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ABSTRACT

The iteratively re-weighted multivariate alteration detection (IR-MAD) transformation is proving to be very
successful for multispectral change detection and automatic radiometric normalization applications in remote
sensing. Various alternatives exist in the way in which the weights (no-change probabilities) are calculated
during the iteration procedure. These alternatives are compared quantitatively on the basis of multispectral
imagery from different sensors under a range of ground cover conditions exhibiting wide variations in the amount
of change present, as well as with a partially artificial data set simulating truly time-invariant observations. A
best re-weighting procedure is recommended.
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1. INTRODUCTION

The Multivariate Alteration Detection (MAD) algorithm consists of the canonical correlation analysis (CCA) of
two co-registered, multi-spectral images followed by pairwise subtraction of the canonical variates.1 Specifically,
let the N -dimensional random vectors for the bitemporal scene be multivariate normally distributed with zero
mean:

X ∼ N (0,ΣX), Y ∼ N (0,ΣY ), Σ =

〈(
X

Y

) (
X

�,Y �

)〉
=

(
ΣX ΣXY

ΣY X ΣY

)
. (1)

The MAD variates are
M = AX − BY , (2)

where A = (aN . . . a1), B = (bN . . . b1) and where ai and bi are the eigenvectors of the coupled, generalized
eigenvalue problem

ΣXY Σ−1
Y Y Σ�

XY a = ρ2ΣXXa

Σ�

XY Σ−1
XXΣXY b = ρ2ΣY Y b

(3)

with corresponding eigenvalues ρ2
1 ≥ ρ2

2 ≥ . . . ≥ ρ2
N . The MAD variates are mutually uncorrelated with

covariance matrix
ΣM = diag (2(1 − ρN ) . . . 2(1 − ρ1)) . (4)

Whereas the components of the original images are ordered by wavelength, the MAD variates order the change
information in the bitemporal data according to similarity, i.e., correlation.

The MAD variares have nice statistical properties. For example they are invariant under affine transforma-
tions of the original images X and/or Y , see 1, making the MAD transformation very suitable for automatic
radiometric normalization.2 Moreover, since the no-change observations are approximately normally distributed
and uncorrelated, the sum of the squares of the standardized MAD variates, described by the random variable

Z =

N∑
i=1

(
Mi

σMi

)2

, (5)

will be approximately chi-square distributed with N degrees of freedom (distribution function Pχ2;N (z)).
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In 3 advantage was taken of the latter property in order to propose an iterative re-weighting scheme to further
enhance the change information: In the first iteration all observations are given equal weights. Thereafter the
pixels are weighted according to their probability of no change as determined by the chi-square distribution:

Pr(no change) = 1 − Pχ2;N (z), (6)

where z is a realization of the random variable Z corresponding to a given pixel, and where Pr(no change) is
the probability that a sample z drawn from the chi-square distribution could be that large or larger. A small
z thus implies a large probability of no change. The transformation is then repeated, iteration continuing until
some stopping criterion is fulfilled, such as no further change in the eigenvalues ρ2

i . This procedure provides an
increasingly better background of no change against which to measure change.3

An ambiguity arises in the method to be used to standardize the MAD variates on each iteration. In 3 the
standard deviations σMi

, i = 1 . . . N , are re-estimated from the recalculated MAD variates on each iteration.
This is referred to as method A in the sequel. In 4 and 5 it is suggested to use the standard deviations determined
by CCA, i.e., the diagonal elements in Equation (4), as these should more closely reflect the distribution of no-
change pixels as the iteration progresses. This we shall refer to as method B. Alternatively one can apply, after
each iteration, a clustering algorithm to discriminate change from no-change observations. In particular, for
clustering based upon a Gaussian probability mixture model, the standard deviations for iterative re-weighting
could be read from the diagonal elements of the covariance matrix for the no-change probability density. The
parameters of such a mixture model may be conveniently estimated with the EM algorithm.6 However, since
the clustering algorithm estimates both no-change and change distributions, one can dispense with using the
chi-square values altogether and choose the no-change probability weights as the probability of membership to
the no-change cluster, see 7. This we call method C.

