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1. INTRODUCTION

Principal component analysis (PCA) [1] is often used for gen-

eral feature generation and linear orthogonalization or com-

pression by dimensionality reduction of correlated multivari-

ate data, see Jolliffe [2] for a comprehensive description of

PCA and related techniques. Schölkopf et al. [3] introduce

kernel PCA. Shawe-Taylor and Cristianini [4] is an excellent

reference for kernel methods in general. Bishop [5] and Press

et al. [6] describe kernel methods among many other subjects.

The kernel version of PCA handles nonlinearities by implic-

itly transforming data into high (even infinite) dimensional

feature space via the kernel function and then performing a

linear analysis in that space.

In this paper we shall apply a kernel version of maxi-

mum autocorrelation factor (MAF) [7, 8] analysis to irregu-

larly sampled stream sediment geochemistry data from South

Greenland and illustrate the dependence of the kernel width.

The 2,097 samples each covering on average 5 km2 are ana-

lyzed chemically for the content of 41 elements.

2. DATA AND GEOLOGY

In 1979-80 the GGU, the Geological Survey of Greenland

(now GEUS, the Geological Survey of Denmark and Green-

land), collected stream sediment samples from a 10,000

km2 area in South Greenland. Sample sites were small ac-

tive streams with catchment areas of 1-10 km2. Samples

were sieved at 100 mesh and the undersize was analysed.

The present study is based on a dataset with 41 variables

and 2,097 samples. Two analytical techniques have been

used. The concentrations of Ca, Cu, Fe, Ga, K, Mn, Nb,

Ni, Pb, Rb, Sr, Ti, Y, Zn and Zr have been determined by

energy-dispersive isotope excited x-ray fluorescence and the

concentrations of Au, Ag, As, Ba, Br, Co, Cr, Cs, Hf, Mo,

Na, Sb, Sc, Se, Ta, Th, U, W, La, Ce, Nd, Sm, Eu, Tb, Yb and

Lu have been determined by instrumental neutron activation

analysis. These analyses of the samples are identical to the

ones used in [9] but different from the ones reported in [10].
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2.1. Geological Setting

The study area is underlain by a Palaeoproterozoic orogen,

the Ketilidian orogen, which consists of three major tectono-

stratigraphic units: (1) a northern Border zone of tectonically

reworked Archaean gneissic basement overlain by Palaeo-

proterozoic metasediments and metavolcanics in the north-

east, (2) a central zone occupied by a calc-alkaline granitic

batholith, and (3) a southern migmatite complex of predom-

inantly Palaeoproterozoic metasediments and metavolcanics

intruded by post-tectonic rapakivi type granites, see Fig-

ure 1 (top) and [11]. The plate-tectonic setting of the orogen

has been interpreted in [12]. In Mesoproterozoic times the

boundary region between the border and the granite zones

was subjected to rifting and intrusions of numerous dykes of

basaltic to trachytic compositions as well as of felsic alkaline

complexes including carbonatites. The region affected by the

alkaline magmas is termed the Gardar province, [13].

3. KERNEL PCA AND MAF

A kernel formulation of principal component analysis (PCA)

[1] may be obtained from Q-mode or dual formulation of the

problem combined with the so-called kernel trick [3].

Let us consider a data set with n observations and p vari-

ables organized as a matrix X with n rows and p columns;

each column contains measurements over all observations

from one variable and each row consists of a vector of mea-

surements xT
i from p variables for a particular observation

X =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
n

⎤
⎥⎥⎥⎦ . (1)

The superscript T denotes the transpose. X is sometimes

called the data matrix or the design matrix. Without loss of

generality we assume that the variables in the columns of X
have mean value zero.

3.1. R-mode PCA

In ordinary (primal also known as R-mode) PCA we analyze

the variance-covariance matrix S = XT X/(n−1) = 1/(n−
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1)
∑n

i=1 xix
T
i which is p by p. If XT X is full rank r =

min(n, p) this will lead to r non-zero eigenvalues λi and r
orthogonal or mutually conjugate unit length eigenvectors ui

(uT
i ui = 1) from the eigenvalue problem

1
n − 1

XT Xui = λiui. (2)

We see that the sign of ui is arbitrary. To find the principal

component scores for an observation x we project x onto the

eigenvectors, xT ui. The variance of these scores is uT
i Sui =

λiu
T
i ui = λi which is maximized by solving the eigenvalue

problem.

3.2. Q-mode PCA

In the dual formulation (also known as Q-mode analysis) we

analyze XXT /(n−1) which is n by n and which may be very

large. XXT is called the Gram1 matrix and its elements are

the inner products xT
i xj between the rows of the data matrix

X . Multiply both sides of Equation 2 from the left with X

1
n − 1

XXT (Xui) = λi(Xui) (3)

or

1
n − 1

XXT vi = λivi (4)

with vi proportional to Xui, vi ∝ Xui, which is normally

not unit length if ui is. Now multiply both sides of Equation 4

from the left with XT

1
n − 1

XT X(XT vi) = λi(XT vi) (5)

to show that ui ∝ XT vi is an eigenvector of S with eigen-

value λi. We scale these eigenvectors to unit length assum-

ing that vi are unit vectors (1 = vT
i vi ∝ uT

i XT Xui =
(n − 1)λiu

T
i ui = 1)

ui =
1√

(n − 1)λi

XT vi. (6)

We see that if XT X is full rank r = min(n, p), XT X/(n−1)
and XXT /(n − 1) have the same r non-zero eigenval-

ues λi and that their eigenvectors are related by ui =
XT vi/

√
(n − 1)λi and vi = Xui/

√
(n − 1)λi.

