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1. Introduction

In canonical correlation analysis (CCA) first published by Hotell-
ing in 1936 (Hotelling, 1936) linear combinations U = a’X and
V =b"Y of two sets of stochastic variables, k-dimensional X and
¢-dimensional Y, which maximize correlation between U and V
are found. Correlation considers second order statistics of the
involved variables only and as such it is ideal for Gaussian data.
In this paper we investigate replacement of correlation with
mutual information (Hyvarinen et al, 2004; Mackay, 2003;
Bishop, 2007; Canty, 2010) which is a more general, information
theoretical, entropy based measure of association between vari-
ables. Entropy and mutual information (MI) depend on the actual
probability density functions of the involved variables and thus
on higher order statistics. The resulting method is termed canoni-
cal mutual information analysis, or in short canonical information
analysis (CIA).

Since multi-source data, which is typically of different genesis,
often follow very different (non-Gaussian) distributions, the appli-
cation of MI facilitates analysis of such data. In one of our examples
we apply the method to a joint analysis of radar and optical data
(which follow very different distributions thus rendering CCA
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non-optimal). Other areas where the method could potentially be
very useful include data of different modalities, for example SAR,
LiDAR, optical and medical data. In general, this type of analysis
has a strong potential for application in data fusion and other fields
of data integration, see also (Ehlers, 1991; Pohl and Van Genderen,
1998; Conese and Maselli, 1993).

Mutual information as a measure of association has previously
proven useful in the context of image registration. Studholme et al.
(1999) proposed a normalized variant of MI for registration of
medical images, which Suri and Reinartz (2010) employ for auto-
matic registration of SAR and optical images. For the purpose of
change detection, Erten et al. (2012) derive an analytical expres-
sion for the mutual information between temporal multichannel
SAR images.

Other dependence measures have been considered in the liter-
ature, such as kernel canonical correlation analysis (kCCA) (Lai and
Fyfe, 2000; Bach and Jordan, 2002). However, while kernel meth-
ods do indeed provide an implicit nonlinear transformation of
the data maximizing some dependence measure, they do not pos-
sess the same qualities as linear methods in terms of interpreta-
tion. Specifically, a linear method, such as CIA, finds the actual
functional relation between the original variables, where a kernel
method, such as kCCA, would find a hidden/intrinsic transforma-
tion which makes the relation between CVs linear. This property
of the linear solution immediately eases interpretation of the
result.
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The idea of maximizing MI between two sets of variables is
mentioned by Bie and Moor (2002). However, the authors only pro-
pose solutions to this problem based on independent component
analysis in the individual spaces of the variables and they do not
provide a truly canonical approach. Yin (2004) and Karasuyama
and Sugiyama (2012) solve the problem of maximizing MI of linear
combinations of variables in a manner which makes its application
to small sample problems feasible. In practical terms the solutions
offered are not applicable to large sample problems including for
example image data. Our fast grid-based entropy estimator (Sec-
tion 5) facilitates the use of CIA to large sample problems. Both
Yin (2004) and Karasuyama and Sugiyama (2012) request orthog-
onality between solutions (as in CCA), whereas we allow for obli-
que solutions (Section 2) via a structure removal procedure
inspired by Friedman’s projection pursuit (Friedman, 1987). The
well known difficulties in estimating and optimizing entropy mea-
sures, will be addressed in Sections 4-6.

Below, Section 2 describes the concept of canonical information
analysis and motivates the following sections. Section 3 describes
the information theoretical concepts entropy of a univariate sto-
chastic variable, joint entropy of two stochastic variables, relative
entropy, and mutual information. Section 4 briefly describes the
estimation of one- and two-dimensional probability density func-
tions, Section 5 describes approximate entropy estimation, and
Section 6 describes the maximization of mutual information of
two linear combinations of stochastic variables. Section 7 gives
(1) a simple, illustrative toy example, (2) a case study with weather
radar data and optical data from a meteorological satellite, and (3)
a case with change detection in optical airborne data. Section 8
concludes. An appendix is included, motivating some of the imple-
mentation choices made. Supplementary material is provided with
additional simulation studies and results from the two case studies
plus an extra application of CIA for change detection.

2. Canonical information analysis

Inspired by canonical correlation analysis (Hotelling, 1936) we
propose a method for maximizing mutual information between
the linear combinations U = a’X and V =b"Y of two sets of sto-
chastic variables, k-dimensional X and ¢-dimensional Y.

