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Abstract — Based on canonical correlation analysighe
iteratively re-weighted multivariate alteration detection
(MAD) method is used to successfully perform
unsupervised change detection in bi-temporal Lands$a
ETM+ images covering an area with villages, woods,
agricultural fields and open pit mines in North Rhine-
Westphalia, Germany. A link to an example with ASTER
data to detect change with the same method after ¢h2005
Kashmir earthquake is given. The method is also esl to
automatically normalize multitemporal, multispectral
Landsat ETM+ data radiometrically. IDL/ENVI, Pytho n
and Matlab software to carry out the analyses is ailable
from the authors’ websites.
Keywords: canonical correlation analysis, multivariate
alteration detection, MAD, IR-MAD, iMAD.

1. INTRODUCTION
The detection of change over time is a very impdréspect of
the analysis of digital satellite imagery. Manythwls are
available to carry out this type of analysis (Copgi al., 2004).
One such method is the iteratively re-weighted ivariate
alteration detection (IR-MAD or iMAD) algorithm (Kisen et
al., 1998, Nielsen, 2007, Canty, 2010) which mayubed for
unsupervised change detection in multi- and hympetsal
remote sensing imagery as well as for automaticonraetric
normalization of such multitemporal image sequendémng
and Lo, 2000, Furby and Campbell, 2001, Du et 2002,
Canty et al.,, 2004, Canty and Nielsen, 2008, Ca2040).
Simple spectral band-by-band differences for simgiange
detection make sense only when the data are dalibiar at
least normalized to the same scale and zero. oftaés difficult
to carry out such normalization especially for digtal data
where no auxiliary information on atmospherical ditions or
instrument settings exists. In this paper the M&Bthod is
applied to multispectral Landsat ETM+ data to caoyt
unsupervised change detection between acquisitidnsvo
time points and to automatically normalize the datshe first
time point to that of the second time point. Alsdjnk to an
example with ASTER data to detect change after 206@5
Kashmir earthquake is given.

2. METHOD

The idea in the IR-MAD method is: rather than ondlgrthe
data by wavelength we order them by a measurenufasity,
here correlation. This is done by means of anbésted
multivariate statistical technique, namely canoihamarelation
analysis (CCA, Hotelling, 1936). Much like prinaip
component analysis CCA constructs new orthogonahhies
from the original ones. CCA finds two sets of &ne
combinations of the original variables, one forleime point.
The first two linear combinations are the ones wiith largest
correlation. This correlation is called the first leading
canonical correlation and the two linear combineicare
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called the first or leading canonical variates. e Hecond two
linear combinations are the ones with the largestetation
subject to the condition that they are orthogomathte first
canonical variates. This correlation is called thecond
canonical correlation and the two linear combineicare
called the second canonical variates. Higher ocd@onical
correlations and canonical variates are definedasim

The pair-wise differences between the canonicahtes which
are as similar as they can get are the changeblesiathese
differences are termed the MAD variates or MADs sbort.
Because these MADs are orthogonal, ideally diffetgpes of
change will be associated with different canoniaiates and
MAD variates. Basing the MAD transform on CCA eresu
independence of linear and affine scaling of theineal data.

Properly normed to unit variance, the sum of theasgd MAD

variates ideally will follow a chi squared distriinn with as

many degrees of freedom as we have spectral bartds.may

be used to calculate a measure of probability otmange.
This in a series of iterations is used to placeeasing weight
on the no-change observations to obtain an inerghsbetter
background of no-change against which to detecingha
Also, the no-change observations may be used mogonal

regression (also known as total least squares)haddlows for

uncertainties in both or all variables involved, tbtain

automatic radiometric normalization of image tinegiess.

3. DATA

The method is applied to Landsat ETM+ data covering
villages, woods, agricultural areas and open pitesiin North
Rhine-Westphalia, Germany. Also, a link to an eplenwith
ASTER imagery for detection of landslides in theeahath of
the 2005 earthquake in Kashmir is given.

3.1 Landsat ETM+ Data, Jilich, Germany

Landsat ETM+ data covering villages, woods, agtical
areas and open pit mines in the Rur catchment lwasitered
on the town Jilich, Germany, from 26 June and 2@uAt
2001 are subjected to the IR-MAD change analysige (t
thermal band is excluded from the analysis).

Figures 1 and 2 show Landsat ETM+ bands 4, 5 aaxh@ired
at 26 June and 29 August 2001 as RGB. The imagest®0
by 1000 28.5 meter pixels. Figure 3 shows the ldpweent of
the six canonical correlations over the iterationsAfter
approximately 25 iterations the method seems toehamon
the no-change observations and then it stabilizes.

Figure 4 shows a scatter plot of the leading caradniariates
for the two time points. This shows no-change Isigong the
line y=x and change pixels off that line. Figuresfows the
same scatter plot after iterations, and we seestimatich better
discrimination between change and no-change iewaeti(the
“bump” off the line y=x are the change pixels).



Figure 2. Landsat ETM+ data, Jilich, Germany, 2 2001.

Figure 6 shows the three IR-MAD variates correspundo
the highest canonical correlations as RGB. No-ghaegions
(primarily villages and woods) are the grayishustureless
areas, change regions (mainly agricultural fieldd apen pit
mines) have structure and are in saturated col@nctuding
black and white if present). The colours indicéte type and
direction of change (primarily maturing sugar beetl corn
crops and grain harvesting).

