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Geostatistics and Analysis of Spatial Data

Allan A. Nielsen

Abstract— This note deals with geostatistical measures for spatial cor-
relation, namely the auto-covariance function and the semi-variogram, as
well as deterministic and geostatistical methods for spatial interpolation,
namely inverse distance weighting, radial basis functions (RBF) and krig-
ing. Some semi-variogram models are mentioned, specifically the spherical,
the exponential and the Gaussian models. Equations for RBF interpolation
as well as simple and ordinary kriging (OK) are deduced. Other types of
kriging are mentioned, and references to international literature, Internet
addresses and state-of-the-art software in the field are given. A very simple
example to illustrate the computations for OK and a more realistic exam-
ple with height data from an area near Slagelse, Denmark, are given. A
series of attractive characteristics of kriging are mentioned, and a simple
sampling strategic consideration is given based on the dependence of the
kriging variance of distance and direction to the nearest observations.

I. INTRODUCTION

FTEN we need to be able to integrate point attribute infor-

mation with vector and raster data which we may already
have stored in a Geographical Information System (GIS). This
can be done by linking the point information to a geographi-
cal coordinate in the data base. If we have lots of point data, a
tempting alternative will be to generate an interpolated map so
that from our point data we calculate raster data which can be
analysed along with other sources of raster data.

This note deals with geostatistical methods for description of
spatial correlation between point measurements as well as de-
terministic and geostatical methods for spatial interpolation.

The basic idea in geostatistics consists of considering ob-
served values of geochemical, geophysical or other natural vari-
ables as realisations of a stochastic process in the 2-D plane or
in 3-D space. For each position = in a domain D which is a
part of Euclidian space, a measureable quantity z(r) termed a
regionalised variable exists. z(r) is considered as a realisa-
tion of a stochastic variable Z(r). The set of stochastic vari-
ables {Z(r) | r € D} is termed a stochastic function. Z(r) has
mean value or expectation value E{Z(r)} = u(r) and auto-
covariance function Cov{Z(r),Z(r + h)} = C(r, h), where
h is termed the displacement vector. If u(r) is constant over
D, ie., u(r) = u, Z is said to be first order stationary. If also
C(r, h) is constant over D, i.e., C(r,h) = C(h), Z is said to
be second order stationary.

This statistical view is inspired by work carried out by
Georges Matheron in 1962-1963. It is described in for example
[11, [2]. [3] gives a good practical and data analytically oriented
introduction to geostatistics. [4] is a chapter in a collection of
articles which describe many different techniques and their ap-
plication within the geosciences. [5] deals with geostatistics and
other relevant subjects in the context of analysis of spatial data.
Geostatistical expositions in a GIS context can be found in [6],
[7]. [8] deals with multivariate geostatistics, i.e., studies of the
joint spatial co-variation of more variables. The International
Association for Mathematical Geology (IAMG) publishes i.a.
the periodical Mathematical Geosciences (formerly Mathemat-
ical Geology) where many results on geostatistical research are
published. State-of-the-art open source software may be found
in GSLIB, [9], and Variowin, [10]. Other easily obtainable soft-
wares are Geo-EAS and Geostatistical Toolbox. All these pack-
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ages can be found at http://www-sst.unil.ch/research/variowin/
(or via a search engine). Also commercial geostatistical soft-
ware exists.

This note which is inspired by [11] (see also [12]), in Sec-
tion II deals with spatial correlation, specifically the auto-
covariance function, the semi-variogram and some semi-
variogram models are described. Section III deals with spatial
interpolation including the deterministic methods inverse dis-
tance weighting and radial basis function interpolation along
with a family of statistically based methods termed kriging.
Here simple and ordinary kriging are dealt with in some detail.
Section IV gives final remarks.

II. SPATIAL CORRELATION

This section mentions methods for description of similarity
between measurements of natural variables in the 2-D plane or
in 3-D space. Specifically the auto-covariance function and the
semi-variogram are introduced. Also a relation between the two
is given.

A. The Semi-Variogram

Consider two scalar quantities z(r) and z(r + h) measured
at two points in the plane or in space r og r + h separated by
the displacement vector h. We consider z as a realisation of a
stochastic variable Z. The variability may be described b.m.o.
the auto-covariance function (assuming or enforcing first order
stationarity, i.e., the mean value is position independent)

C(r.h) = E{[Z(r) - y[Z(r +h) — pl}.
The variogram, 2+, is defined as
2y(r,h) = E{[Z(r) - Z(r + h)]*},

which is a measure for the expected squared difference between
stochastic variables as a function of position and the displace-
ment vector. In general the variogram will depend on the dis-
placement vector h as well as on the position vector r. The in-
trinsic hypothesis of geostatistics says that the semi-variogram,
7, is independent of the position vector and that it depends only
on the displacement vector, i.e.,

A(rh) = (h).