The goal of CIA can be stated as

a*, b* =arg Taxl(U, V) (1)
a,

where [(U,V) is the mutual information between the two linear
combinations U and V which can be defined as

I(U,V) = h(U) + h(V) — h(U,V) 2)

where h(U) and h(V) are the marginal entropies and h(U,V) the
joint entropy. This will be detailed further in Sections 3-5.

Maximization of mutual information is known to be a non-con-
vex optimization problem (Modersitzki, 2004; Haber and
Modersitzki, 2007) wherefore we have conducted experiments
with local as well as global optimization methods, see Section 6.
The inherent lack of certainty of finding a global optimum will
be elucidated by application of the method to different real world
multispectral decomposition problems, see Section 7.

In canonical correlation analysis k and /¢ linear combinations
(components) are determined with the criterion that the i'th com-
ponent maximizes correlation between U and V while being
orthogonal to the first i — 1 components. Friedman (1987) intro-
duced in projection pursuit ‘structure removal’ as the solution to
avoid re-finding a previously found direction in space. Structure
removal works by histogram equalization of the projected data
to a Gaussian distribution and transforming back to the original
space. In CIA we choose to adopt this principle of structure removal

with the modification that the projected data U and V are substi-
tuted with uniformly distributed white noise. This modification
is necessary since, in contrast to projection pursuit, CIA does not
maximize non-Gaussianity of one projection, but rather it maxi-
mizes statistical dependence between two projections. This struc-
ture removal replaces the orthogonality requested by Yin (2004)
and Karasuyama and Sugiyama (2012).

3. Basic information theory

In 1948 Shannon (Shannon, 1948) published his now classical
work on information theory. Below, we describe the information
theoretical concepts entropy and mutual information for discrete
and continuous stochastic variables, see also (Hyvdrinen et al.,
2004; Mackay, 2003; Bishop, 2007; Canty, 2010).

3.1. Discrete variables

Consider a discrete stochastic variable X with probability den-
sity function (pdf) p(X =x;), i =1,...,N. The information content
is defined as — In(p(X = x;)). The expectation H(X) of the informa-
tion content is termed the entropy of the stochastic variable X

N
HX) = =Y pX = x) In(p(X = x). 3)

For the joint entropy of two discrete stochastic variables X and Y
we get

HX,Y) = =) pX =x.Y =y) In(p(X =x,Y = y))). (4)

ij
3.2. Continuous variables

Probability density functions, information content and entropy
may be defined for continuous variables also. This is necessary to
represent linear combinations of sampled data. In this case the
entropy

hX) = - / p(x) In(p())dx (5)

is termed differential entropy. Since p(x) here may be greater than
1, h(X) in the continuous case may be negative (or infinite).

Empirical entropy h(X) is an estimator of h(X) in (5). The esti-
mator is defined as

. N
hX) = — > In(p(X =x,) )
i=1

and as such it is defined over a finite sample {x;}', of X, where N is
the number of samples. As opposed to (3) and (4) this estimator is
not based on any binning of the data.

Empirical entropy has previously proven useful for manipulat-
ing entropy measures (Viola, 1995). We have experienced this
experimentally (not shown here) and find this estimator useful
for canonical information analysis.

The extent to which two continuous stochastic variables X and Y
are not independent, which is a measure of their mutual informa-
tion content, may be expressed as the relative entropy or the
Kullback-Leibler divergence between the two-dimensional pdf
p(x,y) and the product of the one-dimensional marginal pdfs

px)py), ie,

_ p(x,y)
Dap(xy).p(py) = | [ pxy)in P axay. )

This sum defines the mutual information I(X,Y) = Dy (p(x,y),
p(x)p(y)) of the stochastic variables X and Y. Mutual information
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equals the sum of the two marginal entropies minus the joint
entropy

IX,Y) = h(x) + h(y) = h(x.y). 8)

Unlike the general Kullback-Leibler divergence this measure is
symmetric. Mutual information is always nonnegative, it is zero
for independent stochastic variables only.

We need to estimate marginal as well as joint pdfs to obtain the
mutual information estimate in (8). Karasuyama and Sugiyama
(2012) estimate the ratio in (7) directly. We employ kernel density
estimation, which uses N data samples to estimate these pdfs.
Mutual information is subsequently estimated using the same N
data points. This is possible in practice only due to our very fast
estimation of pdfs which will be described in Section 5. Note, that
this is in contrast to Viola (1997) where the sample is divided into
smaller portions in order to lessen the computational burden and
to Yin (2004) where an explicit estimation is used that does not
scale well to image analysis problems and other large sample
problems.