In the present paper these three alternatives A, B and C are compared quantitatively on the basis of mul-
tispectral imagery from different sensors under a range of ground cover conditions exhibiting wide variations
in the amount of change present, as well as with a partially artificial data set simulating truly time-invariant
pixels. In Section 2 the bitemporal images and associated preprocessing are described, the procedure chosen
for comparing the iteration schemes is given in Section 3, results are presented in Section 4 and conclusions are
drawn in Section 5.

2. IMAGERY

Three bitemporal satellite images were used for the study: two LANDSAT ETM+ scenes (729× 754 pixels) over
an arid area in Morocco (Figure 1), two 1000 × 1000-pixel ASTER scenes over an area southwest of Esfahan in
Iran (the data had been processed to “level 1b - registered radiance at the sensor” and are shown in Figure 2)
and two LANDSAT ETM+ images (1000× 1000 pixels) over the town of Jülich, Germany (Figure 3). Extensive
ground reference data were available for the Jülich acquisitions.

The image sets were registered to one another by applying an automatic contour matching algorithm8 and
using first-order polynomial, nearest-neighbor resampling. The RMS errors were less than 0.5 pixel. In addition,
the six short wave infrared (SWIR) bands of the ASTER images were sharpened to the 15m resolution of the
three visual near infrared (VNIR) bands with a wavelet fusion technique.9 The ASTER images thus consisted
of nine spectral bands each.

A partially artificial data set was generated from the two ASTER images shown in Figure 2 by copying a
316×316×9 spatial/spectral subset from the upper left hand corner of the July 2001 image to the upper left hand
corner of the May 2005 image, after adding a small amount of Gaussian noise (with standard deviation about
1% of the mean pixel intensity). The Gaussian noise prevents the solution of the coupled eigenvalue problem
(3) from becoming degenerate once the no-change pixels have been selected. The subset chosen corresponds to
a no-change fraction of 10% of the entire image.

All image processing was performed within the ENVI remote sensing image analysis environment (ITT
Visual Information Solutions). Extensions to ENVI for image registration, wavelet fusion and the IR-MAD
transformation were written in the IDL language, see 4 for software availability.
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Figure 1. Landsat ETM+ images (729 × 754, RGB composite of bands 4,5,7) over east central Morocco, left: December
19, 1999, right: October 18, 2000.

Figure 2. ASTER images (1000×1000, RGB composite of bands 3,2,1) near Esfahan, Iran, left: July 30, 2001, right: May
22, 2005. For some experiments, a 316 × 316 × 9 spatial/spectral subset was copied from the left hand to the right hand
image.
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Figure 3. Landsat ETM+ images (1000× 1000, RGB composite of bands 4,5,7) over Jülich, Germany, left: June 26, 2001,
right: August 29, 2001.

3. METHOD OF COMPARISON

Ideally the accuracy of any change detection procedure should be assessed on the basis of reliable ground reference
data. Alternatively, in the absence of such information, one can examine the observations identified by the method
as unchanged. These should be highly correlated in the two scenes being compared. This will in fact form the
basis of our comparison: band-wise regressions of the pixels having a high no-change probability as determined
from Equation (6) are calculated and correlation coefficients (Pearson’s r) and RMS errors are compared for
the three methods A, B and C. Orthogonal regression, rather than ordinary linear regression, is the preferred
method for calculating the regression coefficients2 and is the one chosen here. In the case of the images over
Jülich, considerable ground reference information was available and aided the evaluation. Of course the no-change
observations for the simulated data are known a priori.

4. RESULTS

In the following, comparison of the three iteration methods is made first on the basis of real LANDSAT ETM+
and ASTER data, then with the partially artificial data generated from the ASTER imagery.

4.1 Real data

Tables 1, 2 and 3 give, band-wise, the correlation coefficients r and the RMS errors for orthogonal regression fits
to no-change pixels identified by the IR-MAD transformation for the three bitemporal images and for each of the
three methods A, B and C. Figures 4, 5 and 6 show corresponding scatterplots and regression lines for spectral
band 4 for each bitemporal image. The no-change pixels were selected using Equation (6) and setting a lower
threshold of 0.95 on Pr(no change). The number of no-change pixels actually selected differs greatly among the
methods A, B and C. This will be discussed in Section 5 below.