Figure 7 shows the so-called chi squared image evhkrck
indicates no-change and white change. The brigipiesls
and hence the largest amount of change is assbcvaith
agricultural activities.
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Figure 3. Canonical correlations over iterations.
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Figure 4. Scatter plot of canonical variates 1.
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Figure 5. Scatter plot of iterated canonical vesdl.
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Figure 7. Landsat ETM+, Julich, Germany, chi sgdamage.

3.2 Automatic Radiometric Normalization

As mentioned the no-change observations detectedhéy
iIMAD method may be used in orthogonal or total iesgiares
regression to automatically normalize a series oftispectral
images to the same reference. To do this we ralyddivide
the no-change observations between the two timetp@here
the pixels with probability of no-change greateartt0.95) into
a training set (here consisting of 1,211 pixels)l antest set
(here consisting of 578 pixels). If we normalibe ttraining
pixels from 26 June to the data from 29 August @hhs then
the reference) orthogonal regression gives thdéreion lines
in Figures 8 (for the training data) and 9 (for thset data); as
an example band 5 is shown. Although the calibnatine is
based on the training data only, after calibratlmntest data fit
the line y=x neatly.

Intercepts and slopes with standard errors fosiglbands are
shown in Table A. t-values and probabilities fdataining a
higher value of |t| are included (standard errbsukl be low,
t-values high and probabilities close to 0, norgnalle say
p<0.05).

Table B gives paired t-tests for equal means fertdst data
after normalization (differences and t-values stidaé close to
0 and probabilities high — the closer to 1 the dyethormally
we say p>0.05). Table C gives F-tests for equehnaes of
the test data after normalization (F-values shaalctlose to 1
and probabilities high — the closer to 1 the bettermally we
say p>0.05).

Since the variables at both time points are astmtisith
uncertainty orthogonal regression must be used. hbrdact,
what is called reference data and what is callechlibrated
data is arbitrary.

See also http:/fwenvi-idl.blogspot.com/2009/07malizing-
images.html.

3.3 ASTER Data, Kashmir, Pakistan

This example is not described in detail here. eadtsee
http://fwenvi-idl.blogspot.com/2009/06/detectingaciges.html
which illustrates the application of the MAD methtuddetect
mudslides in the aftermath of the disastrous eaekeg of 8
October 2005 centered near the city of Muzaffaralimd
Pakistan-administered Kashmir. The link also gigeseat
Google Earth projection of the change detectede fdyion
lies in the area of collision of the Eurasian andidn tectonic
plates. According to the United States Geologi8atvey
(USGS) this earthquake had a magnitude of (at)l@&ton the
moment magnitude scale (denoted MMS og)Mmaking it
similar in size to the infamous 1906 earthquake San
Francisco, USA. The data applied are the threeR/N meter
pixels ASTER bands 1, 2 and 3N over the area aedwn 5
September and 27 October 2005.

The Kashmir earthquake caused the death of more6£00
people and enormous damage to housing and infcastey see
http://en.wikipedia.org/wiki/2005_Kashmir_earthqeak

4. CONCLUSIONS

We have demonstrated how the iterated scheme Mk

method homes in on the no-change observationsggvivery
good discrimination between change and no-chang®ms.
We have also shown how the no-change observati@ysha
used in orthogonal regression (or total least ssp)aio obtain
automatic radiometric normalization of image timeriss
including statistical tests for equal means andawnaes after
normalization.

Post-processing of the MAD variates by means ofmnéler
versions of principal components (Scholkopf et 24898) or

maximum autocorrelation factors/minimum noise fiats

(Green et al., 1988, Nielsen, 2011) may be useful.

Sometimes both change detection and normalizatiprihb

MAD method fail because not enough no-change picafsbe
found. In these cases it is often advantageowstablish the
transformation in a sub-area or region of intecgdy and then
apply the transformation to the entire scene.

IDL/ENVI, Python and Matlab software to carry obetMAD
based analyses is available from the authors’ wehsi
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Figure 8. Calibration line for band 5, trainingala
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Figure 9. After calibration, band 5, test dataelis y=x.

Table A. Intercepts and slopes for all bandsningi data only.

Band Intercept|  Std.err. t P Slopg Std.er.  t p
1 1.1249 0.4820 2.33 0.0 0.8679 0.0063 138 0,00
2 2.0523 0.2836 7.24 0.0 0.8408 0.0048 174 0,00
3 6.6036 0.1900 34.74 0.0 0.7916 0.00B7 211 Q.00
4 4.3352 0.4247 10.21 0.0 0.6996 0.0048 146 0.00
5 2.8539 0.2584 11.05 0.0 0.7999 0.00B5 226 0.00
7 6.1150 0.1037 58.97 0.0 0.7584 0.00p4 317 0.00
Table B. Paired t-tests for equal means after abiration,

test data.
Band Uncorr. Normalized Ref. Diff. t p
1 75.87 66.97 66.74 0.20 2.5p 0.01
2 57.83 50.68 50.56 0.11 1.60 0.11
3 48.10 44.68 4454 0.14 1.65 0.10
4 85.21 63.95 64.00 -0.04| -0.26 0.80
5 70.21 59.01 58.97 0.09 0.99 0.32
7 39.66 36.07 35.99 0.08 1.4p 0.16

Table C. F-tests for equal variances after nozatibn,

test data.
Band Uncorr. Normalized Ref. F p
1 80.38 60.55 64.83 0.933p 0.41
2 104.35 73.77 79.10 0.932b 0.40
3 243.35 152.46 160.54 0.9497 0.54
4 566.87 277.47 294.7 0.9413 0.47
5 324.67 207.72 209.0 0.9936 0.94
7 291.26 166.19 169.74 0.9791 0.80
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