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Abstract

A recently proposed method for automatic radiometric normalization of multi- and hyperspectral imagery based on the invariance property of the
Multivariate Alteration Detection (MAD) transformation and orthogonal linear regression is extended by using an iterative re-weighting scheme
involving no-change probabilities. The procedure is first investigated with partly artificial data and then applied to multitemporal, multispectral
satellite imagery. Substantial improvement over the previous method is obtained for scenes which exhibit a high proportion of change.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Ground reflectance determination from satellite imagery
requires, among other things, an atmospheric correction
algorithm and the associated atmospheric properties at the
time of image acquisition. For most historical satellite scenes
such data are not available and even for planned acquisitions
they may be difficult to obtain. A relative normalization using
the radiometric information intrinsic to the images themselves is
an alternative whenever absolute surface reflectances are not
required.

In performing relative radiometric normalization, one
usually makes the assumption that the relationship between
the at-sensor radiances recorded at two different times from
regions of constant reflectance can be approximated by linear
functions. The critical aspect is the determination of suitable
time-invariant features upon which to base the normalization
(Du et al., 2002; Furby and Campbell, 2001; Hall et al., 1991;
Moran et al., 1992; Schott et al., 1988; Yang and Lo, 2000).
⁎ Coresponding author. Tel.: +49 2461 614885; fax: +49 2461 612496.
E-mail addresses: m.canty@fz-juelich.de (M.J. Canty), aa@space.dtu.dk

(A.A. Nielsen).
1 Tel.: +45 4525 3425; fax: +45 4588 1397.

0034-4257/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.rse.2007.07.013
In Canty et al. (2004) a fully automatic procedure was
suggested for determining time-invariant observations which
takes advantage of the invariance properties of the Multivariate
Alteration Detection (MAD) transformation (Nielsen et al.,
1998). The method was validated with unbiased statistical tests
for equal means and variances of the normalized image bands
and also compared quantitatively to manual selection of pseudo
invariant features for normalization.

Since then, an iteratively re-weighted modification of the
MAD transformation (IR-MAD) has been introduced (Nielsen,
2007) which establishes a better background of no change upon
which to examine significant changes. The IR-MAD procedure is
superior to the ordinary MAD transformation in identifying
significant change, particularly for data sets in which the fraction
of invariant pixels is relatively small, e.g., scenes which undergo
large seasonal changes in vegetation or land use. It should
therefore also perform better in isolating the no-change pixels
suitable for use in relative radiometric normalization. In the
present investigation this has been confirmed by comparing
radiometric normalizations obtainedwith the original andwith the
iterated versions of the MAD transformation. Since the original
MAD procedure has already been demonstrated to lead to as good
or better normalizations than those achieved with manually
determined invariant features (Canty et al., 2004; Schmidt et al.,
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Fig. 1. Landsat ETM+ images over east central Morocco, left: December 19, 1999, right: October 18, 2000.
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2005; Schroeder et al., 2006), further comparison with such
methods is unnecessary.

Singh (1989) gives a good but now somewhat outdated
survey of change detection algorithms for remotely sensed data.
For recent reviews in a more general context see Radke et al.
(2005) or Coppin et al. (2004). In Section 2 below we focus on
the IR-MAD change detection procedure and briefly summarize
its properties. The satellite imagery used for the comparison is
described in Section 3. In Section 4 we apply the IR-MAD
transformation to find invariant pixels for a partly artificial data
set. In Section 5 results are described for a bitemporal arid scene
in which relatively little change occurs, as well as for several
image pairs exhibiting very substantial changes in ground
reflectance. Invariant pixels obtained from IR-MAD are used to
perform the necessary regressions for relative radiometric
normalization and the quality of the normalized images is
evaluated in terms of paired t-tests and F-tests for equal means
Fig. 2. ASTER images near Esfahan, Iran, l
and variances, respectively. Results are discussed and conclu-
sions are drawn in Section 6.

