Guardian 81× 76mm 800× 750px 10-90% (non-condensing,

splash resistant)
ZF 1 24× 16mm 320× 480px "Excellent quality for dry

and wet �ngerprints" [der]

Table 6.1: Speci�cations of �ngerprint sensors used for data collection

6.5.3.1 Constant force

In order to ful�l the requirements of invariant pressure during sample acquisi-
tion, the dataset collection is performed using a weight of 133 grams placed on
a �nger prior to acquisition. The subjects are instructed to acquire the sample
as follows:

1. put the �nger on the sensor platen and do not apply force,

2. put the weight on the �nger just above the �ngernail,

3. the sample is acquired manually by the software operator.

6.5.3.2 Varying moisture

Usually the hands of a subject do not show extreme moisture levels in o�ce
conditions, and therefore additional treatment is required to give su�ciently dry
and wet impressions with a limited number of participants and o�ce conditions.

There are four impressions of interest � natural and untreated, arti�cially dried,
arti�cially moistened, and �nally arti�cially overmoisturized. To obtain these
impressions, the following treatment is used:

• For the normal impression, there is no treatment and the �ngerprint is
captured with subjects natural �ngertip moisture.

• For the dry impressions, the treatment is to gently clean the �nger with
alcohol solvent (68% 760g/l ethanolum, 2% acidum salicylicum, 30% wa-
ter) and wait a few seconds until the solvent remainings evaporate form
the skin surface.
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This simulates a practical case when subjects clean their hands with a
disinfecting alcohol�based soap.

• To arti�cially moisturise the �nger after drying, water based body lotion
(Dove Essential Nourishment Body Lotion) is used � normal lotion would
be harder to detect using the moisture measurement device, since water
has highest dielectric constant � therefore oil is not used.

This simulates a practical case where subjects would use hand lotion before
sample acquisition.

• To ensure over moisturised �ngers are also presented to the sensors, the
�ngers are �nally put in water. Prior to this step, remaining excessive
lotion is removed with a cloth, but the hands are not thoroughly washed.

This simulates a practical case when subjects present their wet hands when
e.g. it was raining or non�dried after washing.

6.5.4 Acquisition procedure

The dataset collection is performed indoors in a calm o�ce to ensure common
environmental conditions for all participants. Each subject is instructed to
follow a strict procedure, where the skin conditions of �ngers are varied as
discussed in section 6.5.3, in order.

All of ten �ngers are subject to acquisition using all �ve sensors in a random
order. Fingertip skin moisture of each �nger is measured prior to acquisition
with all �ve sensors in a row and this value is registered for each �ngerprint
sample.

The sensor order is random to avoid possible balancing caused by slight moisture
variations between sensors � e.g. if acquisition with �ve sensors causes the
moisture to degrade and the order is �xed, then the last sensor in the row would
have the driest �ngers for the same moisture indication as the �rst.

To further eliminate the possibility of skin moisture changing between sensors,
the delay between acquisitions is minimized and if a pause longer than a few
seconds is made between two sensors, an additional measurement is performed
before remaining acquisitions and new moisture is registered for these samples.

Before each acquisition, the sensor platen is cleaned to ensure no residual image
remains. Similarly, the moisture measurement device probe is cleaned after each
moisture measurement.
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Initial tests have shown that the impact and moisture change between sensors
is very small and randomizing the order is su�cient to avoid balancing error.

The procedure of data collection is as follows:

1. Normal acquisition of each �nger (untreated).

• Perform moisture measurement of �ngertip by touching the probe to
the �nger and pressing the measurement button.

• Acquisition with all sensors in random order (place �nger on platen,
place weight on �nger, acquire sample and register the measured
moisture).

2. Dry acquisition of each �nger (dried with alcohol).

• Clean �ngertip with alcohol�soaked cloth.

• Dry �ngertip with dry paper.

• Wait a few seconds until the alcohol fully evaporates.

• Perform moisture measurement of �ngertip by touching the probe to
the �nger and pressing the measurement button.

• Acquisition with all sensors in random order (place �nger on platen,
place weight on �nger, acquire sample and register the measured
moisture).

3. Normal acquisition of each �nger 2 (moisturized with water�based body
lotion).

• Apply a bit of lotion to �ngertip and distribute uniformly so a thin
layer is formed.

• Immediately perform moisture measurement � before the lotion in-
gredients proportion changes due to evaporation or absorption by
skin. This ensures common conditions for all people.

• Acquisition with all sensors in random order (place �nger on platen,
place weight on �nger, acquire sample and register the measured
moisture).

4. Wet acquisition of each �nger (treated with water).

• Apply water to �ngertip, shake o� excessive droplets of water but
ensure the �nger is covered with water and not just humid.

• Acquisition with all sensors (place �nger on platen, place weight on
�nger, acquire sample; moisture level is registered as 99.9%).1.

1All samples acquired during the last session are registered with moisture level of 99.9%
without the actual measurement performed to speed up the procedure.



68 Experimental setup

6.5.5 Dataset collection summary

The �ngerprint dataset collection resulted in a total number of 6600 �ngerprint
samples acquired from 33 subjects � 200 �ngerprints per person; 1650 samples
for each of the four procedure steps: "normal", "dry", "lotion" and "water".

The �ngerprints were acquired from participants of varying age and ethnic origin
as shown in table 6.2. The procedure took one hour per person on average.

Prior to acquisition, each of the participants had agreed and signed a form
stating that the acquired �ngerprints may be used for research purposes.

Age
max 59 min 23 average 33.5

Ethnic origin
Caucasian 25 Asian 7 Mid.Eastern 1

Sex
Female 16 Male 17 total 33

Table 6.2: Fingerprint dataset collection participants data summary.

6.6 Fingerprint sample analysis

This section describes the second part of the experiment procedure � calculation
of values � comparison scores, utility and quality.

Three �ngerprint comparators are available in the Center for Advanced Security
Research Darmstadt (CASED) [CASa], these are extracted from commercially
available products, o�ered for research purposes by their vendors.

The source of these comparators is con�dential and thus they are treated as
black boxes that produce a comparison score given two �ngerprint samples. In
CASED these algorithms are known under codenames "28", "63" and "83" and
this naming convention is also used in this document.

6.6.1 Comparison score calculation

Comparison scores between all pairs of �ngerprints are calculated for each of
the two datasets using each of the available comparators such that:
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• all genuine comparison scores are calculated for each dataset, with an
exception that no sample is compared to itself,

• a limited number of impostor comparison scores is calculated for each
dataset.