In all three cases, method B is seen to perform better than A or C. The r values for method B are always close
to unity and the RMS errors are, with the exception of the RMSE entries in the first row in Table 1, smallest.
Only in the case of the Morocco scenes (Table 1 and Figure 1) do methods A and C perform satisfactorily. This is
an arid terrain with a large proportion of no-change. The Iranian and German scenes, on the other hand, involve
very considerable ground reflectance changes due to seasonal vegetation differences and agricultural activity.
Here, methods A and C perform poorly.
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Table 1. Comparison of correlation r and RMS error for the Morocco images.

Method A B C

Pixels 45285 1527 20736

Band r RMSE r RMSE r RMSE

1 0.9478 0.8456 0.9872 0.8839 0.9547 0.7456

2 0.9651 1.1137 0.9771 0.8216 0.9720 0.9479

3 0.9708 1.7643 0.9830 1.2360 0.9787 1.4424

4 0.9756 1.3048 0.9864 0.8922 0.9820 1.0757

5 0.9723 1.7741 0.9889 1.0765 0.9817 1.3972

7 0.9660 1.5651 0.9852 0.9609 0.9765 1.2460

Table 2. Comparison of correlation r and RMS error for the Iran images.

Method A B C

Pixels 70951 293 46207

Band r RMSE r RMSE r RMSE

1 0.7852 8.9709 0.9661 0.6171 0.6778 9.0124

2 0.7870 11.3843 0.9871 1.0935 0.6937 11.0410

3 0.8725 4.3727 0.9861 1.0779 0.9240 3.4391

4 0.8077 6.1143 0.9769 0.8465 0.7566 5.3718

5 0.8452 5.6042 0.9517 0.8139 0.7528 4.1831

6 0.8326 6.4759 0.9595 0.9168 0.7421 4.8424

7 0.8129 0.9705 0.7252 0.9168 0.6585 5.0212

8 0.7377 8.0546 0.9827 0.9228 0.5413 7.9596

9 0.8106 6.2123 0.9271 0.8815 0.6975 4.2707

Table 3. Comparison of correlation r and RMS error for the Germany images.

Method A B C

Pixels 144667 1182 41559

Band r RMSE r RMSE r RMSE

1 0.5768 5.5472 0.9701 1.4583 0.6285 4.7324

2 0.4874 7.9934 0.9802 1.3355 0.5323 6.8752

3 0.3454 13.9987 0.9866 1.6138 0.3915 11.4347

4 0.8660 7.6981 0.9727 3.1040 0.8903 6.8301

5 0.3831 16.0136 0.9888 1.6384 0.2891 13.6277

7 0.3291 15.9422 0.9944 1.1007 0.2784 13.1595
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Figure 4. Orthogonal regressions for bands 4 of the Morocco images, left: method A, center: method B, right: method C.

Figure 5. Orthogonal regressions for bands 4 of the Iran images, left: method A, center: method B, right: method C.

Figure 6. Orthogonal regressions for bands 4 of the Germany images, left: method A, center: method B, right: method C.
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4.2 Partially artificial data

Table 4 similarly gives the correlation coefficients r and the RMS errors for orthogonal regression fits to no-
change pixels for the partially artificial data set generated from the Iran data for the three methods A, B and
C. Scatterplots and regression lines are shown in Figure 7.

Table 4. Comparison of correlation r and RMS error for the partially artificial data.

Method A B C

Pixels 65650 395 29171

Band r RMSE r RMSE r RMSE

1 -0.0462 26.5316 0.9999 0.2904 0.7415 15.1568

2 0.2822 25.2415 0.9999 0.2920 0.8769 11.5564

3 0.8792 4.3860 0.9995 0.2963 0.9970 0.7047

4 0.7013 7.9720 0.9995 0.3048 0.9958 0.8976

5 0.6385 8.6213 0.9994 0.3850 0.9869 1.8517

6 0.6370 9.5818 0.9996 0.3892 0.9900 1.8543

7 0.6306 8.9946 0.9995 0.3693 0.9923 1.4028

8 0.5484 11.0874 0.9996 0.3183 0.9874 1.8313

9 0.5007 10.1485 0.9996 0.3790 0.9684 3.1666

Figure 7. Orthogonal regressions for bands 4 of the partially artificial ASTER image data, left: method A, center: method
B, right: method C.

Method B selects the artificial no-change pixels perfectly, providing a very convincing demonstration of its
superiority over the other two alternatives.