2. The MAD and IR-MAD transformations

Consider first of all two N-band multispectral images of the
same scene acquired at different times, between which acquisi-
tions ground reflectance changes have occurred at some locations,
but not everywhere. Assume without loss of generality both
images to have pixel intensities with zero mean. Representing
observations (pixel intensities) in the first multispectral image by a
random vectorF=(F1,…, FN)

⊺, we can make a linear combination
of the intensities for all spectral bands, creating a scalar image
characterized by the random variable U=a⊺F. The vector of
coefficients a is as yet unspecified. We do the same for the second
image, represented byG, forming the linear combinationV=b⊺G,
and then look at the scalar difference image U−V. This combines
eft: July 30, 2001, right: May 22, 2005.



Fig. 3. Landsat ETM+ images over Jülich, Germany, left: June 26, 2001, right: August 29, 2001.
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all of the change information into a single image, but one has of
course still to choose the coefficients a and b in some suitableway.
In Nielsen et al. (1998) it is suggested that they be determined by
applying standard Canonical Correlation Analysis (CCA), first
described by Hotelling (1936), to the images F and G. This leads
to the coupled generalized eigenvalue problems

SfgS�1
gg Sgf a ¼ q2Sff a

SgfS�1
ff Sfgb ¼ q2Sggb;

ð1Þ

where Σff and Σgg are the covariance matrices of the two
images and Σfg=Σg f

⊺ is the inter-image covariance matrix.
Solution of the eigenvalue problems (Eq. (1)) generates new
multispectral images U=(U1,…, UN)

⊺ and V=(V1,…, VN)
⊺, the

components of which are called the canonical variates (CVs).
The CVs are ordered by similarity (correlation) rather than, as
in the original images, by wavelength. The canonical
correlations ρi=corr(Ui,Vi), i=1,…, N, are the square roots of
the eigenvalues of the coupled eigenvalue problem and ai and
bi, i=1,…, N, which determine U and V from F and G, are the
eigenvectors. The pair U1,V1 is maximally correlated, the pair
Fig. 4. IR-MAD normalization: Orthogonal regressions on spectral bands 1 and 9 for a
identified as unchanged are plotted.
(U2,V2) is maximally correlated subject to being orthogonal to
(uncorrelated with) both U1 and V1, and so on. Performing
paired differences (in reverse order) then generates a sequence
of transformed difference images

Mi ¼ UN�iþ1 � VN�iþ1; i ¼ 1 N N ; ð2Þ
referred to as the MAD variates, having nice statistical
properties which make them very useful for visualizing and
analyzing change information. Thus for instance they are
uncorrelated,

covðMi;MjÞ ¼ 0; i p j; ð3Þ
and have, by virtue of our chosen ordering, successively
decreasing variances given by

varðMiÞ ¼ r2Mi
¼ 2ð1� qN�iþ1Þ: ð4Þ

The fact that several additions and subtractions go into
determining the MAD variates means that, from the Central
Limit Theorem, they are ideally normally distributed. The
usefulness of the MAD variates for automatic radiometric
10% simulated no-change fraction in the ASTER bitemporal image. Only pixels



Fig. 5. Canonical correlations for the ASTER images with simulated no-change
pixels.

Table 1
Comparison of means and variances for 7850 hold-out test pixels, with paired
t-tests and F-tests for equal means and variances of the Morocco images,
normalization using the original MAD transformation

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7
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normalization stems from the fact that they are invariant under
affine transformations of either or both of the original images.
This invariance is demonstrated explicitly in Canty et al. (2004).

Now consider two images of a scene, acquired at different
times under similar illumination conditions, but for which no
ground reflectance changes have occurred whatsoever. Then the
only differences between them will be due to random effects
like instrument noise and atmospheric fluctuation. In such a
case we would expect that the histogram of any difference
component that we generate would be very nearly Gaussian. In
particular, the MAD variates, being uncorrelated, should follow
a multivariate normal distribution with diagonal covariance
matrix.