4. Density estimation

The histogram is a simple non-parametric density estimator.
However, the estimated histogram is not smooth and it depends
on the end points of bins and the width of bins. By using kernel
density estimators (Rosenblatt, 1956; Parzen, 1962; Silverman,
1986) where we center a kernel on each observation, we may
obtain smoother histograms that do not depend on bin end points.
The kernel density estimator (Parzen windows estimator) for the
pdf of X at value t is

N J— .
o=t = > o (1) ©)

i=1

where x = {x;}' is a vector of realizations of X, ¢(z) is the kernel
and ¢ a smoothing parameter referred to as the bandwidth. Often
we choose the Gaussian kernel

1 1
0@ == exp (—sz). (10)

The width of the Gaussian, i.e., the standard deviation is thus equiv-
alent to the bandwidth .

The kernel density estimator assumes continuous distributions,
thus we estimate continuous variants of the information theoretic
measures mentioned in Section 1. Since only two one-dimensional
projections of the data are considered, the known problems with
kernel density estimators in higher dimensions (Beirlant et al.,
1997; Kraskov et al., 2004) are found to be negligible for canonical
information analysis.

In two dimensions the bivariate Gaussian is often chosen to
have a diagonal covariance matrix leaving two parameters to be
estimated, namely the bandwidth in each direction. Estimation of
the bandwidth is an example of the bias-variance trade-off: a too
narrow kernel causes too large variation in the density estimate
and a too wide kernel oversmooths the estimated distribution
(Jones and Marron, 1996).

Here we use a data-driven bandwidth selection method based
on the maximal smoothing principle (Terrell, 1990). This method
is known to be conservative (oversmoothing) by nature (Jones
and Marron, 1996; Terrell, 1990), but this is outweighed by fulfill-
ing two - in this context - more important properties: the band-
width estimate is stable, i.e., it varies smoothly for small changes
in projection direction of the data. Experiments (see Appendix A)
have shown that this is not the case for, e.g., neither the linear dif-
fusion process based method by Botev et al. (2010) nor for
Sheather-Jones (Sheather and Jones, 1991). The second property

is computational speed, where it outperforms the commonly pre-
ferred “solve-the-equation plug-in” method (Sheather and Jones,
1991). Speed is of practical importance as the density estimation
will be part of calculating the objective value for a non-convex
optimization problem, wherefore the bandwidth will be estimated
repeatedly. This is especially true for large problems, e.g., image
processing.

5. Approximate entropy estimation

Estimation of marginal and joint entropies is the main bottle-
neck in maximization of mutual information. Parzen window
density estimation, in the explicit form presented above, has pre-
viously been used for this purpose, see e.g. Yin (2004). However,
since it is based on pairwise distances, it has a computational
complexity in the order of O(N?). Shwartz et al. (2005) proposed
a fast approximate marginal (1D) entropy estimator with a com-
plexity in the order of O(NlogN). For the purpose of canonical
information analysis we generalize this approximate entropy esti-
mator to joint entropy (2D). This is described below and illus-
trated in Fig. 1.

Approximate entropy estimation is a convolution based modifi-
cation of Parzen window density estimation. Convolution of
the samples with the kernel in (10) is equivalent to the density
estimation in (9). Convolutions can run in the order of O(NlogN)
on a regular grid. The estimation procedure therefore (1) quantizes
the irregular samples to a regular grid, (2) convolves with a
Gaussian kernel on this grid, and (3) interpolates back onto the
samples’ original positions to get an estimate of the empirical
entropy in (6).

Quantization requires choosing a discretization, i.e., a number
of bins B* and a domain [x,,X,] [y, V] over which to discretize.
The (m,n)'th bin in this regular grid is positioned at
(%, Y)mn = (Xa + MAX, X, + nAy) where m, ne{0,...,B—1}, Ax=
%% and Ax =24 The i'th sample point falls into a cell spanned
by the four bin centers with indices (m;,n;), (m;+1,m),

(mi,n;+1), (m;+1,m;+1) where m; =fl*24] and ni:ﬂ{%]

and fl[-] is the floor operation. The weights for each of these four
bin centers are given by a bilinear interpolation scheme:

k.0 +1 k+1,0+1

k0 k+1,¢

Fig. 1. Quantization. llustration of bilinear quantization of samples to a regular
grid to enable fast approximate joint entropy estimation. The gray dots are
examples of irregular samples and the red dot is used to exemplify the bilinear
weights. The black rectangles indicate the bins and the indices of the four bins
influenced by the red dot are shown. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)