For CASIA, 100 impostor comparison scores per �ngerprint sample are calcu-
lated. For the collected dataset, WDSET, this number is 20 per sensor, i.e. for
each �ngerprint of index �nger acquired with sensor 1, it will have 20 impostor
scores generated by comparing it with �ngerprint samples acquired with sensor
1 from 20 other subjects' index �ngers.

6.6.2 Observed utility extraction

For each of the two datasets, all �ngerprints of a dataset have their utility
related quality value extracted (calculated). This is performed as described in
section 3.4, for each of the three �ngerprint comparators.

The result is that each �ngerprint from both datasets has three utility values
related. These values are treated as ground truth observed performance.

6.6.3 Fingerprint quality estimation

The following reference and proposed methods are used to measure �ngerprint
quality of each �ngerprint sample:

• NFIQ 2.0 candidate Quality Measurement Algorithms (see chapter 4):

� Orientation Certainty Level (OCL),

� Ridge Valley Uniformity (RVU),

� Local Clarity Score (LCS),

� Gabor Shen (GSH),

� NIST Finger Image Quality (NFIQ).

• Proposed Quality Measurement Algorithms with all aggregation methods
(see chapter 5):

� Ridge Valley Di�erence Mean (RVDM),

� Ridge Valley Di�erence Entropy (RVDE),
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� Ridge Valley Di�erence Number of Good blocks (RVDNG),

� Ridge Line Count Mean (RLCM),

� Ridge Line Count Entropy (RLCE),

� Ridge Line Count Number of Good blocks (RLCNG),

� Contrast Mean (CNTM),

� Contrast Entropy (CNTE),

� Contrast Number of Good blocks (CNTNG).

Running each method per �ngerprint sample results in quality indication of that
sample. Therefore, each �ngerprint is associated with 14 quality values.

Additionally, the proposed wetness detection method is also ran similarly and
results in wetness�indication value that is also associated with the samples.

However, the wetness indication method is only run on WDSET, since only this
dataset has the objective moisture measurement.

6.6.3.1 Image segmentation

All of the Quality Measurement Algorithms used in this experiment utilize a
segmentation algorithm in order to separate the valid �ngerprint foreground
from the whole sample.

This way, the aggregation of scores assigned to each block of an analysed sample
is only performed for blocks that are marked as foreground.

The method described in section 4.7 is used for all the proposed methods and
the following reference QMAs: OCL, LCS and RVU. All of the methods use
the segmentation procedure with a block size of 32 × 32 pixels, except for the
Contrast QMA, which performs segmentation using blocks of size 8 × 8 pixels,
because it operates on blocks of such size as well.

The Gabor Shen (GSH) QMA uses its own speci�c segmentation based on the
response of the �lter (see section 4.5 for the description). The NIST Finger
Image Quality (NFIQ) QMA [TW05] calculation procedure does not mention
image segmentation.
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6.7 Proposed methods performance assessment

The performance of each proposed �ngerprint Quality Measurement Algorithm
is assessed in terms of:

• average execution time,

• correlation of quality scores with observed utility,

• improvement in False Non�Match Rate with poor quality samples rejec-
tion.

6.7.1 Average execution time

The average execution time of each assessed �ngerprint Quality Measurement
Algorithm is calculated as follows:

1. for each available �ngerprint sample dataset randomly choose 400 �nger-
print samples,

2. run the method for each of the samples and measure the average execution
time,

3. calculate the total average from all available datasets.

6.7.2 Correlation with utility

Similarly as performed for NFIQ 2.0 Features Evaluation [n�a], each Quality
Measurement Algorithm performance is assessed in terms of how the generated
quality scores relate to the utility values. Utility score extraction is performed
as described in section 3.4.

To assess how well this relationship can be described using a monotonic function,
the correlation value is calculated with Spearman's rank correlation coe�cient:

ρ =

∑
i(xi − x)2

∑
i(yi − y)2√∑

i(xi − x)2
∑
i(yi − y)2
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Where xi and yi are ranks of values Xi and Yi respectively, taken from the two
sets of values X and Y , i.e. the set of quality scores and the set of utility scores.

For ease of readability, each correlation value is multiplied by 100 and rounded,
such that all values are in range from -100 to +100.

This is performed per dataset. For each dataset, each QMA quality indication is
correlated with all other QMA indications and all three utility values (one utility
for each of the three comparators 28, 63 and 83). Additionally, the correlation
between utility values is also measured to show their relation.

This allows not only to assess the performance of each method individually, but
to relate the methods between each other � high correlation between two QMAs
suggests they are very similar metrics, whereas low correlation shows that they
are complementary.

6.7.2.1 Collective assessment

In order to �nally assess the proposed QMAs using this method, the average of
correlation values are calculated per dataset from all three utility values (from
comparators 28, 63 and 83). Then the average from both datasets is computed.

Some quality indications may give positive correlation for one provider or dataset
and negative for another. Therefore the averages are taken from absolute values
of these coe�cients.

This way it is possible to assess the proposed methods in terms of correlation
with utility across all chosen datasets and available comparators.

6.7.3 Error versus Reject Curves

Finally, the performance of proposed methods is assessed with Error versus
Reject Curves, described in section 3.5.1.2. These curves directly show how
False Non�Match Rate improves with rejection of poor quality samples.

The ERC plots are generated for all 14 quality metrics for each of the available
datasets and each of the three available comparators. The plots are generated
for FNMR of 10 per cent, similarly as in [GT07]. The maximum fraction rejected
of interest is 35 per cent.
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6.7.3.1 Collective assessment

Quantitative analysis of ERC curves is di�cult with more than a few lines, i.e.
it is possible to say which QMA is better when there are e.g. only three curves
to compare. With 14 lines this task is almost impossible, especially if the curves
are not straight and cross.

However, it is possible to quantitatively express how low a certain Error versus
Reject Curve is, across the whole fraction�rejected range of interest (zero to
35%), by integrating the curve to �nd the area under it. The smaller the area
the lower the curve on average. Even if two curves overlap, comparing their
area will show which is better on the full fraction�rejected range of interest.

In order to improve the readability of this area indication and normalize the
scores, the area under the ideal case ERC is also calculated and subtracted from
all ERC curves' areas. This way the ideal case has an indication of zero and
evaluated QMAs are scored in range zero plus.

This is illustrated in �gure 6.5, where the lightly shaded triangle represents the
area under ideal case and the dark shaded area is the normalized area 'score' of
the QMA represented by the blue curve. The score is obtained by rounding the
area, which is �rst multiplied by 100 for readability.