The MAD variates associated with change observations will
deviate more or less strongly from such a multivariate normal
distribution. Therefore, in the presence of genuine change, we
expect an improvement of the sensitivity of the MAD
transformation if we place emphasis on establishing an
increasingly better background of no change against which to
detect change. This can be done in an iteration scheme in which
observations are weighted by the probability of no change, as
determined on the preceding iteration, when estimating the
sample means and covariance matrices which determine – via
CCA – the MAD variates for the next iteration.2

The probability weights may be obtained by examining the
MAD variates directly. Let the random variable Z represent the
sum of the squares of the standardized MAD variates:

Z ¼
XN
i�1

Mi

rMi

� �2

; ð5Þ

where σMi
is given by Eq. (4). Then, since the no-change

observations are normally distributed and uncorrelated, their
2 There is a close analogy here to the application of iterated principal
component analysis (PCA) to bitemporal images for univariate change
detection, see, e.g. Wiemker (1997). After one PCA transformation the first
principal axis only corresponds approximately to the (highly correlated) no-
change pixels, since it is determined by both no-change and change
observations. Weighting the observations inversely to their distance from the
first principal axis and repeating the transformation improves the position of the
principal axes relative to the no-change pixels and, correspondingly, enhances
the change signal.
realizations should be chi-square distributed with N degrees of
freedom (distribution function Pχ2;N(z)). For each iteration, the
observations z (realizations of the random variable Z) can then
be given weights determined by the chi-square distribution,
namely

Prð no changeÞ ¼ 1� Pv2;N ðzÞ: ð6Þ

Pr (no change) is the probability that a sample z drawn from
the chi-square distribution could be that large or larger. A small z
implies a large probability of no change. Other weighting
schemes are possible, for instance using unsupervised classifi-
cation of change/no-change observations (Canty and Nielsen,
2006).

Iteration of the MAD transformation will continue until some
stopping criterion is met, such as lack of change in the canonical
correlations ρi, i=1,…, N. In his original formulation of the
iterative procedure, Nielsen (2007) standardized the MAD
variates using the standard deviations of all of the observations,
rather than using the iteratively re-weighted σMi

values given by
Eq. (4). We prefer here to use re-weighted values, as this was
found to lead to considerably better performance for normal-
izing bitemporal scenes in which change dominates.

For radiometric normalization purposes, one can select all
pixels which satisfy Pr (no change)N t where t is a decision
threshold, typically 95%. The preferred method for performing
the actual normalizations is then to determine the necessary
transformations from orthogonal – as opposed to ordinary –
linear regression on the invariant pixels, as demonstrated by
Canty et al. (2004). A fraction of the invariant pixels may be
withheld from the regression fit and used to test the normalized
and reference images for equal radiometric characteristics.

In summary, the steps involved in radiometric normalization
are as follows:

• Set weights equal to one for all pixels in the bitemporal scene.
• Repeat until canonical correlations cease to change
significantly:
– Do a weighted sample the bitemporal image to determine
its mean vector and covariance matrix.

– Perform CCA and construct the MAD variatesMi, i=1,…,N.
– Recalculate the weights according to Eqs. (5) and (6).
Target mean 62.684 61.460 83.761 64.462 88.000 80.009
Ref. mean 75.509 68.501 91.131 73.193 98.775 90.335
Norm. mean 75.518 68.508 91.143 73.198 98.776 90.327
t-stat. −0.144 −0.0688 −0.0672 −0.036 −0.007 0.054
P-value 0.885 0.945 0.945 0.975 1.000 0.957
Target var. 10.61 28.83 87.78 55.46 95.24 59.63
Ref. var. 17.10 42.72 129.64 90.83 129.82 81.98
Norm. var. 17.54 43.34 131.16 91.70 131.80 83.42
F-stat. 1.025 1.014 1.011 1.009 1.015 1.017
P-value 0.255 0.524 0.606 0.672 0.504 0.440



Table 2
As Table 1, but with 6671 hold-out test pixels and normalization after iteration of the MAD transformation to convergence