If Z(7) is second order stationary (i.e., its auto-covariance
function is position independent), the intrinsic hypothesis is
valid whereas the opposite is not necessarily true.

If we assume or enforce second order stationarity the follow-
ing relation between the auto-covariance function and the semi-
variogram is valid

v(h) = C(0) = C(h). (M

Note, that C'(0) = o2, the variance of the stochastic variable.

Given a set of point measurements the semi-variogram may
be calculated b.m.o. the following estimator, which calculates
(half) the mean value of the squared differences between all
pairs of measurements z(7y) and z(ry + h) separated by the
displacement vector h

N(h)

Y [z(re) = 2(ri + B).

k=1

i(h) =

ON(h)



N (h) is the number of point pairs separated by h. 7 is termed
the experimental semi-variogram. Often we calculate mean val-
ues of 4 over intervals h + Ah for both length (magnitude)
and direction (argument) of h. Mean values for the magni-
tude of h (h = Ah) are calculated in order to get a sufficiently
high N(h) to obtain a low estimation variance for the semi-
variogram value. Mean values over intervals af the argument of
h are calculated to check for possible anisotropy. Anisotropy
refers to the characteristic that the auto-covariance function and
the semi-variogram do not behave similarly for all directions
of the displacement vector between observations. This possi-
ble anisotropy may also be checked by calculating 2-D semi-
variograms also known as variogram maps, [3], [13], [11], [10],

[9].

B. Semi-Variogram Models

In order to be able to define its characteristics we parameterise
the semi-variogram b.m.o. different semi-variogram models. An
often used model, v*, is the spherical model (here we assume or
impose isotropy, i.e., the semi-variogram depends only on dis-
tance and not on direction between observations, and we denote
by h the magnitude of h)

0 h=0
Y = { Co+Ci|3h-3n] 0<n<R
Co+ Ch h>R,

where Cj is the so-called nugget effect and R is termed the
range of influence or just the range; Cy/(Co+ C1) is the relative
nugget effect and Cy + C} is termed the sill (= o2). The param-
eters Cy and C7 are not to be confused with the auto-covariance
function C'(h). The nugget effect is a discontinuity in the semi-
variogram for h = 0, which is due to both measurement uncer-
tainties and micro variability that cannot be revealed at the scale
of sampling. The range of influence is the distance where co-
variation between samples ceases to exist; measurements taken
further apart are uncorrelated.

Two other models often used are the exponential model (see
Figure 4)

= [0 h=0
7 T\ Co+Ci[l—exp (=) h>0

and the Gaussian model (see Figure 5)

) 0 h=0
v*(h) = {COJrCl{lexp(?}g;)} h>0.

These latter two models never reach but approach the sill asymp-
totically. Due to its horisontal tangent for ~ — 0 the Gaussian
model is good for describing very continuous phenomena.

Also other semi-variogram models such as linear and power
functions are some times applied. To allow for so-called nested
structures where the semi-variogram has different structures de-
pending on the magnitude and possibly the direction of the dis-
placement vector between observations, combinations of mod-
els may be useful.

The model parameters may be estimated b.m.o. iterative, non-
linear least squares methods. These minimise the squared differ-
ences between the experimental semi-variogram and the model
considered as a function of the vector of parameters 6, here
0 =[CyC: R|"

min 15(h) —~*(8, h)|>.
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Fig. 1. Simple example with three observations.

For examples on an experimental semi-variogram and differ-
ent models, see Figures 4 and 5.

Note, that C'(0) is the auto-covariance function for displace-
ment vector h = 0, and that Cj is a parameter in the semi-
variogram model.

C. Examples

To illustrate the calculations Figure 1 shows a very simple
example with three observations, z; = 1,20 = 3 0g 23 = 2
with (1-D) coordinates -2, —1 og 3. The semi-variogram % with
Ah = 1.5 is calculated like this (lags are distance groups de-
fined by h £ Ah)

lag h N 4
0 0<h<3 1 1/21-3)%?=2
1 3<h<6 2 1/4((1-22%2+3B3-2)?2)=1/2

As another more realistic example Figure 2 shows a map with
sample sites. Each circle is centered on a sample point and its
radius is proportional to the quantity measured, in this case the
height above the ground water in a 10 km x 10 km area near
Slagelse, Denmark. Figure 3 shows a histogram for these data.