Figure 6.5: Error versus Reject Curve plot with areas used for QMA scoring
marked in light grey � ideal case, dark grey � blue curve QMA.

All the generated ERC curves areas are calculated and this information is used to
build a score card. Such a score card has values per dataset and per comparators,
plus averages per dataset and total average information. This is expected to
show which QMA gives best FNMR improvement on average across all datasets
and comparators.
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6.7.3.2 NIST operational dataset

Additionally to the Error versus Reject Curves generated for the chosen datasets,
the proposed and reference quality metrics are executed on a �ngerprint data
subset owned by the National Institute of Standards and Technology (NIST)
[NIS].

This subset is 2000 �ngerprint samples extracted from operational data which is
con�dential � the data is acquired in real scenarios, not laboratory environment.

Fingerprints of high quality variation are featured, chosen speci�c for Quality
Measurement Algorithm evaluation. For this dataset, evaluation is performed
using Error versus Reject Curves.

6.8 Moisture impact on quality

The moisture information that is relevant for this project is the relation of the
�nger skin wetness with the performance of the sample acquired from that �nger.
This relation is expressed by:

• correlation of measured moisture with observed utility,

• relation between moisture genuine comparison scores2.

The analysis is expected to show that extreme moisture levels lead to perfor-
mance degradation and that samples below or above a certain moisture threshold
can be labelled as dry or wet respectively. This may vary between comparators.

6.8.1 Moisture impact on comparison scores

In order to analyse how certain moisture a�ects the quality of samples, observed
performance is related to the measured moisture.

In theory, the observed performance could be extracted utility or compari-
son scores. However, utility calculation performs high averaging of comparison
scores and actually discards the most extreme values. This way, several samples

2Impostor comparison scores are expected to remain low regardless of the quality or mois-
ture and therefore their relation is not analysed
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that may indicate correlation would not even be analysed. Initial experiments
show that this is the case Hence, utility and moisture correlation is not of in-
terest.

Therefore, the performance of samples is expressed as comparison scores. These
values are generated for a pair of samples and thus the results are shown as heat
maps. This way X and Y axis show the moisture level and the colour of the
map represents the comparison score.

The heat maps are generated per sensor and per comparator, with moisture
levels binned into 15 levels (each 4% of moisture indication). This is expected
to show di�erences between sensors and between comparators.

6.8.2 Proposed moisture indication method performance

Performance of the wetness indication method is assessed as:

• average execution time of this method for 400 samples randomly chosen
from each dataset and the overall average,

• correlation of the wetness indication score with the registered sample mois-
ture � the higher the correlation, the better the method (this is calculated
using Spearman's rank correlation coe�cient),

• error in threshold based binary classi�cation of samples as dry or wet,
accordingly to the moisture threshold.

6.8.2.1 Binary decisions

The Moisture Indication method can be used as a binary classi�er, when com-
pared to a threshold. This can be performed to detect if the �nger is dry, and
to detect if the �nger is wet � two thresholds are required.

However, before the Moisture Indication thresholds can be chosen, it is cru-
cial to know which moisture levels actually cause performance degradation (if
any). The moisture analysis described in section 6.8 is expected to show cer-
tain thresholds, i.e. low moisture threshold below which performance is low and
similarly high moisture threshold.
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When the moisture thresholds are known, e.g. samples with moisture below
69% are considered as dry and above 96% as wet, the thresholds of Moisture
Indication for dryness and for wetness can be found.

This is performed by analysing the Detection Error Tradeo� (DET) curves,
which show the relation of False Positive (FP) and False Negative (FN) detection
rates for all possible thresholds. This way, a threshold of interest is chosen such
that both FN and FP remain reasonably low.



Chapter 7

Experimental results

This chapter describes the results obtained from executing the experiment pro-
cedure described in chapter 6.

Statistics of genuine and impostor comparison scores calculated on the datasets
with the available comparators are described in section 7.1. Section 7.2 describes
the results of the performance evaluation of the proposed Quality Measurement
Algorithms.

The impact of moisture of the skin on �ngerprints quality is analysed in sec-
tion 7.3. Finally, section 7.4 describes the performance measurement results of
the Moisture Indication method.

7.1 Calculated comparison scores

The distributions of comparison scores calculated as described section 6.6.1 are
shown in �gure A.1 in Appendix A. Six histograms showing the number of
genuine (blue) and impostor (red) comparison scores are shown, one for each
dataset�comparator combination respectively.
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Each comparator behaves similarly on both datasets, but the distributions are
signi�cantly di�erent between comparators. This is both for genuine and im-
postor score distributions.

7.1.1 Impostor distributions

Comparators 28 and 63 produce impostor scores in the lowest range, whereas
impostor scores from comparator 83 show a nearly normal distribution in the
�rst half of the total range of this comparator.

7.1.2 Genuine distributions

On WDSET, comparator 28 gives a �at distribution of genuine scores with a
higher concentration in the highest range. On CASIA, the distribution is similar,
but the top range peak is smaller and there is higher concentration in the lowest
20 per cent of the range.

Comparator 63 gives a normal distribution of genuine scores on both datasets
in the �rst three quarters of the range and with a peak in the lowest range. The
peak is small on WDSET and reaches half of the total count for CASIA.

Finally, comparator 83 gives genuine scores almost geometrically growing to-
wards the top of the range for both datasets.

7.1.3 Summary

Di�erences in distributions between comparators show that each performs dif-
ferently. Di�erences between datasets for each comparator suggest that the
samples in each dataset di�er in terms of quality.

The overlap between genuine and impostor comparison scores is high when
comparator 63 is used, especially on the CASIA dataset where almost half of the
genuine scores are in the same range as impostor scores. A possible explanation
is that several �ngerprints from the CASIA dataset are acquired with high �nger
rotation and perhaps comparator 63 does not perform well in such cases.

As for comparators 28 and 83, both give a smaller overlap between genuine and
impostor scores than comparator 63. Their performance is similar on WDSET,
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but 83 produces slightly less genuine comparison scores in the range of impostor
scores with CASIA. Hence, 83 is the best available comparator on the used data.

7.2 Proposed methods evaluation

As described in section 6.7, performance of proposed �ngerprint Quality Mea-
surement Algorithms is evaluated in terms of execution time and how well the
quality indication of the proposed methods predicts the performance of the anal-
ysed �ngerprint samples via Error versus Reject Curves, and via correlation with
utility values.

7.2.1 Execution time

Average execution time of each proposed and each reference �ngerprint Qual-
ity Measurement Algorithm method is calculated as described in section 6.7.1.
Table 7.1 shows the results.