4
wi(mi, ni) = (1 -r)(1-1y)
wi(mi+1,m) =1x(1—1y)
wi(m;,n;+ 1) = (1—rx)ry

wi(m; +1,n;4+1) =

where r, = 5 i and ry =’ —ny, i.e, the fraction removed by
the floor operation. The quantized value Q,, , at a given bin is thus a
weighted count of samples in the proximity of the bin. The quanti-
zation is collected in a B x B image-like matrix Q. This bilinear
weighting is the 2D analogue of the linear weighting suggested by
Shwartz et al. (2005).

Convolution of the quantized signal on the regular grid with the
kernel ¢ from (10)

Q-9¢+Q

can be performed in the order of O(B? log B?), i.e., dependent on the
number of bins rather than the number of samples. The resulting
(m,n)'th element of Q is an estimate of the density at the

(m, n)’th bin. Distributing this estimate back onto the original sam-
ple positions is done using the same weights as earlier, such that

P(xi) = Qg Wi(Mi, 1) + Q1 o Wi (M + 1, 11)
+ Qm,-,n,-+1wi(mi7 n; + ]) + Qm,v+1,n,-+lwi(mi + 17ni + 1)

This is an approximation of (9) and can be plugged directly into (6).
The complexity of the quantization is linear in the number of
samples, thus the complexity of the estimation is O(N + B? log B?).
Unlike estimates of discrete entropy, the estimate of empirical
entropy is not dependent on the choice of B?, since the summation
over probabilities is carried out over the sample positions, rather
than the bins. The choice does, however, influence the accuracy of
the approximation.

Shwartz et al. (2005) also provides a gradient of the marginal
entropy estimate, which we have generalized to joint entropy.
The marginal entropy gradient is given with respect to the samples

a, % For the purpose of canonical information analysis the gradi-

ent with respect to the linear weighting a is needed. The chain rule
yields

8_hx ~ Ohy 9@'X)  ohy
oa 0@'X) oda  9@X)

xT

This is completely analogous for joint entropy estimation and the
reader is referred to Shwartz et al. (2005) for further details.

The computational complexity of the approximate gradient
estimation is of the order O(B? log B> + NNgin) where Ny is the
dimensionality of the linear weighting, i.e., either k or ¢. In compar-
ison, explicit calculation of the entropy gradient is of complexity

O(NgimN* + N) (Shwartz et al., 2005).
6. Maximization of mutual information

The kernel density estimates of one- and two-dimensional pdfs
by means of the method sketched in Section 4 are independent of
additive and multiplicative transformations of each of the original
variables. Therefore the maximization of the mutual information
between the two linear combinations can be carried out without
constraints. This means that very many optimization schemes
may be applied.

Maximization of mutual information is inherently non-convex.
For problems where it is not crucial to converge to the global opti-
mum we suggest to use a local solver, e.g., either the downhill sim-
plex method (Nelder and Mead, 1965) or Newton’s method with
the BFGS update (Fletcher, 1970), depending on whether one
wishes to rely purely on function values or leverage the gradient
introduced above. For problems where convergence to the global
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optimum is important, we propose to use a genetic algorithm at
the cost of significantly more function evaluations. Results shown
below are obtained using the genetic algorithm implemented in
Maria with a population size of 5(k + ¢)°.

The choice of starting point is crucial when using local methods
for global optimization. We have experimented with two different
sets of starting points for each case, one being the optimum deter-
mined by canonical correlation analysis. The second set of starting
points is constructed by letting a; and by be unit vectors of length k
and ¢ respectively, with an equal weighting on all variables, such
that

1 1
—=1, bp=—71,
Vi Vi
where 1, is an n-vector of ones. For some problems, several candi-
date starting points may exist in which case we suggest to employ

an optimization strategy where multiple local solvers start from
individual starting points.

a = (11)

7. Case studies

Here we give an illustrative toy example, an example which
fuses weather radar and optical geostationary satellite data for a
situation with heavy precipitation, and an example of using canon-
ical information analysis for change detection in optical airborne
data. These examples will be referred to as toy, weather and cars
respectively for brevity.