3.3. Kernel Formulation of PCA

We now replace x by φ(x) which maps x nonlinearly into

a typically higher dimensional feature space. As an ex-

ample consider a two-dimensional vector [z1 z2]T being

mapped into [z1 z2 z2
1 z2

2 z1z2]T . This maps the original

two-dimensional vector into a five-dimensional feature space

1named after Danish mathematician Jørgen Pedersen Gram (1850-1916)

so that for example a linear decision rule becomes general

enough to differentiate between all linear and quadratic forms

including ellipsoids.

The mapping by φ takes X into Φ which is an n by q (q ≥
p) matrix

Φ =

⎡
⎢⎢⎢⎣

φ(x1)T

φ(x2)T

...

φ(xn)T

⎤
⎥⎥⎥⎦ . (7)

For the moment we assume that the mappings in the columns

of Φ have zero mean. In this higher dimensional feature space

C = ΦT Φ/(n − 1) = 1/(n − 1)
∑n

i=1 φ(xi)φ(xi)T is the

variance-covariance matrix and for PCA we get the primal

formulation

1
n − 1

ΦT Φui = λiui (8)

where we have re-used the symbols λi and ui from above.

For the corresponding dual formulation we get

1
n − 1

ΦΦT vi = λivi (9)

where we have re-used the symbol vi from above. As above

the non-zero eigenvalues for the primal and the dual formula-

tions are the same and the eigenvectors are related by

ui =
1√

(n − 1)λi

ΦT vi (10)

and vi = Φui/
√

(n − 1)λi.

3.3.1. Kernel Substitution

Applying kernel substitution also known as the kernel trick

we replace the inner products φ(xi)T φ(xj) in ΦΦT with a

kernel function κ(xi, xj) = κij which could have come from

some unspecified mapping φ. In this way we avoid the ex-

plicit mapping φ of the original variables. We obtain

Kvi = (n − 1)λivi (11)

where K = ΦΦT is an n by n matrix with elements κ(xi, xj).
K is symmetric and must be positive semi-definite, i.e., its

eigenvalues are non-negative; we say that κ is a Mercer ker-

nel. Normally we let the eigenvalues subsume the factor n−1

Kvi = λivi. (12)

In this case ui = ΦT vi/
√

λi and vi = Φui/
√

λi.

It is easy to show that both centering to zero mean of the

mappings in the columns of Φ as well as the projection of ob-

servations x onto the primal eigenvectors ui may be expressed

by means of the kernel function κ(xi, xj) without explicit use

of the nonlinear mapping.
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3.4. Kernel MAF

In a similar fashion maximum autocorrelation factor (MAF)

analysis [7, 8, 14] which may be considered as a form

of spatial factor analysis may be kernelized, for details

see [15]. In this context a popular kernel is the Gaussian

κ(xi, xj) = exp(− 1
2 (‖xi −xj‖/σ)2) where the kernel width

is given by the scale parameter σ, and xi and xj (here) are

41-dimensional vectors of concentrations. Below we give

results of the kernel MAF analysis with different choices of

σ.

4. RESULTS AND DISCUSSION

Figure 1 (bottom) shows the 2,097 sample sites in South-

ern Greenland in red. The study area is approximately 320

km east-west and 210 km north-south. The Delaunay trian-

gulation is shown in blue. The analyses shown below are

based on concentrations standardized to unit variance, see

also [10, 9, 16].

For σ equal to the mean distance between observations in

41-dimensional feature space kMAFs 1, 2 and 3 in Figure 2

top focus on extreme observations associated with the intru-

sions marked with dense plus signs “+” in the Granite zone

(Figure 1 top). Also they neatly adapt to an even strongly

varying multivariate background. Although other samples

have high scores, this is true also for kMAFs with σ equal

to ten times the mean, Figure 2 bottom. In spite of a tendency

to highlight more samples in the so-called Gardar intrusion,

the same overall impression is true for kMAFs with σ equal

to a hundred times the mean, Figure 3 top. For kMAFs with σ
equal to a thousand times the mean (Figure 3 bottom) we see

a depiction of the three major geological units named “Bor-

der Zone”, “Granite Zone” and “Migmatite Complex” in the

geological map, Figure 1 top.

In conclusion we see that by varying the kernel width

σ we may analyse the phenomenon under study at different

scales which highlight different relevant geological features.
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Fig. 1. Simplified geological map of South Greenland (top).

All 2,097 sample sites and the Delaunay triangulation (bot-

tom).
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Fig. 2. Kernel MAFs 1, 2 and 3 as RGB, kernel width σ is

mean of distances in feature space (top), kernel MAFs 1, 2

3 as RGB, kernel width σ is 10 times mean of distances in

feature space (bottom).
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