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Target mean 62.617 61.269 83.632 64.305 87.021 79.314
Ref. mean 75.535 68.498 91.339 73.186 98.097 89.940
Norm. mean 75.543 68.479 91.321 73.174 98.073 89.915
t-stat. −0.554 1.055 0.686 0.604 1.063 1.169
P-value 0.580 0.292 0.493 0.546 0.288 0.243
Target var. 9.98 26.36 79.34 50.22 93.64 58.14
Ref. var. 14.94 37.70 116.46 79.96 115.39 70.65
Norm. var. 15.25 38.11 116.71 80.38 115.09 70.31
F-stat. 1.021 1.011 1.002 1.005 1.003 1.005
P-value 0.392 0.654 0.931 0.828 0.916 0.844

Table 3
Comparison of means and variances for 7700 hold-out test pixels, with paired t-tests and F-tests for equal means and variances of the Iran images, normalization using
the original MAD transformation

Band 1 Band 2 Band 3N Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

Target
mean

83.105 95.208 129.564 119.392 111.495 118.465 109.393 105.607 101.404

Ref. mean 190.244 177.438 127.689 129.593 129.235 136.017 123.814 124.005 130.920
Norm.

mean
190.206 177.382 127.707 129.591 129.230 136.001 123.805 124.005 130.899

t-stat. 0.240 0.340 −0.348 0.029 0.094 0.289 0.162 0.000 0.391
P-value 0.810 0.734 0.728 0.977 0.926 0.772 0.871 1.000 0.696
Target var. 179.39 349.25 153.34 326.10 333.29 407.37 339.39 365.58 268.70
Ref. var. 587.00 607.97 166.91 98.32 90.87 113.23 97.09 146.29 96.90
Norm.

var.
704.39 680.72 168.75 82.62 80.89 99.69 83.88 123.50 85.86

F-stat. 1.120 1.120 1.011 1.190 1.123 1.136 1.157 1.185 1.129
P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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• Select pixels with no-change probability (Eq. (6)) exceeding
a threshold t.

• Perform an orthogonal regression on the selected pixels to
determine the relative radiometric normalization coefficients
(slope and intercept).

3. Imagery and software

Three sets of satellite images were used for the study: a
bitemporal LANDSAT ETM+ scene (729×754 pixels) over an
arid area in Morocco (Fig. 1, the same data as were used to
demonstrate the original normalization method (Canty et al.,
2004)), multi-temporal 1000×1000-pixel ASTER scenes over
Table 4
As Table 3, but with 8400 hold-out test pixels and normalization after iteration of th

Band 1 Band 2 Band 3N Band 4

Target mean 84.569 97.784 125.644 124.262
Ref. mean 188.163 175.520 124.158 130.804
Norm. mean 188.204 175.511 124.155 130.802
t-stat. −0.929 0.215 0.101 0.127
P-value 0.353 0.831 0.922 0.901
Target var. 50.067 80.689 101.680 52.979
Ref. var. 343.361 336.727 123.568 47.577
Norm. var. 352.881 342.440 122.949 46.742
F-stat. 1.028 1.017 1.005 1.018
P-value 0.210 0.440 0.818 0.416
an area southwest of Esfahan in Iran spanning a period of about
four years (the set consisted of 5 image acquisitions in all,
processed to “level 1b— registered radiance at the sensor”, two
of which are shown in Fig. 2) and three LANDSAT ETM+
images (1000×1000 pixels) over the town of Jülich, Germany
(Fig. 3 shows two of them). Extensive ground reference data
were available for the Jülich acquisitions.

The image sets were registered to one another by applying an
automatic contour matching algorithm (Li et al., 1995) and using
first-order polynomial, nearest-neighbor resampling. The RMS
errors were less than 0.5 pixel. In addition, the six short wave
infrared (SWIR) bands of the ASTER images were sharpened to
the 15m resolution of the three visual near infrared (VNIR) bands
e MAD transformation to convergence

Band 5 Band 6 Band 7 Band 8 Band 9

118.328 126.174 114.979 109.349 107.488
132.247 139.710 125.520 123.571 134.177
132.243 139.701 125.515 123.553 134.161
0.153 0.388 0.196 0.698 0.692
0.878 0.697 0.845 0.485 0.489
30.015 40.225 30.887 68.753 19.037
25.146 35.598 30.178 83.820 23.829
24.620 35.138 29.591 83.054 24.157
1.021 1.013 1.020 1.009 1.01373
0.332 0.551 0.367 0.673 0.532



Fig. 6. Regressions on spectral bands 1 and 9 of the ASTER images for one iteration of the (i.e., the original) MAD transformation. Only pixels identified as unchanged
are plotted.