The results are summarized in Table 2. Higher order compo-
nents for these data sets were found to be trivial, wherefore only
the leading component is shown.

7.1. Toy example

In a simple, illustrative example consider the functions f(x) = x
and g(x) = x2. The correlation between the functions over the
interval [0, 1] is \/15/16 = 0.9682, close to one. The correlation
between the two over the interval [—1, 1] is zero and yet of course
the two variables are still closely associated.

Consider now this numeric example with a variable x; sampled
equidistantly on the interval [0, 1]. Let another variable x, be ran-
dom Gaussian noise with mean zero and standard deviation one.
Let y; be x? with random Gaussian noise with mean zero and stan-
dard deviation one tenth added. Let y, be random Gaussian noise
with mean zero and standard deviation one. For all variables we
have 1000 samples. Let the first set of variables consist of x; and
X», and the second set consist of y; and y,. In this case the leading
canonical correlation is 0.9166 and (after sphering the input) the
leading eigenvector for the first set is [1.0000 0.0064] and for the
second set [1.0000 0.0143]. So in this case canonical correlation
analysis makes sense: we get a high canonical correlation and
eigenvectors that isolate the signal in x; and y,. Maximal mutual
information is 0.7867 and the leading projection vectors are
[1.0000 0.0075] and [1.0000 — 0.0043] respectively.

Let us now redo the analysis with x; sampled equidistantly on
the interval [—1, 1]. In this case the leading canonical correlation
is 0.0532 and the leading eigenvector for the first set is
[0.0391 0.9992] and for the second set [—0.8955 0.4450]. In this
case canonical correlation analysis makes no sense: we get a very
low canonical correlation and eigenvectors that do not isolate the
signal in x; and y,. Here maximal mutual information is 0.5856
and the leading projection vectors are [1.0000 — 0.0082] and
[1.0000 — 0.0086] respectively.

For the latter case (x; sampled equidistantly on the interval [-1,
1]), three-dimensional contour and scatter plots of the leading
canonical variates are shown in Fig. 2a (correlation based) and b
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0.15

-4
cv2 . oVt

(a) Canonical correlation analysis

0.4

0.35

(b) Canonical information analysis

Fig. 2. Toy example. (a) Correlation based canonical variates and (b) mutual
information based canonical variates for toy example with variables sampled
equidistantly on the interval [-1, 1].

(mutual information based). Fig. 2a reveals no structure but in
Fig. 2b we clearly recognize the noisy parabola originally in vari-
ables x; and y,. Unlike maximization of correlation of linear com-
binations of the two sets of variables, maximization of mutual
information gives meaningful results in both cases.

We compare CIA to the ‘explicit’ (e.g., Yin, 2004) estimation of
maximal mutual information projections performance in terms of
accuracy and computation time. The accuracy is evaluated in terms
of the geometric mean

H= /1l (12)

of the absolute correlations p, = corr(x;,U) and p, = corr(y;,V).
E.g. the correct a* =b* =[1,0]" would yield p, =p, =pu=1.
Fig. 3b shows the difference in geometric mean fq, — Uoypiicie fOT
three different sample sizes N = {500, 1000, 5000} and for ten val-
ues of the standard deviation ¢ for the noise added to x2 to form
¥;.- We see that in low-noise cases (¢ < 0.6) the difference in geo-

metric mean is negligible, while both estimation procedures have
difficulties for larger noise levels and sample sizes < 5000. Fig. 3b
shows the computation times as a ratio (‘explicit’/CIA) of the time
it has taken the genetic algorithm to converge. Note that the y-axis
is in logarithmic units. For a sample size of N = 500 the speed is
comparable, slightly in favor of the explicit estimation, for
N = 1000 CIA is 1.4 times faster and for N = 5000 it is approxi-
mately 20 times faster. To put the computation time ratio into per-
spective, we note that for, e.g., ¢ = 0.89 and N = 5000 the explicit
estimation takes 194.5 min to converge, while CIA takes 3.8 min
to converge to an equally good solution with an average of
18.37 s and 0.36 s per function evaluation respectively. In the sup-
plementary material we supply similar comparison plots for three
other simulation scenarios suggested by Yin (2004).

7.2. Weather radar and Meteosat data

This data set consists of satellite and radar imagery from 20
August 2007, where extreme downpour intensities (53 mm in
10 min) were recorded in some regions of Denmark.