Full name code WDSET CASIA Avg.
Nist Finger Image Quality NFIQ 0.206 0.212 0.209
Gabor Shen GSH 0.352 0.277 0.315
Ridge Valley Uniformity RVU 0.229 0.247 0.238
Orientation Certainty Level OCL 0.144 0.124 0.134
Local Clarity Score LCS 0.295 0.295 0.295
Ridge Line Count Mean RLCM 0.605 0.591 0.598
Ridge Line Count Entropy RLCE 0.607 0.589 0.598
Ridge Line Count No.Good RLCNG 0.607 0.589 0.598
Ridge Valley Di�erence Mean RVDM 0.114 0.093 0.104
Ridge Valley Di�erence Entropy RVDE 0.114 0.093 0.104
Ridge Valley Di�erence No.Good RVDNG 0.114 0.093 0.104
Contrast Mean CNTM 0.847 0.662 0.760
Contrast Entropy CNTE 0.849 0.649 0.749
Contrast No.Good CNTNG 0.848 0.647 0.748

Table 7.1: Execution time � reference and proposed Quality Measurement Al-
gorithms � per 400 samples from databases: CASIA Fingerprint
V5.0, collected dataset � WDSET, average.

All proposed methods and three of the reference methods are generally executing
faster on the CASIA database than on WDSET; Ridge Valley Uniformity and
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NFIQ are a bit slower. Shorter execution times on the CASIA dataset may be
caused by smaller sample image sizes (see sections 6.5.2 and 6.4).

The averaged execution times of reference methods are between 0.134 seconds
of the Orientation Certainty Level QMA and 0.315 seconds of Gabor Shen. The
NFIQ QMA takes 0.209 seconds on average to analyse a �ngerprint sample.

The slowest proposed method is Contrast, as it takes 0.76 seconds with the mean
aggregation, 0.749 with entropy and 0.748 using number of blocks with score
above threshold. This method is slower than all reference methods probably
because of increased number of blocks � this method analyses samples in blocks
of size 8× 8 pixels, whereas all other methods use blocks of 32× 32 pixels.

The fastest proposed method is Ridge Valley Di�erence � it takes 0.104 seconds
to analyse a �ngerprint sample using all aggregation methods. This method is
also faster than all the reference methods.

The Ridge Line Count QMA takes 0.598 seconds to execute, regardless of the ag-
gregation method used. It is faster than Contrast, yet slower than the reference
methods and the Ridge Valley Di�erence QMA.

7.2.2 Error versus Reject Curves

The proposed Quality Measurement Algorithms are analysed in terms of False
Non�Match Rate drop with rejection of poor quality samples, as described in
section 3.5.1.2. The results are described in terms of area under the graph,
such that the value closest to zero shows best performance of a QMA (see
section 6.7.3.1).

Table 7.2 shows the ranking of all reference and proposed methods. The scores
shown are averages from all comparators on each database. Additionally, the
results of ERC assessment on the operational NIST dataset (see section 6.7.3.2)
are shown in the last column of this table.

Full results � per�comparator averages and actual Error versus Reject Curve
plots are featured in Appendix B.

Performance of the reference and proposed methods is generally better on WD-
SET than on CASIA (though there are exceptions, OCL, RVDM and CNTM,
which perform better on CASIA). This shows that the datasets di�er in terms
of quality variation.
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QMA name code CASIA WDSET avg NIST
Nist Finger Image Quality NFIQ 2.24 2.03 2.14 N/A

Gabor Shen GSH 2.07 1.23 1.65 3.36
Ridge Valley Uniformity RVU 2.19 1.36 1.78 2.96

Orientation Certainty Level OCL 2.28 2.59 2.44 2.54
Local Clarity Score LCS 2.43 1.60 2.02 2.36

Ridge Line Count Mean RLCM 1.97 0.99 1.48 2.65
Ridge Line Count Entropy RLCE 1.99 0.78 1.39 2.64
Ridge Line Count No.Good RLCNG 1.96 1.08 1.52 2.75
Ridge Valley Di�erence M. RVDM 2.11 2.70 2.41 3.10
Ridge Valley Di�erence E. RVDE 2.62 2.03 2.33 3.05

Ridge Valley Di�erence NG. RVDNG 2.17 2.64 2.41 3.10
Contrast Mean CNTM 2.23 2.70 2.47 2.98

Contrast Entropy CNTE 2.86 2.06 2.46 3.50
Contrast No.Good CNTNG 2.06 1.67 1.87 2.97

Table 7.2: QMA ranking based on ERC ranking averaged from all three com-
parators on both datasets: CASIA andWDSET. The fourth column
(avg) shows the average from both datasets. Results from the NIST
operational dataset (see section 6.7.3.2) are shown in the last, �fth
column. Lower values represent better performance. Numbers are
calculated as described in section 6.7.3.1 and shown in �gure 6.5.

The ERC score averaged from both datasets shows that reference methods score
from 1.65 (best, Gabor Shen) to 2.44 (worst, OCL). The proposed methods reach
a wider span of scores � from 1.39 (Ridge Line Count Entropy) to 2.47 (Contrast
Mean). The worst of proposed methods is only slightly worse than the worst
of the reference methods, and the best proposed method outperforms the best
reference.

The best proposed method is Ridge Line Count, which with all aggregation
methods produces ERC scores lower (better) than the best reference � Gabor
Shen. Another very good proposed method is Contrast with number of good
blocks aggregation � it outperforms three of the reference methods � NFIQ,
RVU and OCL.

Contrast QMA with Mean and Entropy aggregations show worse performance
than with Number of Good Elements aggregation with samples from CASIA and
WDSET. Ridge Valley Di�erence QMA is generally the worst of the proposed
methods because all aggregation methods give poor results. Although RVD still
outperforms the reference Orientation Certainty Level.
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7.2.2.1 NIST operational dataset

The ERC results from the NIST dataset show slightly di�erent behaviour of
QMAs. On this dataset, the best performing reference method is Local Clarity
Score, with a score of 2.36. Next is Orientation Certainty Level with 2.54, which
was the worst on the other datasets.

The worst performing (score 3.36) is Gabor Shen, a QMA that performed best
on the other datasets. The reason behind this surprising result is unknown.
NFIQ was unfortunately not assessed on this dataset.

The best proposed method is Ridge Line Count � with entropy and mean (scores
2.64 and 2.65 respectively)aggregations, it outperforms Gabor Shen and Ridge
Valley Uniformity. OCL and LCS are better than this method on the NIST
dataset.