1030 M.J. Canty, A.A. Nielsen / Remote Sensing of Environment 112 (2008) 1025–1036
with a wavelet fusion technique (Aiazzi et al., 2002). The
ASTER images thus consisted of nine spectral bands each.

All image processing was performed within the ENVI remote
sensing image analysis environment (ITT Visual Information
Solutions). Extensions to ENVI for image registration, wavelet
fusion, the IR-MAD transformation and radiometric normaliza-
tion were written in the IDL language, see Canty (2007) for
software availability.

4. Simulated no-change observations

To illustrate the effectiveness of IR-MAD in correctly
identifying no-change observations, an artificial data set was
generated from two of the ASTER images (those shown in
Fig. 2) by copying a 316×316×9 spatial/spectral subset from
the upper left hand corner of the July 2001 image to the upper left
hand corner of theMay 2005 image, after adding a small amount
of Gaussian noise (with standard deviation about 1% of themean
pixel intensity). The Gaussian noise prevents the solution of the
coupled eigenvalue problem from becoming degenerate once the
no-change pixels have been selected. The subset corresponds to
a no-change fraction of 10% of the entire image.

The IR-MAD procedure identifies the copied pixels as no
change to the exclusion of the rest of the scene. This is shown in
Fig. 4, which displays the regression lines for radiometric
Fig. 7. Regressions on spectral bands 1 and 9 of the ASTER images after iteration of t
plotted.
normalization for spectral bands 1 and 9. In the figure, reference
refers to the image used as reference for the normalization and
target is the image to be normalized. The regression lines go
through the origin with 45° slope and are determined entirely by
the duplicated pixels. Fig. 5 shows the convergence of the
canonical correlations for the artificial data set. The large
changes in the correlations up to about the 20th iteration
correspond to a “zeroing in” on the artificial no-change
observations. Thereafter convergence is fast. When the size of
the copied subset was reduced below 10%, it was found that the
iteration no longer converged to the duplicated pixels but rather
to the physical no-change pixels. This is discussed in Section 6.

5. Real data

We next investigated the effect of iterative re-weighting on
radiometric normalization of a bitemporal arid scene, exempli-
fied by the Morocco images, and of image pairs over Iran and
Jülich which exhibited very significant seasonal and agricultural
land-use changes.

5.1. Morocco

The statistics for the normalization of the October 2000
LANDSAT ETM+ image over Morocco (target) to the December
he MAD transformation to convergence. Only pixels identified as unchanged are



Fig. 8. Gaussian mixture model fit to the fifth MAD variate after one iteration.

Fig. 10. Scatterplot of MAD variate 6 vs. MAD variate 5 for one iteration.
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1999 image (reference) using no-change pixels withheld from the
normalization procedure are shown in Tables 1 and 2, the former
for one iteration of the (i.e., the original) MAD transformation
and the latter for iteration to convergence. Results for hypothesis
tests for equal means and variances are included in terms of
P-values. The P-values for tests for equal means and
variances of the reference and normalized images are in
both cases satisfactory, indicating that in this case a single
iteration suffices for adequate identification of invariant
pixels. (Given the observed value of a test statistic, the P-
value is the lowest level of significance at which the null
hypothesis could have been rejected, i.e., values close to one
strongly support the null hypothesis of equal means and
variances. Both the paired t-tests and the F-tests (for the
hypotheses of equal means respectively variances after
normalization) are so-called two-sided or two-tailed tests. In
general we want paired t-test values close to zero (the closer
the better) and F-test values close to one (the closer the
better). In both cases we want P-values close to one (again,
the closer the better). We accept the hypothesis of equal means
or equal variances for P-values above some pre-set value
which is traditionally often set to 5%.)