The satellite imagery is a set of k = 8 infrared bands from the
Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard
the Meteosat Second Generation (MSG-2) weather satellite. The
spectral region of the infrared bands are from approximately
3.9 um to 13.4 um, and these bands monitor cloud top reflectance
properties. The radar data are recorded three minutes before the
satellite image using the Danish Meteorological Institute (DMI)
weather radars and consists of a single (¢ =1) image of radar
reflectance. The two image sources are gridded as images of
400 x 500 pixels with a ground sampling distance of 2 km x 2 km
prior to analysis to establish pixel-to-pixel correspondence. The
analysis includes the N = 7577 observations in the radar imagery
exhibiting reflectance from precipitation.

This case has also been treated by Vestergaard and Nielsen
(2012), where an elaborate geometric and temporal alignment
was needed to ameliorate the CCA solution. As will be shown
below, this is entirely unnecessary when using the method sug-
gested here.

The motivation for fusion of these two data sources is twofold:
First, weather radars have a limited coverage of approximately
240 km from their position while satellites cover almost the entire
planet. A fusion of these two could be a way of using satellite data
as a proxy for radar data. Second, the two types of data come from
very different types of sensors, wherefore the distributions of the
data are very different. Therefore this is an illustrative example
of using an information theoretic approach rather than a method
based on assumptions of distributions.

The first mutual information canonical variate (MICV) is shown
in Fig. 4b where the eight infrared bands from the satellite data are
projected onto the projection direction a determined by canonical
information analysis. As the second set of variables consists of only
a single variable, b = b = 1. Therefore only the MICV related to the
satellite data is shown. For comparison, the solution to the same
problem determined by canonical correlation analysis is shown
in Fig. 4a. An area has been marked with a dashed red rectangle
in both figures; extreme precipitation is known to occur in the dark
region inside the rectangle in Fig. 4b. A viable solution would
therefore accentuate the cloud tops in this particular area. It is seen
that this is the case for canonical information analysis, where a
contrast with the surroundings is evident, while the correlation
based result shows less contrast.

A correlation of 0.344 and 0.303 between the leading pair of
canonical variates was obtained using CCA and CIA respectively.
Mutual information between the two mutual information based
canonical variates is 0.101 while it is 0.088 between the two corre-
lation based variates.
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(a)

0 0.5 1 1.5 2

500 1000 5000

/ TCIA

explicit

T

Fig. 3. Simulation studies. Comparison of accuracy and speed for CIA and ‘explicit’ estimation. ¢ is the noise level, i, and fi,,;; are defined as in Eq. (12) Values above 0
indicate a higher correlation between the found components and the true components (a better solution) for CIA, while values below 0 indicate a better solution yielded by

the explicit estimation. Speed is shown as Texpict 5 g logarithmic scale, thus CIA is slower for values below 1 and faster for values above 1. The three colored lines represent

Taa

results obtained with N = {500, 1000,5000} simulated observations.

Quantitative comparison of correlation based and mutual infor-
mation based analysis can, for example, be done by calculating
spatial autocorrelation over the marked region in Fig. 4a and b.
We have chosen to calculate the autocorrelation over spatial lags
of [0 1], [1 1], [1 0] and [-1 1] to capture spatial correspondences
in all directions. For both analysis methods these values are shown
in Table 1.

The average value for the mutual information based analysis is
0.950 compared to 0.897 for the correlation based analysis. These
values confirm the subjective evaluation that the spatial coherence
is larger in the mutual information based solution compared to the
correlation based analysis.

7.3. DLR 3K data

The images used in this example were recorded with the air-
borne DLR 3K camera system (Kurz et al., 2007a,b) from the German
Aerospace Center, DLR. This system consists of three commercially
available 16 megapixel cameras arranged on a mount and a naviga-
tion unit with which it is possible to record time series of images
covering large areas at frequencies up to 3 Hz. The 1000 rows by
1000 columns example images acquired 0.7 s apart cover a busy
motorway. These data have previously been treated by Nielsen
and Canty (2009), Nielsen (2011, 2007) where the original RGB
images can be seen. The data at the two time points were orthopro-
jected using global positioning system/inertial measurement unit
(GPS/IMU) measurements and a digital elevation model (DEM).
For flat terrain like here one pixel accuracy was obtained. In these
data, the change occurring between the two time points will be
dominated by the movement of the cars on the motorway. Unde-
sired, apparent change will occur due to the movement of the air-
craft and the different viewing positions at the two time points.

