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Abstract—Different spatial priors for satellite image fusion
are evaluated through experiments on three different data sets.
The results are judged visually as well as quantified via dif-
ferent image quality metrics on a down-sampled data-set. It is
done within our previously proposed spectrally consistent pan-
sharpening framework (SCP). This is a per pixel based fusion
framework constructed by considering the imaging physics.

I. INTRODUCTION

Several widely used methods have been proposed for fusing
high resolution panchromatic data and lower resolution multi-
channel data. However, many of these methods fail to maintain
spectral consistency of the fused high resolution image, which
is of high importance to many of the applications based
on satellite data. Additionally, most of the methods we are
acquainted with are loosely connected to the image forming
physics of the satellite images, giving these methods an ad
hoc feel. In [8] Vesteinsson et al. we proposed a method
for fusion of satellite images that is based on the properties
of imaging physics in a statistically meaningful way. The
fusion method is called spectral consistent pansharpening
(SCP) and it was shown that spectral consistency was a direct
consequence of imaging physics and hence guaranteed by the
SCP. The spectral consistency was achieved while exploiting
the high resolution single-channel data in what can be seen as
a statistical optimal way. Specifically, the SPC is based on the
observation, that any given channel of the satellites’s imaging
device can be seen as an inner-product between the radiated
light arriving at the sensor and the spectral response function
of that channel. This gives a simple inner product space
encompassing the relationship between the different channels
as well as imposing spectral consistency. Normal distributed
statistics - inducing the same norm as the above mentioned
inner product - is used for regularization. This yield´s a frame-
work to which additional constraints are added in a straight
forward manner. A highly useful category of such constraints
are spatial, where a given pixel is related to its neighbours.
In [1] Aanæs et al. we showed how such constraints could
be added to the SCP framework while maintaining spectral
consistency. This was done by constraining the resulting pixel
values to a hyper plane dictated by the imaging physics.

A reason that such spatial constraints are useful is that satel-
lite image fusion is inherently an ill-posed inverse problem,
thus requiring additional constraints – implicitly or explicitly –
to be solved. A good strategy for constructing such constraints

Table I
VARIOUS METRICS COMPARING THE ORIGINAL LOW RESOLUTION RGB

IMAGE WITH A FUSED ’APPROXIMATION’ HEREOF BASED ON

DOWN-SAMPLED INPUT DATA, I.E. PAN-CHROMATIC AND LOW

RESOLUTION RGB-IMAGE. THE EXPERIMENT IS RUN ON ALL THREE DATA

SETS WITH ALL THE MENTIONED FUSION STRATEGIES. THE METRICS ARE

AS FOLLOWS MSE MEAN SQUARED ERROR ON ALL BANDS CC MEAN

CROSS-CORRELATION BETWEEN BANDS WB MEAN WANG BOVITH

MEASURE BETWEEN BANDS [10] SSIM THE MEAN OF [9] ON EACH BAND

Q4 AN EXTENSION OF WANG AND BOVIK TO MULTIPLE DIMENSIONS

GIVING A COMBINED METRIC, BY ALPARONE ET AL. [2].

MSE CC WB SSIM Q4
IKONOS:
No Weight 0.0024 0.9120 0.6437 1.0000 0.6513
Uniform Weight 0.0029 0.8946 0.6133 1.0000 0.6171
Line Induced 0.0025 0.9094 0.6388 1.0000 0.6425
Gradient Induced 0.0021 0.9244 0.6874 1.0000 0.6957
IHS Method 0.0026 0.8971 0.5523 0.9999 0.6386
QuickBird:
No Weight 0.0008 0.9132 0.7087 1.0000 0.7086
Uniform Weight 0.0008 0.9145 0.6844 1.0000 0.6809
Line Induced 0.0008 0.9195 0.7147 1.0000 0.7137
Gradient Induced 0.0007 0.9213 0.7227 1.0000 0.7287
IHS Method 0.0132 0.6836 0.4470 0.9990 0.5217
Metrosat:
No Weight 0.0037 0.9491 0.7144 1.0000 0.6915
Uniform Weight 0.0033 0.9458 0.6851 1.0000 0.6836
Line Induced 0.0033 0.9474 0.6993 1.0000 0.6927
Gradient Induced 0.0030 0.9545 0.7366 1.0000 0.7334
IHS Method 0.0114 0.9272 0.6277 0.9992 0.7293

is the use of ones prior assumptions or knowledge about the
solution, e.g. that a cityscape tends to be piecewise smooth,
and many of our priors about satellite images are spatial. In
this work we investigate the use of spatial smoothing priors,
where the degree of smoothing locally is based on the corre-
sponding ’edges’ in the high resolution single-channel. These
spatial priors thus, in a sense, incorporates the notion of line
process in the SCP framework, c.f. [3] Black and Rangarajan.
The question, however, is how the relation between the degree
of smoothing and the high resolution single-channel should
be formulated. We, hence, specifically investigate different
strategies for how the high resolution singlechannel image
should control the local smoothing of the fused result, thus in
essence trying to determine how to transferee edges between
the images.

