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1. INTRODUCTION

Based on orthorectified, bi-temporal 2,000×2,000 5 m pixel

multispectral RapidEye data [1] short-term changes are de-

tected associated with land-use and reclamation in connection

with open pit mining in North Rhine-Westphalia, Germany.

The changes are found automatically by means of a combi-

nation of the iteratively re-weighted MAD method [2], which

produces a generalized multivariate difference image, and the

kernel MAF method [3]. The IR-MAD method may also be

used for automatic radiometric normalization of the data [4].

For the acquisition of ground data for orthorectification and

for accuracy assessment, GPS data, supplied by courtesy of

RWE Power AG [5], are used.

2. DATA AND PREPROCESSING

The study site is located west of Cologne and comprises the

Rhenish lignite district, the largest open-cast mining site in

Germany. With an annual excavation of 300 million cubic

meters (Hambach), 140 million (Garzweiler) and 80 million

cubic meters (Inden), respectively, and a total lignite extrac-

tion of about 100 million metric tons per year [5], this area

is highly dynamic and fast changing. The open-cast mining

sites are surrounded predominantly by agricultural areas and

some forested areas around the Hambach site.

Two RapidEye images acquired on 24 May and 1 June

2009 were selected to perform the IR-MAD analysis for

change detection purposes. The subsets used here cover a

region of 2,000×2,000 pixels centered on the Garzweiler

site, see Figure 1, where the most accurate GPS data were

available for orthorectification. RapidEye is a constellation of

five identical satellites operating in the same sun-synchronous

orbit. Each of them has five spectral bands which cover the

blue (440-510 nm), the green (520-590 nm), the red (630-685
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nm), the red edge (690-730 nm), and the near infrared region

(760-850 nm). Ground sampling distance is 6.5 m. Due to its

off-nadir capabilities RapidEye is in principle able to achieve

daily coverage [6].

The imagery was delivered as level 1B basic product,

which means that only radiometric and sensor corrections

have been applied [6]. Orthorectification was performed with

PCI’s [7] Geomatica 10.3 OrthoEngine Module using the

rational function option [8, 9] and a 10 m digital elevation

model. An updated digital elevation model was created for

each acquisition time by merging the 10 m base digital ele-

vation model with the real time digital elevation model that

was derived from the excavators GPS ground measurements.

DEM resolution was 2 m. To achieve best performance the

RapidEye data were converted to 5 m pixel spacing with

cubic convolution interpolation as is done for the RapidEye

level 3A ortho standard products [6]. The data are quantized

to 16 bit.

Note the clouds (and their shadows) in the northeast cor-

ner of the image and in the southwest corner of the mine,

Figure 1 bottom.

3. THE ITERATED MAD TRANSFORMATION

Change over time between the two RapidEye images is here

detected by means of the iteratively reweighted multivariate

alteration detection (IR-MAD) method followed by post-

processing by means of kernel maximum autocorrelation

factor (kMAF) analysis. The IR-MAD method builds on

an iterated version of an established method in multivariate

statistics, namely canonical correlation analysis (CCA) [10].

It finds orthogonal (i.e., uncorrelated) linear combinations

of the multivariate data at two time points that have max-

imal correlation. These linear combinations are called the

canonical variates (CV) and the corresponding correlations

are called the canonical correlations. There is one set of CVs

for each time point. The difference between the two sets of
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Fig. 1. Orthorectified RapidEye 2,000×2,000 5 m pixels sub-

sets, infrared/red edge/red as RGB, 24 May 2009 (top), 1 June

2009 (bottom). Includes material c© (2009) RapidEye AG,

Germany. All rights reserved.

CVs represent the change between the two time points and are

called the MAD variates or the MADs for short. The MAD

variates are invariant to linear and affine transformations of

the original data.

The sum of the squared MAD variates (properly normed

Fig. 2. IR-MAD component 5 (top), χ2 image (bottom).

to unit variance) gives us a change variable that will ideally

follow a so-called χ2 (chi-squared) distribution with p de-

grees of freedom for the no-change pixels; p is the number

of spectral bands in the image data, here p = 5. The χ2 im-

age is the basis for calculating an image of probability for

no-change, i.e., the probability for finding a higher value of

the χ2 statistic than the one actually found. This image is the

weight image in the iteration scheme mentioned above. Itera-
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tions stop when the canonical correlations stop changing.

Figure 2 shows the iterated MAD component correspond-

ing to the difference between the highest correlated iterated

canonical variates (top) and the χ2 image (bottom). Gray pix-

els in the top image are no change pixels, bright and dark

pixels are change pixels. The gray level in the bottom image

reflects the probability of change: bright pixels are change

pixels, dark pixels are no-change pixels.