The Contrast QMA with number of good blocks aggregation gives a score of
2.97, slightly worse than RVU (2.96). Ridge Valley Di�erence does not o�er a
very good performance on the NIST operational dataset.

Reference methods show di�erent behaviour on the NIST dataset than on CA-
SIA and WDSET. Proposed methods behave similarly, Ridge Line Count shows
best performance, although CNTNG is not that good on the NIST dataset.

7.2.3 Correlation with utility

As described in section 6.7.2, performance of the Quality Measuement Algo-
rithms is assessed in terms of how well the quality correlates with observed
utility. Table 7.3 shows the average correlation results for CASIA, WDSET,
and the total average.

The correlation scores on WDSET are better (higher) than on CASIA. This
shows that the assessed QMAs perform better on the former dataset.

On average, best performance is achieved by the NFIQ algorithm. This is
expected as it is the current de facto standard. The following best performing
reference methods are Gabor Shen and Ridge Valley Uniformity with a tied
score of 47. LCS and OCL give scores 32 and 30 respectively.

The best score of the proposed methods is achieved by Ridge Line Count with
Entropy aggregation (48). With number of good blocks aggregation, RLC has



7.2 Proposed methods evaluation 83

name code CASIA WDSET total avg
Nist Finger Image Quality NFIQ 39 62 51

Gabor Shen GSH 35 59 47
Ridge Valley Uniformity RVU 30 64 47

Orientation Certainty Level OCL 28 31 30
Local Clarity Score LCS 26 57 42

Ridge Line Count Mean RLCM 36 41 39
Ridge Line Count Entropy RLCE 41 55 48
Ridge Line Count No.Good RLCNG 40 45 43

Ridge Valley Di�erence Mean RVDM 33 28 31
Ridge Valley Di�erence Entropy RVDE 17 32 25
Ridge Valley Di�erence No.Good RVDNG 35 29 32

Contrast Mean CNTM 25 15 20
Contrast Entropy CNTE 10 19 15
Contrast No.Good CNTNG 36 37 37

Table 7.3: Correlation of quality and utility scores. Averages calculated for
all three comparators for CASIA and WDSET. Last column shows
the total average. Scores are calculated as an absolute value of
Spearman's RHO multiplied by 100 and rounded. Higher values
represent better performance

a score of 43. Therefore, the proposed RLCE method is only worse than NFIQ,
it outperforms Gabor Shen and Ridge Valley Uniformity.

Proposed Contrast with number of good blocks aggregation scores of 37. Other
aggregation methods are worse. Ridge Valley Di�erence with number of good
blocks aggregation it scores 32. Both CNT and RVD with this aggregation
method outperform Orientation Certainty Level.

The worst performing proposed methods are Contrast Entropy (15) and Ridge
Valley Di�erence Entropy (25). Considering the scores of all methods assessed
as NFIQ 2.0 candidates [n�a], these are still good results.

7.2.3.1 Inter�method correlation

Tables C.1 and C.2 in Appendix C are constructed as in the NFIQ 2.0 candi-
date features evaluation document [n�a]. These tables show the inter�method
correlation scores. Analysis of such correlation allows to assess whether two
methods give similar indication, or if their scores are complementary.
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The highest correlation between a pair of two reference methods (GSH and
LCS) is 76 and 82 for CASIA and WDSET respectively. None of the proposed
methods gives a higher correlation with the reference methods on WDSET, but
on CASIA the Ridge Valley Di�erence with Mean aggregation has a correlation
score of 80 with Gabor Shen.

Generally all proposed methods are considered complementary to the set of ref-
erence Quality Measurement Algorithms because their respective inter�method
correlation scores are su�ciently low.

7.2.4 Summary

All proposed methods work � performance of the analysed samples is predicted
by the quality output when using all of the proposed methods with all aggrega-
tion methods tested.

7.2.4.1 Execution time

Average execution times of the proposed methods show that one of the methods
is de�nitely fast to compute, as it outperforms all reference methods. Two other
proposed QMAs are twice as slow as the reference methods. However, there
are no known boundaries of execution time of a Matlab interpreted�language
implementation.

The NFIQ 2.0 project aims at execution time of less than 150ms [Ols13] in order
to be incorporated in acquisition loops of live �ngerprint sensors. Current de
facto standard NFIQ takes 209ms to execute.

With a compiled�language implementation, the execution time of the proposed
methods is expected to improve by an order of magnitude, especially for the
very simple Contrast QMA. Therefore it is believed that all proposed methods
are su�ciently fast to compute to be possible NFIQ 2.0 candidates.

7.2.4.2 Error versus Reject Curves

From the proposed methods, Ridge Line Count with all aggregation methods
o�ers very good performance in comparison to the reference methods on all
available data, including results from NIST.
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Contrast with number of good blocks aggregation o�ers good performance, es-
pecially on the collected dataset � WDSET.

All Ridge Valley Di�erence based QMAs and Contrast with Mean or Entropy
aggregation o�er acceptable performance, but not signi�cantly better than the
reference QMAs.

7.2.4.3 Correlation with utility

In this assessment, the Ridge Line Count QMA is better than four of the �ve
reference methods and almost as good as the current de facto standard.

Other proposed Quality Measurement Algorithms o�er acceptable performance
(non�zero correlation), but in the best case outperform only one of the reference
methods.

The proposed methods are complementary to the set of reference methods as
all of them have low inter�method correlation scores.

Results of ERC and utility correlation di�er since the former analyses the worst�
quality 35 per cent of samples, whereas the latter operates on the full range.

7.3 Moisture impact on quality

This section describes the impact of �ngerskin tip moisture on the quality of
�ngerprints acquired, as described in section 6.8.

This analysis is performed on WDSET � the dataset collected accordingly to
the procedure described in section 6.5.

7.3.1 Measurement statistics

The distribution of measured moisture values with respect to the procedure steps
(untreated, dried with alcohol, moistened with lotion and �nally with water) is
shown in �gure 7.1.

The distribution of measurements from �ngers dried with alcohol is in a range
lower than those acquired from �ngers with body lotion applied. Untreated
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Figure 7.1: Distribution of measured moisture with respect to each step of the
acquisition procedure.

�ngers have a distribution of measurements similar to that of alcohol and crème
combined.

The acquisition procedure worked as expected and WDSET contains samples
acquired from �ngers with di�erent skin moisture level. The minimum and
maximum measured moisture values are 41 and 99.9 per cent respectively, where
the latter denotes an over the range measurement as described in section 6.5.1.