II. SETTING OR FRAMEWORK

The setting of our algorithm, as presented in [1], is that
there is a per pixel term Dij , and a spatial smoothing term



Table II
SPECTRAL CONSISTENCY OF THE IHS METHOD, MEASURED AS THE

CROSS CORRELATION BETWEEN THE LOW RESOLUTION RGB IMAGE AND

THE APPROPRIATELY DOWN-SAMPLED FUSED IMAGE. FOR THE REST OF

THE INVESTIGATED STRATEGIES THE WAS A PERFECT CORRELATION OF 1,
AS WOULD BE EXPECTED SINCE THE METHODS ARE SPECTRALLY

CONSISTENT BY DESIGN.

Data set Spectral Consistency
IKONOS 0.9106
QuickBird 0.9414
Metrosat 0.9414

which are combined for each pixel i, j

min
∑
ij


Dij + γ

∑
k∈Nij

ρ(εijk)wikj


 , (1)

where k runs over the 4-neighbors of pixel i, j andρ(εijk) is
a scalar enumerating the difference between a pixel and its
neighbor. What needs to be determined — and is the subject
of this paper — is the associated weights wijk, which are set
by processing the given pan-chromatic image and determines
to what extent there should be an edge at pixel i, j. Lastly
there is a weighting constant γ. The combined solution for the
whole fused image is given by a large least squares system,
where spectral consistency is ensured via the parametrization.

We investigate four different strategies for setting the
weights, wijk, where the two first are mostly included for
comparison purposes:

1) No smoothing i.e. all the weights are set to zero. This
is included for comparison purposes.

2) Uniform Weighting i.e. all the wijk are equal.
3) Line Induced Weighting edges are extracted from the

pan-chromatic image, here via the Canny Edge detector
[4]. The weights are then set to 0 where there is an edge
and 1 otherwise.

4) Gradient Induced Weighting Here we go the step
further, and produce weights in the range from 0 to
1, depending on the gradient magnitude of the pan-
chromatic image. Our investigation showed that a lin-
ear relationship between the weights and the gradient
magnitude produced poor results. We thus applied a
non-linear function, which has proven successful in line
extraction in the non-linear diffusion framework, c.f. e.g.
[11], namely the function proposed by Perona and Malik
in [7].

These are compared to the IHS based image fusion method,
c.f. e.g. [5], which is perhaps the most popular approach to
the image fusion problem. Many more strategies could be
envisioned, particularly combinations and variations of the
above methods. We have however chosen these because they
span the possible strategies well and the line and gradient
induced weights give good results.

III. EXPERIMENTS

The contribution of this paper is an evaluation of the above
mentioned strategies. We have done this by applying the

these strategies to three different data-sets from three different
satellite types depicting different types of landscape. Thus
spanning the different types of data, satellite image fusion is
used for, decently. The three data sets are:

1) IKONOS is an image of a cityscape taken by the
IKONOS earth imaging satellite.

2) QuickBird is an image of a forest landscape bisected by
roads and containing a few large buildings. This image
is taken by the QuickBird satellite.

3) Metrosat Is a weather satellite depicting Europe from
the Metrosat satellite [6].

There is to our knowledge, however, not a single good canon-
ical metric for evaluating image fusion algorithms. Hence we
have partly relied on a visual inspection of the fused results
as seen in Figures 1, 2, 3 and 4. The lack of canonical image
metrics does not mean that metrics do not exist, we have thus
applied some of the more popular to a comparison between
the original low sampled color image and a fused image based
on an appropriately down sampled data set — thus in a sense
giving us the ground truth, albeit on a different scale — for
the result hereof c.f. Table I. Lastly, the methods based on our
method are spectrally consistent, which does not hold for the
IHS method. Thus the degree of spectral consistency for the
IHS method is investigated c.f. Table II.

Judging by the image quality metrics, Table I, it is seen
that the gradient induced weighting scheme produces the best
results. This also corresponds well with our visual inspection
of the different weighting schemes (i.e. not the IHS method).
Here it is seen that the gradient and line induced schemes
produce good results, although the line induced scheme gives a
too segmented image. So the gradient induced scheme visually
gives the best results, although it a bit blurry. So perhaps a
mix between the line induced and the gradient induced scheme
would give even better results.

Comparing with the IHS method it is visually seen that more
high frequency detail is present in the image giving a ’sharper’
result. The IHS method is however not spectrally consistent
as seen in Table II. This lack of color consistency is also
noted visually, in that the trees and grass become grayish in
stead of green. Much of this high frequency information is also
present with the no smoothing scheme, albeit at the cost of a
significant blocking effect originating from the low resolution
blocks. This is well in line with our current experience that
suggests that if you want spectral consistency you either need
a slightly blurred image (w.r.t. the pan-chromatic image) or
endure a blocking effect.

IV. DISCUSSION AND CONCLUSION

Here different several spatial image prior strategies for
satellite image fusion has been presented and compared to
each other and the IHS method. It is shown that they yield
good and spectral consistent results, albeit with the loss of
some of the high frequency information in the panchromatic
image. A prior based on inhomogeneous smoothing, inspired
by the non-linear diffusion techniques c.f. e.g. [11], is the best
choice for prior.



Figure 1. Results of the image fusion strategies. A sample of the resulting
images on the IKONOS data set top left: Input Pan-chromatic image top
right: No smoothing. middle left: Uniform Weights. bottom left: Line
Induced Weighting bottom right: Gradient Induced Weighting.

Figure 2. Results of the image fusion strategies. Another sample of the
resulting images on the IKONOS data set top left: Input Pan-chromatic image
top right: No smoothing. middle left: Uniform Weights. bottom left: Line
Induced Weighting bottom right: Gradient Induced Weighting.
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