4. THE KERNEL MAF TRANSFORMATION

A kernel formulation of principal component analysis (PCA)

[11] may be obtained from Q-mode or dual formulation of the

problem combined with kernel substitution also known as the

kernel trick [12, 13].

In maximum autocorrelation factor (MAF) analysis [14,

15] we maximize the autocorrelation of linear combinations,

aT x(r), of zero-mean original (spatial) variables, x(r). x(r)
is a multivariate observation at location r and x(r + Δ) is an

observation of the same variables at location r + Δ; Δ is a

spatial displacement vector.

4.1. R-mode Formulation

The autocovariance R of a linear combination aT x(r) of

zero-mean x(r) is

R = Cov{aT x(r), aT x(r + Δ)} (1)

= aT Cov{x(r), x(r + Δ)}a (2)

= aT CΔa (3)

where CΔ is the covariance between x(r) and x(r + Δ). As-

suming or imposing second order stationarity of x(r), CΔ is

independent of location, r. Introduce the multivariate differ-

ence xΔ(r) = x(r) − x(r + Δ) with variance-covariance

matrix SΔ = 2 S − (CΔ + CT
Δ) where S is the variance-

covariance matrix of x. Since

aT CΔa = (aT CΔa)T (4)

= aT CT
Δa (5)

= aT (CΔ + CT
Δ)a/2 (6)

we obtain

R = aT (S − SΔ/2)a. (7)

To get the autocorrelation ρ of the linear combination we di-

vide the covariance by its variance aT Sa

ρ = 1 − 1
2

aT SΔa

aT Sa
(8)

= 1 − 1
2

aT XT
ΔXΔa

aT XT Xa
(9)

where X is the n by p data matrix with columns xT
i and XΔ

is a similarly defined matrix for xΔ with zero-mean columns.

CΔ above equals XT XΔ/(n − 1). To maximize ρ we must

minimize the Rayleigh coefficient aT XT
ΔXΔa/(aT XT Xa)

or maximize its inverse. This is done by solving a symmetric

generalized eigenvalue problem.

Unlike linear PCA, the result from linear MAF analysis is

scale invariant: if xi is replaced by some matrix transforma-

tion Txi the result of the MAF transformation is the same.

4.2. Q-mode Formulation and Kernelization

Q-mode formulation of kernel principal component analysis

turns out to amount to the re-parameterization a ∝ XT b, [12,

13].

As with kernel PCA we use this re-parameterisation and

the kernel trick to obtain an implicit nonlinear mapping for

the MAF transformation. A detailed account of this is given

in [3].

Figure 3 shows kernel MAF component 1 of the IR-MAD

variates based on ∼3,000 training observations (top) and

component 6 (bottom) centered on the mine.

5. RESULTS AND DISCUSSION

The IR-MAD components show changes for a large part of

the entire subset. Especially phenological changes in the agri-

cultural fields surrounding the open pit are predominant. As

opposed to this, kMAF components focus more on changes

in the open-cast mine (and changes due to the two clouds and

their shadows, not visible in the zoom). Ground data were

available from bucket-wheel excavators on the extraction side

(to the northwest in the open pit) in terms of elevation data for

both dates. No ground data were available for changes due to

backfill (southeastern part of the open pit) or changes due to

mining machines other than the bucket-wheels.

A visual comparison shows that areas detected as change

in the kMAF components are related to areas that differ sig-

nificantly in the two input images. Two observations can be

made when comparing the kMAF components with ground

data: some areas of extraction were detected perfectly (e.g.,

the north-most contours in the upper left of Figure 3); others

were not detected at all (e.g., the east-most contours in Fig-

ure 3). This illustrates the fact that only those changes are de-

tectable which are represented by spectral reflectances in the

bands of the sensor (this excludes height information). In the

case of the undetected area (the east-most contours), brown

coal was extracted leading to an elevation difference of three

to seven meters. However, this remained undetected due to

the negligible change in reflectance (the pixels being covered

by brown coal in both images).

In conclusion the IR-MAD components show changes in

the agricultural areas as well as in the mine, and the kMAF

components focus on extreme changes in the mine. Due to

lack of change in the spectral signal (the change occurs in the
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Fig. 3. Zoom of kMAF component 1 (top) and 6 (bottom)

with ground data on bucket-wheel excavation; red: contours

as of 24 May 2009, blue: contours as of 01 June 2009.

height of the surface only) excavation of material (here brown

coal) leaving the same material behind is not detected.
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