7.3.2 Moisture versus comparison scores

The impact of moisture on calculated genuine comparison scores causes degra-
dation of scores for certain high and low moisture levels. Figure 7.2 shows a
heat map that relates comparison scores (block colour) to moisture of compared
samples. Moisture is indicated on the x and y axes in the range from lowest
measured 41% to highest 99.9%.

This heat map is generated as described in section 6.8.1, for comparator 28
using samples acquired from all sensors. The dark blue areas in the absolute
lowest range are caused by the fact that almost no samples were captured with
this lowest moisture level below 45% � it does not indicate a drop of comparison
scores.
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Figure 7.2: Moisture impact on comparison scores heat map. Comparator 28
on all sensors. Colour of the square shows the average comparison
score of samples with moisture in the range for which the square
is drawn. Horizontal and vertical axes show measured moisture
percentage.

7.3.2.1 Fingerprint comparator di�erences

Heat maps generated for each of the comparators are shown in Appendix D.
There are di�erences between comparator behaviour, according to the collective
analysis of heat maps in �gures D.1, D.2 and D.3, generated for all samples
with comparators 28, 63 and 83 respectively.

Comparators 28 and 63 show a degradation of performance for samples with
low moisture indication, whereas comparator 83 does not produce signi�cantly
lower scores in this range.

Samples acquired from �ngers with moisture level of 99.9% lead to low compar-
ison scores with comparator 63. When comparator 28 is used, the scores are
higher � this comparator o�ers a better performance with wet hands. Such a
behaviour is even more visible for comparator 83, which gives even higher scores
in the top range. Though it still gives scores lower than non�extreme moisture
levels.

7.3.2.2 Sensor di�erences

Heat maps generated from samples acquired only with a speci�c sensor for
each comparator are shown in Appendix D. There are signi�cant di�erences in
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quality relation to moisture � some sensors do not produce low scores in extreme
moisture levels. Samples acquired using di�erent sensors perform di�erently,
which con�rms that some sensors are better than others.

Low moisture levels lead to drop to one third of the range in comparison scores
(cyan squares) for all used sensors except for L�1 DFR�2100. From the four
remaining sensors, samples acquired with CrossMatch Guardian give least low�
dry�score (cyan) areas and those from Dermalog ZF�1 give the most.

The reason behind Dermalog ZF�1 performing poorly with samples acquired
from very dry �ngers may be due to the very small platen, which leads to small
foreground portion in case of dry samples � this was observed during dataset
acquisition and an example is shown in �gure E.1.

Very high moisture levels (over the range, last procedure step where water is
applied) cause comparison scores to drop to the bottom of the range for sen-
sors L�1 DFR�2100, CrossMatch LScan100 and CrossMatch PatrolID. Samples
acquired with CrossMatch Guardian and Dermalog ZF�1 give good comparison
scores in this moisture range, i.e. these sensors perform well with wet �ngertip
skin.

Appendix E shows concrete examples of �ngerprints acquired from one �nger
with di�erent skin moisture using each of the �ve sensors. These samples are
representative as generally similar impression di�erences were seen for other
subjects during data acquisition.

7.3.3 Summary

Moisture of the �ngertip skin does have an impact on the performance of �n-
gerprints acquired.

However, it is possible to build a sensor that works better (produces samples
of good performance) with �ngers which are wet, e.g. CrossMatch Guardian or
Dermalog ZF�1. It is also possible to build a sensor which works better with
dry �ngers, e.g. L�1 DFR�2100.

There are also di�erences between comparators. Some comparators perform
poorly with wet and dry �ngers, but it is possible to build a comparator that
will perform very good with dry samples, e.g. comparator 83, regardless of the
sensor used.

On the other hand, samples acquired from extremely wet �ngers always lead to
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performance degradation, althogh it is possible to build a comparator that will
give better scores than other comparators in these cases, e.g. comparator 83.

7.4 Moisture Indication method performance

As described in section 6.8.2, performance of the Moisture Indication method is
assessed in terms of execution time, how well its output correlates with measured
moisture and the error rates of a binary dry or wet decision.

7.4.1 Execution time

The average execution time of the Moisture Indication method are shown in
table 7.4 � it takes 0.101 seconds on average.

The performance is very good, better than all proposed and reference QMAs on
average. This is due to the fact that the method is very simple to compute.

CASIA WDSET average
Wetness Detection 0.111 0.09 0.101

Table 7.4: Execution time of wetness detection method per 400 samples from
databases: CASIA Fingerprint V5.0, WDSET, average.

7.4.2 Detected versus measured moisture

The correlation between measured moisture values and output generated with
the Moisture Indication method is shown in table 7.5. This is performed for each
of the sensors and for all of them collectively. Correlation scores are negative
since the method produces high scores for low moisture and low scores for high
moisture.

Samples acquired with CrossMatch LScan100, L�1 DFR�2100 and CrossMatch
Patrol ID give very high correlation between moisture measurement and indica-
tion score � −87, −89 and −89 respectively. The Moisture Indication method
performs well on these samples.

This is not the case for Dermalog ZF�1 and CrossMatch Guardian, which give
scores −50 and −20 respectively. Such low scores are caused by the fact that
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score
Dermalog ZF-1 -50
CrossMatch LScan100 -87
L�1 DFR-2100 -89
CrossMatch PatrolID -89
CrossMatch Guardian -20
All sensors -68

Table 7.5: Correlation score between Moisture Indication and measured mois-
ture, calculated as Spearman's RHO multiplied by a hundred and
rounded.

these sensors are newer and supposed to work well with wet or dry �ngers � they
behave di�erently than the other sensors. Examples of �ngerprints con�rming
this observation are shown in Appendix E.

7.4.3 Binary classi�cation error

As described in section 6.8.2.1, the Moisture Indication method can be used as
a binary classi�er, provided that moisture thresholds are de�ned for dry and for
wet �ngers.

7.4.3.1 Measured moisture thresholds

Concrete moisture levels are required to give binary decision on dryness or on
wetness using the Moisture Indication method. Heat maps show that compar-
ison scores are lower for moisture levels between the bottom of the measured
range (41%) and 57%.

Therefore 57% is chosen as the dryness threshold. As for wetness, only the top
of the range in moisture measurement leads to performance degradation. Thus,
�ngers with moisture measured as 99.9% are considered as wet.

7.4.4 Dryness classi�cation

Detection Error Tradeo� in classifying samples as dry based on the Moisture
Indication method output is shown in �gure 7.3. Respective False Positive
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and False Negative rates versus the Moisture Indication threshold are shown
in �gure 7.4. Appendix G shows False Positive and False Negative rates per
sensor.