Fig. 5b shows the difference image between the first set of MICVs
whereby canonical information analysis acts as a tool for change
detection. Previously, a method for change detection based on
canonical correlation analysis has been proposed (Nielsen et al.,
1998). Comparing with the solution obtained by canonical correla-
tion analysis in Fig. 5a it is evident that a much larger amount of
change information is gained by using CIA: the background is much

smoother and clearly distinguishable from the areas of change (the
cars) and the extreme values are only present where change has
actually occurred. The difference image between the second set of
MICVs is included in the supplementary material. Since relevant
changes are due to the moving cars on the motor way only, higher
order CVs in this case do not contain further information.

To quantify the different quality of the solutions, a region in the
difference image has been selected. This region is known not to
change between the two acquisition times and is assumed to be
constant over the region in an ideal difference image. The variance
in this region will therefore represent the unwanted noise in the
difference image and is denoted var(N) below. The ratio R between
the signal-to-noise ratios for the two solutions is defined as

al

var(S)
_ SNRaa  varNgm _ Var(Neca)

o SNRcca v V&I'(NCIA)

var(Ncca)

R (13)

and is independent of the signal variance, when assuming that the
true signal S is equal in the two solutions. The variance in this
region for the solution produced by CIA is 0.265, while it is 0.878
for the correlation based solution, i.e., R = 3.319. This verifies the
subjective evaluation that a more homogeneous no-change back-
ground is obtained using the proposed mutual information based
method.

A correlation of 0.982 and 0.945 between the leading pair of
canonical variates was obtained using CCA and CIA respectively,
which demonstrates that a high correlation is not always the best
measure for similarity. A mutual information of 1.034 and 1.335
between the leading pair of canonical variates was obtained using
CCA and CIA respectively.

7.4. Summary

Table 2 summarizes the results for all three cases using canon-
ical information analysis. Co-inspection of table and Figs. 2, 4, 5
clearly shows that the solution with the largest mutual informa-
tion is superior to that with the largest correlation. Second order
MICVs, MI between input bands and MICVs and a matrix of MI
between pairs of MICVs are included as supplementary material
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(b) Canonical information analysis

Fig. 4. Weather. The first CV determined by canonical correlation analysis and
canonical information analysis for the weather data set. The marked rectangular
area is known - from radar imagery - to exhibit extreme rain at this particular point
in time. The display range of the intensity values is within + three standard
deviations of the mean. The dashed white line marks the extent of the radar
coverage.

Table 1

Results for the weather data set evaluated in terms of spatial autocorrelation in the
region of interest. Marked in bold are the average spatial autocorrelation over the four
directions.

Method — . 1 / Average
CIA 0.973 0.932 0.950 0.943 0.950
CCA 0.952 0.859 0.892 0.886 0.897

for the weather and cars cases. Additional simulation studies sug-
gested by Yin (2004) are detailed in the supplementary material,
where the geometric mean using CIA, explicit estimation or CIA
are shown.

In the weather case all 7,577 observations having a value in the
radar data were used, while a random sample of 10,000 observa-
tions were used in the cars case were used for the optimization

(b) Canonical information analysis

Fig. 5. Cars. Difference image of the first set of MICVs for the cars data set using (a)
canonical correlation analysis and (b) canonical information analysis respectively.
The display range of the intensity values is within * three standard deviations of the
mean. The marked region is used to quantify the no-change noise variance.

of mutual information. The determined linear transformations
were applied to all observations in the two sets of variables. Each
computation was done on a 64-bit Linux system with 2 X5650 6-
Core processors, 2.66 GHz, 48 GB RAM.

In all three cases visual inspection of the resulting scatter plots
and imagery clearly show the superior behavior of the mutual infor-
mation based canonical analysis: the solution to the toy example
illustrates that the CIA solution recovers the latent signal (the noisy
parabola), while the CCA solution fails to do the same. The solution
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Table 2

Summary of results for each of the three cases: toy is the toy example from Section
7.1, weather is the satellite/radar case from Section 7.2 and cars is the DLR 3K change-
detection case from Section 7.3. I is mutual information as in Eq. (8), p is correlation,
# is the number of function evaluations needed and sec. is the time in seconds.