5.2. Iran

In contrast to the Morocco scene, the ASTER images over
Esfahan (see, e.g., Fig. 2) exhibit a very large proportion of
change. The statistics for the radiometric normalization of the
May 2005 ASTER image (target) to the July 2001 image
(reference) using withheld no-change pixels are shown in
Fig. 9. Gaussian mixture model fit to the fifth MAD variate after iteration to
convergence.
Tables 3 and 4, the former again for one iteration of the MAD
transformation and the latter for iteration to convergence.

Again, the P-values for band-wise tests for equal means are
acceptable in both cases, however the P-values for tests for
equal variances of the reference and normalized images are
satisfactory only for the IR-MAD result. Figs. 6 and 7 show
typical regression lines obtained in the two cases. It is evident
that invariant pixels are not properly discriminated after only
one application of the MAD transformation, but that the
iterative re-weighting scheme succeeds extremely well in
isolating them.

This behavior is confirmed in Figs. 8–11. Fig. 8 shows a
3-Gaussian mixture model fit on a logarithmic scale to one of
the MAD variates after one iteration, where the central peak
corresponds to no-change observations. The Gaussian density
Fig. 11. As Fig. 10 after iteration to convergence.



Fig. 12. Mosaic of 5 ASTER images over Iran prior to radiometric normalization, RGB color composite equalization stretch: band 1 (blue), band 2 (green), band 3N
(red). The acquisition dates are, from top to bottom: March 11 2002, April 9 2001, May 22 2005, July 30, 2001 and September 11 2005.
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parameters were estimated with the expectation maximization
algorithm (Redner and Walker, 1984), see Canty and Nielsen
(2006) for a detailed discussion. The same fit after iteration to
convergence of the MAD transformation is shown in Fig. 9.
There, a much better discrimination of the (relatively few)
invariant pixels is clearly evident. The scatterplots in Figs. 10
and 11 indicate the same effect in the plane of MAD variates
5 and 6. The no-change observations are the “hot spots” near
the origin.

Horizontal mosaics of all 5 ASTER images before and after
radiometric normalization to the July 30 2001 image are displayed
in Figs. 12 and 13. The selected invariant pixels for each of the
other four images, paired with the July 30 2001 scene, were used
for the normalization. In Fig. 12 no gain corrections have been
applied (this is unnecessary due to the linear invariance of the
MAD transformation), partly accounting for the large intensity
differences. For example, in theMay 22, 2005 image, the 3N band
gain was “normal” as opposed to “high” for the reference July 30,
2001 image (see Abrams et al. (1999) for a definition of the
ASTER sensor gain categories). The remaining differences are
due to varying atmospheric and solar illumination conditions as
well as to true surface reflectance changes.

The success of the normalization is particularly evident on
the left hand edge of Fig. 13, where a coherent arid area with no
vegetation change can be followed from top to bottom of the
mosaic with no discernible transitions, although very significant
and real changes occur elsewhere in the scene. Note that the
substantial cloud cover in the April 9, 2001 image has no effect
on the quality of its normalization as all cloud and cloud shadow
pixels are correctly identified as change.

5.3. Germany

The results of normalization of the May 25 and August 29,
2001 Jülich LANDSAT ETM+ images to the June 26, 2001
image were comparable to those for the ASTER images: A
single application of the MAD transformation did not give
acceptable P-values, whereas the IR-MAD method did. As an



Fig. 13. As Fig. 12 after IR-MAD radiometric normalization.
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example, Table 5 gives the comparison statistics for the August
29 (target) to June 26 (reference) normalization with the IR-
MAD procedure.