Figure 4 shows all possible pairwise squared differences as
a function of distance between observations for the height data
(assuming isotropy). Also an exponential variogram model es-
timated directly on this point cloud is shown. The nugget effect
is 0 m?, the effective range is 3,840 m and the sill is 840 m?
(corresponding to 420 m? for the semi-variogram model).

Figure 5 shows the corresponding experimental semi-
variogram. Ah is here 100 m and again we assume isotropy.
Traditionally the first lag interval is half the size of the remain-
ing lags, here 50 m. The experimental semi-variogram indicates
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Fig. 2. Sample sites, each circle is centered on a sample point, radius is pro-

portional to the quantity measured, in this case the height above the ground
water in a 10 km X 10 km area near Slagelse, Denmark.
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Fig. 3. Simple statistics and histogram for height data near Slagelse, Denmark.
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Fig. 4. All possible pairwise squared differences as a function of the magnitude
of the displacement vector; exponential variogram model shown.
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Fig. 5. Experimental semi-variogram as a function of the magnitude of the

displacement vector; Gaussian semivariogram model shown.

that a Gaussian model may perform better than the exponential
model in this case. Therefore a Gaussian model based on the
experimental semi-variogram is shown also. The nugget effect
is 18 m?, the range is 1,890 m and the sill is 364 m2.

ITI. SPATIAL INTERPOLATION

This section deals with deterministic types of interpolation
such as inverse distance weighting and radial basis functions,
and statistical types known under the joint name of kriging.
Specifically equations for simple and ordinary kriging are de-
duced.

Other deterministic interpolation methods use (Delaunay) tri-
angulation, Voronoi tesselation, regression analysis for determi-
nation of trend surfaces, minimum curvature etc., [15], [3].

A. Inverse Distance Weighting

Possibly the simplest conceivable way of carrying out inter-
polation consists of assigning the value of the nearest neighbour
to a point where the value is unknown. An potential improve-
ment consists of assigning higher weights to observations closer
to the points to which we interpolate. An obvious way of do-
ing this is to assign weights that are proportional to the inverse
distance from the desired point to all NV points entering into the
interpolation. For the ith point we get the weight

1/d;

w; = )

Z;v=1 1/dj

where d; is the distance from point j to the point to which we
interpolate. This is readily extended to weighting with different
powers, p > 0, of the inverse distance

1P

w; =

A.1 Examples

We now wish to interpolate to Z at position = 0 in Figure 1
b.m.o. inverse distance weighting. d; is the distance from point
Z; to Zy. We readily calculate the following weights

rodi 1/d; (1/di)/ ) (1/d;)
2 2 1/2 3/11 (=0.2727)
1 1 1 6/11 (= 0.5455)
3 3 1/3 2/11 (= 0.1818)

For different powers of d; we get the weights

r d; p=01 p=20 p=10.0

-2 2 0.3298 0.1837  0.0010
-1 1 0.3535 0.7347  0.9990
3 3 03167 0.0816  0.0000

We see that for low values of p the weights approach 1/N for
all points used. For high values of p we get near a weight of one
for the nearest neighbour.

B. Radial Basis Function Interpolation

Consider a linear estimate 2o = 2(7) at location rg based
on N measurements z = [2(71),...,2(rn)]% = [21,...,2n5]
at locations [ry, ..., 7x]T. Assume that each observation influ-
ences its surroundings in the same way in all directions and that
the influence is expressed by some function ¢ (the radial basis
function, RBF) which depends on the distance h = ||rg — 74|



between locations r( and 7; only, ¢ = ¢(||ro — 7;||). We shall
look into choices of ¢ shortly. Define the interpolated value

N
2 o= S widllre —ril),
=1

where w; is the weight associated with location :. Let us deter-
mine the w; so that the interpolation becomes exact at the known
locations 7, i.e.,

N
z; = Z’wi(b(n’l"j—TiH), jZl,...,N.
i=1

This makes up N equations with /N unknowns, the w;, which
can be written in matrix form

¢y = 7all) o(llre —7rwl) w 21
¢(llrn —7all) ¢(lrn —rnll) wN ZN
or
Pw = =z
Often a polynomial P(r;) = co + ciz; + coyj + -+ =
[1x;y; ...]cwhere c = [co c1 ca ...]7T is the vector of coeffi-

cients for the polynomial is added to the interpolation at location
(in two dimensions) r; = [z; y;]T

N
z = Plry)+ ) wid(llr; — i),

i=1
so that PTw = 0. Here

L VR N V- S Y V)

1 zny yn x?\, yJQ\, INYN

defines the polynomial applied. Often a constant corresponding
to the column of ones or a linear polynomial is used.