5. DISCUSSION

On the basis of the comparisons made in the preceding section, we conclude that method B for determining
no-change probability weights for iteration of the MAD transformation is superior to the two alternatives A and
C. This is especially evident from Subsection 4.2, where only method B was able to discriminate the artificially
generated no-change observations perfectly.

Figure 8 gives a more subjective comparison. The IR-MAD change images for the LANDSAT ETM+ scene
over Jülich, Germany are compared for methods A, B and C, left to right. Middle gray indicates no change, while
colored pixels signify change. Regions of prominent change are cultivated fields (principally due to maturing
corn and sugar beet crops as well as grain harvesting), land reclamation in the wake of open pit mining, and
mining activities themselves. These are most clearly detected with method B.

Method B, while giving by far the best results, underestimates the variances of the weighted (i.e., no-change)
MAD variates after convergence of the iteration procedure. This effect may be demonstrated with a simple
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Figure 8. RGB composites of IR-MAD variates 4,5 and 6 for the Jülich, Germany scene, left: method A, center: method
B, right: method C. The intensities are stretched to ±8 standard deviations of the no-change pixels.

simulation. Let us suppose that there are no changes whatsoever, and furthermore that

X ∼ N (0, I), Y = X + W , W ∼ N (0, σ2
I), 〈WX

�〉 = 0. (7)

The random vector W represents measurement noise with σ2 < 1 and the within-image bands are uncorrelated.
Then

Σ =

(
I I

I (1 + σ2)I

)
(8)

and the MAD transformation reduces to

A = I, B =
1√

1 + σ2
I, ρ2

j =
1

1 + σ2
= ρ2, j = 1 . . . N. (9)

The MAD variates are given by

Mj = XN−j+1 − YN−j+1√
1 + σ2

= XN−j+1 − ρYN−j+1 (10)

and their variances by
var(Mj) = 2(1 − ρ), (11)

j = 1 . . . N . The quantity

Z =

N∑
j=1

M2
j

2(1 − ρ)
(12)

is chi-square distributed with N degrees of freedom.

Since all observations are no change, we should stop here. The result of iteration to convergence of the
IR-MAD procedure, method B, for the above situation is shown in Figure 9 for σ = 0.5, 100,000 observations
and N = 6. The ratio of the iterated standard deviation of the first IR-MAD variate∗ to the correct value after
50 iterations is

σM1
(iteration = 50)√

2(1 − ρ)
= 0.657. (13)

The chi-square statistic (12) is thus “stretched” by a factor of 0.657−2 ≈ 2.3 after convergence of IR-MAD. This
accounts for the much smaller number of no-change observations having Pr(no change) > 0.95 for method B
relative to the numbers obtained for the other two methods. On the other hand, method A will “compress” the

∗The standard deviations are the same for all of the variates in this simple case.
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Figure 9. Iterated values of σM1
for N = 6. The horizontal line is the correct value.

chi-square values for the no-change observations, since the standard deviations are determined at each iteration
from all of the MAD variates, both change and no-change. The variances of the change observations may be
very large compared to those for no-change. This effect is evident in Tables 1 to 4, where the number of pixels
exceeding the 95% threshold is always largest for method A.

Table 5. Standard deviations of the no-change IR-MAD variates for the Morocco images.

band 1 band 2 band 3 band 4 band 5 band 7

σMC
1.400 1.267 0.669 0.544 0.330 0.260

σMB
=

√
2(1 − ρ) 1.208 0.945 0.499 0.358 0.202 0.164

ratio 0.86 0.74 0.74 0.65 0.61 0.63

For comparison with real data, Table 5 shows the standard deviations of the no-change IR-MAD variates for
methods C (first row) and B (second row) for the Morocco images, as well as their ratios (third row). Method
C might be expected to give the best estimate of the standard deviations of the no-change observations since it
calculates the parameters of the change and no-change clusters separately. The average value of the ratio over
the 6 spectral bands is 0.71. Figure 10 shows a recalculation of the regression line for the Morocco scene using
method B in which the MAD variates are standardized by dividing by

√
4(1 − ρi) rather than

√
2(1 − ρi), the

ratio being 0.71. The correlation is still good (> 0.94 for all 6 bands) but now 27868 rather than 1527 no-change
pixels (Table 1) are selected.

Figure 10. Orthogonal regressions for bands 4 of the Morocco images, method B, with corrected chi-square values (see
text).
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