Figure 7.3: Detection Error Tradeo� for dryness classi�cation � classifying
samples with moisture below 57%. Note di�erent range of axes.

The Moisture Indication method used as a dryness classi�cation produces a False
Positive Error of 30% for a False Negative Rate of 8% on samples acquired using
all sensors (black line). In this case the threshold used for Moisture Indication
is around 0.81, as read from �gure 7.4 (green line).

For this classi�cation it is better to pick a threshold such that False Negative
Error is minimal, even if False Positive error is increased until the maximum
reasonable boundary. This way samples which are de�nitely wet will almost
always be correctly classi�ed.

On the other hand, the indication of dryness will be shown even if the �nger is
not very dry (once per three samples on average, with the 30% FP chosen). This
is however not a problem, because if a reacquisition is necessary and a subject
moistens the �nger because dryness is indicated, the quality will not degrade
unless the subject puts extreme amount of moistener on the skin, which in
operational conditions is not highly probable.

Hence, it is better to indicate dryness more often even if not true, than drop
the indication in cases where it should be indicated.

The smallest possible error is produced for sensors Dermalog ZF�1 and Cross-
Match PatrolID. CrossMatch LScan 100 gives an error almost identical as the
average from all sensors. Using samples acquired with CrossMatch Guardian
gives a slightly worse performance, especially for high False Positive Rates. The
worst performance of dryness classi�cation is on samples acquired using L�1
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Figure 7.4: False Positive and False Negative error rates in dryness classi�ca-
tion versus the threshold used for Moisture Identi�cation. Green
line shows the point of 30% FP and 8% FN.

DFR�2100, probably because this sensor features a silicone pad on the platen.

High peak in DET of Dermalog ZF�1 (red curve) is caused by two outlier samples
with ground�truth error, as described in Appendix G and shown in �gure G.2.

7.4.5 Wetness classi�cation

Classi�cation of acquired samples is performed for sensors which show perfor-
mance degradation in these cases. These are:

• CrossMatch LScan100,

• L�1 DFR�2100,

• CrossMatch Patrol ID.

The relation between False Positive and False Negative detection rates for wet-
ness classi�cation are shown in �gure 7.5. This �gure shows the Detection Error
Tradeo� (DET) as the for sensors that are known to perform poorly with wet
�ngers (see section 7.3).
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Figure 7.5: Detection Error Tradeo� for wetness classi�cation � classifying
samples with moisture above or equal 99%.

Performing the wetness classi�cation for sensors Dermalog ZF�1 and Cross-
Match Guardian does not give satisfying results, i.e. the False Positive rate is
very high, as shown in �gures G.1 and G.3 for Dermalog ZF�1 and CrossMatch
Guardian respectively.

The reason behind this is sensor behaviour di�erences, explained in section 7.4.2
with examples shown in Appendix E. In short, these sensors give samples which
look normal even if the �ngers are extremely wet.

The False Positive and False Negative rates with respective Moisture Indication
threshold used for wetness classi�cation (�gure 7.5) are shown in �gure 7.6.
Appendix F shows False Positive and False Negative rates per each sensor.

The Moisture Indication method used as a wetness classi�cation gives a False
Positive Error of 10% for a False Negative Rate of 5% on samples acquired using
all sensors (black line). In this case the threshold used for Moisture Indication
is around 0.39, as read from �gure 7.4 (green line).

Similarly as for dryness indication, it is better to keep the False Negative Rate
low even if False Positive Error reaches the reasonable limit. Therefore Equal
Error Rate is not used.

This way, samples which are acquired from �ngers which are actually wet will be
correctly classi�ed in more cases. On the other hand, an indication of wetness
in case of reacquisition may lead to changed conditions (e.g. subject would wipe
the �nger with cloth) which is indeed necessary, since the quality was poor in
the �rst case.
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Figure 7.6: False Positive and False Negative error rates in wetness classi�ca-
tion versus the threshold used for Moisture Identi�cation. Green
line shows the point of 30% FP and 8% FN.

7.4.6 Summary

The introduced Moisture Indication method is very fast to compute, 0.101 sec-
onds on average.

With a threshold it can be used as a binary decision to classify �ngerprints as
acquired from wet hands, or from dry hands.

In case of wet �ngers the error rates are 10% False Positive and 5% False Neg-
ative. Dry �ngers classi�cation gives a bit higher errors � False Positive of 30%
and False Negative 8%.



Chapter 8

Conclusions

The main purpose of this project was to propose new �ngerprint Quality Mea-
surement Algorithms, possibly to be considered as NFIQ 2.0 candidates [oST]
and incorporated in ISO/IEC 29794�4 [ISO10].

Additionally it was relevant to assess whether very dry or very wet skin indeed
causes biometric performance degradation and to propose a method which would
indicate this via analysis of the acquired �ngerprints.

A dataset of �ngerprint samples was collected from 33 subjects using 5 sensors
with objective �ngertip skin moisture measurement in four varying moisture
conditions, resulting in 6600 �ngerprints with ground�truth information about
skin moisture during acquisition.

To analyse �ngerprint sample quality, three Quality Measurement Algorithms
were proposed � Ridge Valley Di�erence, Ridge Line Count and a Contrast mea-
surement. To detect extreme �nger skin moisture, the impact of skin moisture
on �ngerprint sample quality was analysed and a Moisture Indication method
was proposed.

The proposed quality metrics were assessed using the collected dataset � WD-
SET, and a publicly available �ngerprint dataset CASIA from the Institute of
Automation at the Chinese Academy of Sciences. These methods were com-
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pared to reference state of the art methods of �ngerprint quality analysis in
terms of execution time, quality indication correlation with observed �ngerprint
utility and via Error versus Reject Curves.

All proposed quality analysis methods were su�ciently fast to compute and
o�ered good performance in terms of performance prediction via quality in-
dication. Moreover, the methods o�ered quality indication complementary to
that of reference methods. Ridge Line Count was the best proposed method, it
performed better than several reference state of the art methods in both ERC
and correlation analysis. Proposed methods can be considered as NFIQ 2.0
candidates and incorporated in ISO/IEC 29794�4 [ISO10].