Fig. 14 displays a color composite of three IR-MADvariates for
the Jülich scene showing changes between June 26 andAugust 29,
Table 5
Comparison of means and variances for 5850 hold-out test pixels, with paired
t-tests and t-tests for equal means and variances of the Jülich images from June
26 and August 29 2001, normalization using the IR-MAD transformation

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Target mean 67.388 51.217 45.538 64.086 60.583 37.262
Ref. mean 76.4787 58.517 49.235 85.411 72.198 41.288
Norm. mean 76.449 58.502 49.228 85.368 72.174 41.281
t-stat. 0.851 0.480 0.181 0.558 0.508 0.230
P-value 0.394 0.631 0.856 0.576 0.611 0.817
Target var. 62.08 79.80 165.64 262.50 206.82 178.03
Ref. var. 82.11 111.78 262.76 531.31 329.05 312.81
Norm. var. 81.92 111.96 263.92 542.57 331.76 316.15
F-stat. 1.002 1.001 1.004 1.021 1.008 1.010
P-value 0.931 0.951 0.866 0.422 0.753 0.6853
2001. The intensities are stretched over ±8 standard deviations of
the no-change pixels as determined from Gaussian mixture model
fits like that shown in Fig. 9. (This very large dynamic range is
indicative of the sensitivity of IR-MAD.)Middle gray indicates no
change, while colored pixels signify change. Regions of prominent
change are cultivated fields (principally due to maturing corn and
sugar beet crops as well as grain harvesting), land reclamation in
thewake of open pit mining, andmining activities themselves. The
change categories are unrelated to one another and the MAD
method associates themwith different (orthogonal) MAD variates,
as indicated by the coloring.

The invariant pixels found by setting a 95% threshold on the
no-change probability (see Section 2) are indicated in yellow.
They are concentrated in areas of urban settlement, small water
bodies (flooded gravel pits) and mixed forest, where there is
expected to be little or no change in canopy reflectance between
June and August. There is, however, a conspicuous absence of
no-change pixels in the “Eifel Forest” area at the bottom of the
image, probably due to the more extreme bidirectional
reflectance effects of local solar incidence angles associated



Fig. 14. RGB color composite of MAD variates 4 (blue), 5 (green) and 6 (red) for iteratively re-weighted MAD applied to the June 26 and August 29 Jülich images.
The bands are stretched to ±8 standard deviations of the no-change pixels. Middle gray signifies no change. The 11,700 invariant pixels determined for radiometric
normalization with the IR-MAD procedure are shown in yellow.

1034 M.J. Canty, A.A. Nielsen / Remote Sensing of Environment 112 (2008) 1025–1036
with the hilly topography of that region. If we define the no-
change fraction to be the relative area under the central
Gaussian of a three-Gaussian fit to an iterated MAD variate (see
for example Fig. 9), then the no-change fraction for Fig. 14 is
roughly 30%. Only a small proportion of these (the yellow
pixels) are used for normalization.

6. Discussion and conclusions

The ability of the iteratively reweighted MAD transformation
to select invariant pixels in the presence of a high background of
change has been demonstrated convincingly with partially
simulated data. The statistical tests on holdout invariant pixels,
as shown in Tables 1–5, also indicate convincingly that, for real
bitemporal scenes exhibiting a large amount of change, the
MAD method for performing radiometric normalization is
significantly improved by using iterative re-weighting.

As opposed to the change pixels, the invariant pixels
determined by the MAD or IR-MAD methods appear to be
spatially incoherent, see Fig. 14. This is due to the fact that a
high threshold has been used to select them. The no-change
observations on the whole will have, as we have indicated, a
multivariate normal distribution. The decision threshold t ap-
plied to the no-change probabilities, Eq. (6), will therefore have
the effect of truncating most of the distribution and selecting
only no-change observations with very small chi-square values.
These will appear to be distributed randomly over the areas of
no change.

Further insight into the IR-MAD method is provided in
Tables 6–8, which illustrate the effect of iteration on the
covariance structure of theMAD variates in the case of the Jülich
data. Whereas, according to Eq. (3), after a single application of
the MAD transformation the variance–covariance matrix of the
MAD variates is necessarily diagonal (Table 6), after iteration
this is no longer the case (Table 7). However, the variance–
covariance matrix of MAD variates based on the weighted (i.e.,
the no-change) observations is diagonal, as shown in Table 8.
The diagonal values in Table 7 are much larger than the weighted



Fig. 15. Regressions on spectral bands 1 and 5 of the Jülich images after iteration of the MAD transformation to convergence. Top row: June 26 (reference) vs. August
29 (target), bottom row: May 25 (reference) vs. August 29 (target). Only pixels identified as unchanged are plotted.
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values of Table 8 and the off diagonal values are nonzero. They
are in fact determined primarily by the change observations.