1 P # sec.
toyexample CIA 0.127 0.010 4160 669
(k,0) = (2,2) CCA 0.018 0.016 <1 <1
Cars CIA 1.335 0.945 9360 1165
(k,0) = (3,3) CCA 1.034 0.982 <1 <1
Weather CIA 0.101 —0.303 21060 1672
(k,0) = (8,1) CCA 0.088 0.344 <1 <1

for the weather satellite data provides a representation of these
data, which carry the most similar information to the weather radar
data. This can be useful for, e.g., visualization purposes for meteo-
rologists, or providing pseudo-radar coverage outside of the radar’s
range. In the change detection case, the background noise in the
CCA solution looks almost similar to the signal, i.e., the cars. This
is not the case for the CIA solution, where the noise in the difference
image is suppressed and the cars stand out. This is clearly beneficial
for any kind of application of these data.

8. Conclusions and future work

In this paper mutual information successfully replaces correla-
tion to find canonical variates for two sets of multivariate observa-
tions. Unlike correlation which allows for second order statistics
only, mutual information allows for the actual density of the vari-
ables at hand. An illustrative toy example with zero correlation
between strongly associated variables proves the usefulness of
the idea. Optical satellite data and weather radar data are success-
fully fused using the proposed method to accentuate precipitating
clouds in the satellite data. This illustrates the benefit of mutual
information when working with data sets of different modalities.
Optical airborne (DLR 3K) data from two acquisition times 0.7 s
apart are included to illustrate the use of the proposed method
in the context of change detection.

Canonical information analysis employs approximate marginal
and joint entropy estimation. A simulation study shows that this
approximation is as accurate as and much faster than previously
presented algorithms, making the method feasible for image anal-
ysis problems and other large sample problems. Small sample
applications (N < 500) do not benefit from this approach.

Martiag software will be made available on the first author’s
homepage.

Acknowledgments

The authors would like to thank Researcher Dr. Thomas Bgvith
and Aviation Meteorologist Birgitte Knudsen at Danish Meteoro-
logical Institute, DMI, for selecting and providing the weather radar
and optical geostationary satellite data for the heavy precipitating
case.

Thanks to Dr. Peter Reinartz and coworkers, German Aerospace
Center, DLR, Oberpfaffenhofen, Germany, for letting us use the geo-
metrically coregistered DLR 3K camera data

AAN initially started work on this subject during a sabbatical
leave to the University of Oxford, Department of Statistics. Thanks
to Professor Brian D. Ripley for hosting.

Appendix A. Comparison of bandwidth estimators

Here we motivate the choice of the maximal smoothing princi-
ple (Terrell, 1990) for kernel bandwidth estimation by comparing

0F ]

0 /2 o7 32n 2n

Diffusion — — — Sheather-Jones Maximal Smoothing Principle

Fig. A.6. Comparison of entropy estimates based on kernel density estimates using
three different bandwidth estimators: A diffusion based estimator, the “solve-the-
equation plug-in” estimator by Sheather-Jones and the maximal smoothing
principle.

its properties with the Sheather-Jones estimator (Sheather and
Jones, 1991) and a diffusion based estimator (Botev et al., 2010).

The desirable properties of the maximal smoothing principle for
kernel bandwidth estimation can best be illustrated by an exam-
ple. For illustration purposes we consider a single set of a two-
dimensional stochastic variable X. We wish to estimate the
entropy of the linear combination U = a’X using a kernel density
estimator. The entropy becomes a function of the bandwidth esti-
mate H(6x(a|X)). The bandwidth is estimated based only on the
linear combination U and is thereby a function of the projection
direction a given the data X.

We let a be a vector on the unit circle and it can thus be fully
described in spherical coordinates as a(0) = (1,6) by the angle 6.
In the following experiment we vary the angle over the range
0 € [0,27] and estimate the bandwidth 6x for each value of 6. This
bandwidth is used for calculating the entropy.

Fig. A.6 shows the entropy H(U) as a function of the projection
direction angle 0 for three different bandwidth estimators. It is
immediately seen that the entropy estimate is smoother and
avoids local minima when using the maximal smoothing principle,
while the Sheather-Jones estimator and the diffusion based esti-
mator fluctuate much more. The average computation times over
500 estimations of the bandwidth is 0.09,72.03 and 0.04 s for
the diffusion based estimator, the Sheather-Jones and the maximal
smoothing principle, respectively.

Based on these observations, we find the maximal smoothing
principle best suited for estimation of bandwidth in the context
of optimizing mutual information of linear combinations. Though
this behavior is illustrated in two-dimensional data only, we
employ this principle for higher dimensional data as well.

Appendix B. Supplementary material

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.isprsjprs.2014.
11.002.
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