The analysis of skin moisture impact on �ngerprint sample quality has shown
degradation of quality for dry and wet �ngers. The proposed Moisture Indication
method was fast to compute and successfully used as a binary classi�er to detect
the extreme moisture cases and indicate if the skin was too dry or too wet.
In case of wet �ngers the error rates were 10% False Positive and 5% False
Negative. Dry �ngers classi�cation gave a False Positive error rate of 30%
and False Negative error rate of 8%. The Moisture Indication method used as
dryness and wetness detection could also be incorporated in ISO/IEC 29794�4
[ISO10] and in NFIQ 2.0.

8.1 Future work

This project analysed the impact of �ngertip skin moisture on the acquired
�ngerprint sample quality. As shown in �gure 2.3 and discussed in section 3.6,
moisture is not the only factor that causes �ngerprint sample degradation.

Following the work underlying this thesis, it would be useful to analyse the
impact of other factors, i.e. �nger character, �nger pressure on the sensor,
�nger placement and rotation; and most importantly the inter�relation between
all these factors combined.

This would allow to propose more methods indicating the causes of sample
quality degradation and improve their prevision, leading to better standards in
�ngerprint quality analysis and to better performance of biometric systems.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Genuine and impostor comparison score distribution histograms:
a) CASIA dataset with comparator 28
c) CASIA dataset with comparator 63
e) CASIA dataset with comparator 83
b) collected dataset with comparator 28
d) collected dataset with comparator 63
f) collected dataset with comparator 83.
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Appendix D

Moisture impact on quality

Figure D.1: Moisture impact on comparison scores heat map. Comparator 28
on all sensors.
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Figure D.2: Moisture impact on comparison scores heat map. Comparator 63
on all sensors.

Figure D.3: Moisture impact on comparison scores heat map. Comparator 83
on all sensors.

Figure D.4: Moisture impact on comparison scores heat map. Comparator 28
on Dermalog ZF�1.
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Figure D.5: Moisture impact on comparison scores heat map. Comparator 28
on L�1 DFR�2100.

Figure D.6: Moisture impact on comparison scores heat map. Comparator 28
on CrossMatch LScan 100.

Figure D.7: Moisture impact on comparison scores heat map. Comparator 28
on CrossMatch Patrol ID.
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Figure D.8: Moisture impact on comparison scores heat map. Comparator 28
on CrossMatch Guardian.

Figure D.9: Moisture impact on comparison scores heat map. Comparator 28
on Dermalog ZF�1.

Figure D.10: Moisture impact on comparison scores heat map. Comparator
28 on L�1 DFR�2100.
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Figure D.11: Moisture impact on comparison scores heat map. Comparator
28 on CrossMatch LScan 100.

Figure D.12: Moisture impact on comparison scores heat map. Comparator
28 on CrossMatch Patrol ID.

Figure D.13: Moisture impact on comparison scores heat map. Comparator
28 on CrossMatch Guardian.
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Figure D.14: Moisture impact on comparison scores heat map. Comparator
28 on Dermalog ZF�1.

Figure D.15: Moisture impact on comparison scores heat map. Comparator
28 on L�1 DFR�2100.

Figure D.16: Moisture impact on comparison scores heat map. Comparator
28 on CrossMatch LScan 100.
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Figure D.17: Moisture impact on comparison scores heat map. Comparator
28 on CrossMatch Patrol ID.

Figure D.18: Moisture impact on comparison scores heat map. Comparator
28 on CrossMatch Guardian.
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Appendix E

Moisture impact on quality

� sensor di�erences

Figure E.1: Sample acquired with Dermalog ZF�1 from a dry �nger (mea-
sured moisture 57.6%) that features only a very small portion of
the ridges. The border of the sample image is painted for better
reference.
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(a) 63.3% (b) 84.1%

(c) 99.9%

Figure E.2: Fingerprint samples collected from the same �nger with di�erent
moisture levels using Dermalog ZF�1.
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(a) 64.3% (b) 84.1%

(c) 99.9%

Figure E.3: Fingerprint samples collected from the same �nger with di�erent
moisture levels using L�1 DFR�2100.
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(a) 64.3% (b) 84.1%

(c) 99.9%

Figure E.4: Fingerprint samples collected from the same �nger with di�erent
moisture levels using CrossMatch LScan 100.
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(a) 64.3% (b) 84.1%

(c) 99.9%

Figure E.5: Fingerprint samples collected from the same �nger with di�erent
moisture levels using CrossMatch Patrol ID.
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(a) 64.3% (b) 84.1%

(c) 99.9%

Figure E.6: Fingerprint samples collected from the same �nger with di�erent
moisture levels using CrossMatch Guardian.
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Wetness classi�cation
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Figure F.1: False Positive and False Negative wetness detection error rates for
samples acquired using Dermalog ZF�1. The False Positive Rate
is very high since this sensor produces good samples even with
wet �ngers.
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Figure F.2: False Positive and False Negative wetness detection error rates for
samples acquired using CrossMatch Guardian. The False Positive
Rate is very high since this sensor produces good samples even
with wet �ngers.
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Figure F.3: False Positive and False Negative wetness detection error rates for
samples acquired using CrossMatch LScan100.

Figure F.4: False Positive and False Negative wetness detection error rates for
samples acquired using L�1 DFR�2100.
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Figure F.5: False Positive and False Negative wetness detection error rates for
samples acquired using CrossMatch Patrol ID.
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Appendix G

Dryness classi�cation
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Figure G.1: False Positive and False Negative dryness detection error rates
for samples acquired using Dermalog ZF�1. High False Negative
indication for low threshold values is caused by two outliers as
shown in �gure G.2.
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(a) Measured Moisture versus Moisture Indica-

tion point cloud for samples acquired using

Dermalog ZF�1.

(b) 56.6% (c) 53.2%

Figure G.2: Pointcloud of measured moisture versus Moisture Indication (a)
with samples acquired using Dermalog ZF�1. Two outliers below
horizontal blue line and to the left of vertical blue line. Two �n-
gerprint samples (b, c) from the point cloud plot having very low
moisture measurement (56.6% and 53.2% respectively) but a wet
impression � leading to high False Negative rate for low thresh-
olds (see �gure G.1). A possible explanation is that the subject
used oily lotion before the acquisition, which would not lead to
high measurement but cause a wet impression, as described in
section 6.5.1.
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Figure G.3: False Positive and False Negative dryness detection error rates for
samples acquired using CrossMatch Guardian.

Figure G.4: False Positive and False Negative dryness detection error rates for
samples acquired using CrossMatch LScan100.
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Figure G.5: False Positive and False Negative dryness detection error rates for
samples acquired using L�1 DFR�2100.

Figure G.6: False Positive and False Negative dryness detection error rates for
samples acquired using CrossMatch Patrol ID.
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