The normalization results for the May 2005 and July 2001
ASTER images discussed in Section 5.2 remain essentially
unchanged if a 9-band spatial subset consisting of b10% of the
area of the first image is copied to the second image, whereas
copying a larger subset will cause the IR-MAD algorithm to
converge to the artificial no-change pixels, as was discussed in
Section 4. The algorithm is evidently “attracted” to those pixels
which are most strongly linearly correlated in the two
acquisitions and which are in the majority, in the former case
to the genuine no-change pixels at the expense of the artificial
ones. It may be expected that there will be a lower limit on the
number of truly invariant pixels in a bitemporal scene below
which the IR-MAD algorithm will fail, in the sense that it will
converge to noninvariant observations. This effect, which might
be expected to be highly scene-dependent, is illustrated in
Fig. 15 with the Jülich data. The regression lines for June 26 vs.
August 29 (top row) are satisfactory and correspond to the
results of Table 5. Those for May 25 vs. August 29 (bottom row)
Table 6
Variance–covariance matrix of the MAD variates for the Jülich images from
June 26 and August 29 2001 after one application of the MAD transformation

1.54 0.00 0.00 0.00 0.00 0.00
0.00 1.25 0.00 0.00 0.00 0.00
0.00 0.00 0.89 0.00 0.00 0.00
0.00 0.00 0.00 0.61 0.00 0.00
0.00 0.00 0.00 0.00 0.52 0.00
0.00 0.00 0.00 0.00 0.00 0.30
are obviously unsuitable for radiometric normalization. The
seasonal differences between the two acquisitions (spring to late
summer) are evidently too great. Placing a more severe
threshold for identifying no-change observations did not
remove the two “satellite” clusters in the scatterplots shown.
On the other hand, normalization of the May 25 and August 29
images to the June 26 image posed no difficulty.

Quite generally we can conclude that, for multi-temporal
images in which change is dominant, the IR-MAD transforma-
tion succeeds in identifying suitable invariant pixels for
radiometric normalization where the single MAD transforma-
tion performs less successfully. For 1000×1000×6-dimensional
image arrays (e.g., the Jülich images), a single iteration of the
MAD transformation, including determination of the weights
for the next iteration, requires about 10 seconds CPU time on a
2.4 GHz Pentium 4 PC running IDL 6.2 under Windows XP.
Convergence is usually satisfactory within 20–30 iterations. For
very large spatial/spectral subsets (for example LANDSAT full
scenes) it is often sufficient to run the transformation on a
smaller, representative spatial subset in order to determine a
Table 7
As Table 6 after iteration to convergence

5.85 3.87 −1.53 0.62 −2.49 −3.19
3.87 9.17 −3.61 −0.01 −2.70 −3.26
−1.53 −3.61 5.51 −0.22 1.40 1.08
0.62 −0.01 −0.22 1.93 −0.73 −1.00
−2.49 −2.70 1.40 −0.73 2.40 2.53
−3.19 −3.26 1.08 −1.00 2.53 3.50



Table 8
Weighted variance–covariance matrix of the MAD variates after iteration to
convergence

0.664 0.000 0.000 0.000 0.000 0.000
0.000 0.507 0.000 0.000 0.000 0.000
0.000 0.000 0.295 0.000 0.000 0.000
0.000 0.000 0.000 0.122 0.000 0.000
0.000 0.000 0.000 0.000 0.043 0.000
0.000 0.000 0.000 0.000 0.000 0.021
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satisfactory regression for radiometric normalization (Schroeder
et al., 2006). For mosaicing applications, only overlapping areas
can be used, again corresponding to relatively small array
dimensions. The iterated MAD scheme thus provides a fast,
reliable and robust method for automatic radiometric normal-
ization of multispectral image time series in most situations that
one might expect to encounter in practice.
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