Solving the system of equations ® w = =z under the con-
straint PTw = 0 we get (see above on ordinary kriging and the
Lagrange multiplier technique)

® P w B z
PT 0 c| — o]
The order of the polynomial may depend on the RBF chosen.
References on RBF are [16], [17], [18].

B.1 Normalized RBF Interpolation

RBF interpolation comes in a normalized version also

S wig(||ro — i)
SN (o — rill)

D>

which leads to

N N
2y dllr—rill) = D wiblllr; —ril), j=1,....N.
i=1 i=1

for the weights. In matrix form this leads to the same matrix
equation as above with the elements in the vector on the right

hand side changed from z; to z; Zfil o(||r; — rill).
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B.2 Choice of RBF

Often one of the following choices is made for ¢
o multiquadric: ¢(h) = (h? + h3)/2,
o inverse multiquadric: ¢(h) = (k% + h2)~1/2,
o thin-plate spline: ¢(h) = h?log(h/hg) (which tends to 0 for
h tending to 0), or
o Gaussian: ¢(h) = exp(—21(h/ho)?),
where hy is a scale parameter to be chosen. Generally, hg should
be chosen larger than a typical distance between samples and
smaller than the size of the study area. The multiquadric is said
to be less sensitive to the choice of hy. Especially the Gaussian
is sensitive to this choice.

With a Gaussian RBF you don’t need the polynomials men-
tioned above, with the thin-plate spline RBF a linear polynomial
may be needed.

B.3 Shepard Interpolation

A special case for the normalized RBF interpolation consists
of setting the matrix on the left hand side to a constant times the
identity matrix. This corresponds to applying a ¢ that tends to
infinity for A tending to O, and is finite for » > 0. This leads
to setting the weights equal to the measurements w; = z;, i.e.,
we needn’t solve the system of equations for w. In this case
¢(h) = h™P 1 < p < 3 with appropriate handling for & = 0 is
often used.

C. Kriging

Kriging (after the South African mining engineer and profes-
sor Danie Krige) is a name for a family of methods for minimum
error variance estimation. Consider a linear (or rather affine) es-
timate 29 = 2(rg) at location o based on N measurements

z=[z2(r),. o 2(rn)]” = [, 2w

N
20 = wg+ Zwizi = wpy+ sz,

i=1
where w; are the weights applied to z; and wy is a constant.

We consider z; as realisations of stochastic variables Z;, Z =
[Z(r1),..., Z(rn)|F = [Z1,...,ZNn]". We think of Z(r) as
consisting of a mean value and a residual Z(r) = u(r) + €(r)
with mean value zero and constant variance o2, E{e} = 0 and
Var{e} = o2. For the linear estimator we get

Zo = wo+wlZ. )

The estimation error zy — 2o is unknown. But for the expec-
tation value of the estimation error we get

E{ZO — Zo} = E{ZO — wo — wTZ}
= Mo — Wo — ’UJT/Ju (3)

where pg = u(ro) is the expectation value of Zy and p is a
vector of expectation values for Z

p(ry) 11
Hirw) iy

We want our estimator to be unbiased or central, i.e., we de-
mand E{Z, — Zy} =0 or

po —wo —wlp = 0. @
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The variance of the estimation error is

= Var{Zy — Zo}
= Var{Zy} + Var{wo + w? Z}
—2 Cov{Zy, wo + w?' Z}
= o +w?(Cw -2 Cov{Zy, Z}),

7k

where C is the dispersion or variance-covariance matrix of the
stochastic variables, Z, entering into the estimation.

What is said in Section III-C so far is valid for all linear es-
timators. The idea in krigingis now to find the linear estimator
which minimises the estimation variance.

C.1 Simple Kriging
In simple kriging (SK) we assume that p(7) is known. From
Equations 2 and 4 we get

Zo—po = w'(Z—p)

The weights w; are found by minimising the estimation variance
o2 This is done by setting the partial derivatives to zero

2
0o,

S 2Cw—2Cov{Z,,Z} =0,

which results in the SK system

Cw = Cov{Zy,Z}

or

C11 Cin w1 COl

s = ]

Cn1 Cnn wy Con
where Cjj, i, = 1,..., N is the covariance between points :
and 7 among the N points, which enter into the estimation of
point 0. Cy;, j = 1,..., N is the covariance between point j

and point 0, the point to which we interpolate. We get these co-
variances from the semi-variogram model (remembering Equa-
tion 1, y(h) = C(0) — C(h)) as the sill minus the value of
the semi-variogram model for the relevant distance (and possi-
bly direction) between observations. (Alternatively, the kriging
system may be formulated b.m.o. the semi-variogram; to avoid
zeros on the diagonal of C' we prefer the covariance formulation
for numerical reasons.) Here C;; must not be confused with the
semi-variogram parameters C and C’.

The minimised squared estimation error termed the simple
kriging variance is

o? + w? (Cw — 2Cov{Zy, Z})
= o2 —wlCov{Zy, Z}.

2
OsK

In SK the mean value u(r) is known. In practice it is often
assumed constant for the entire domain (or study area), or we
must estimate it before the interpolation (or we must construct
an interpolation algorithm which does not require knowledge of
the mean field, see the next section).

C.2 Ordinary Kriging

In ordinary kriging (OK) we assume that the mean p(r) is
constant and equal to g for Zy and the N points that enter into
the estimation of Z. From Equations 3 and 4 we get

E{ZO — Zo} = /.Lo(l — 'LUT].) —wy = 0

for any . 1 is a vector of ones. This is possible only if wy = 0
and w’1 = 1.

The weights w; are found by minimising 0% under the con-
straint w”'1 = 1. A standard technique for minimisation under
under a constraint is introducing a function F' with a so-called
Lagrange multiplier (here —2)\) which we multiply by the con-
straint set to zero and then minimising

F = o2 +2 M w'1-1)

without constraints. Again the partial derivatives are set to zero

or = 2Cw—-2Cov{Zy,Z}+2A1=0
ow
or T B

which results in the OK system

Cw+ 1 = Cov{Zy,Z}
1"w = 1
or
Cii Cin 1 w1 Co1
Cn1 Cny 1 wN Con
1 cee 1 0 A 1

The values requested for C;; are found as described in the pre-
vious section on SK.

The minimised squared estimation error termed the ordinary
kriging variance is

odx = o+ wl(Cw—2Cov{Zy, Z})
= o —w'Cov{Zy,Z} — \.

OK implies an implicit re-estimation of pq for each new con-
stellation of points. This is an attractive property making OK
well suited for interpolation in situations where the mean is not
constant (i.e., in the absence of first order stationarity).

C.3 Examples

Let us consider the data in Figure 1 again. We now wish to
interpolate to the position » = 0 b.m.o. ordinary kriging. To
carry out the calculations we use a stipulated semi-variogram
based on the spherical model with Cy = 0,C; = 1 and R = 6.
Remembering Equation 1, C'(h) = C(0) — ~(h), this gives the
auto-covariance function (in this case where Cy + C; = 1 this
is the same as the auto-correlation function)

hi 5(h)  C(h)
0 | 0.0000 1.0000
110.2477 0.7523
2104815 0.5185
310.6875 0.3125
410.8519 0.1481
5 10.9606 0.0394
6 | 1.0000 0.0000

Therefore the OK system looks like this

1.0000 0.7523 0.0394 wy 0.5185

1
0.7523 1.0000 0.1481 1 we | | 0.7523
0.0394 0.1481 1.0000 1 ws | | 0.3125
1 1 1 0 A 1



Fig. 6. Kriged map of heights above the ground water (unit is m).
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Fig. 7. Kriging variance corresponding to Figure 6 (unit is m?).

where the values for C;; come from the C'(h) table. The so-
lution is wq; = —0.0407, wy = 0.7955, w3 = 0.2452 and
A = —0.0489, which gives a kriging variance of 0.3949. We
see that even though 7 is closer to Z than Z3, the weight on
71 is much smaller than the weight on Z3. This is an attractive
characteristic of kriging, which allows for possible clustering of
the sampling locations. We say that Zs screens for Z,. This
screening effect becomes weaker for higher nugget effects and
it disappears for pure nugget effect (i.e., C; = 0 for the models
shown here), where all weights become equal.

In a more realistic example Figure 6 shows a kriged (OK) map
over heights above the ground water for the area near Slagelse.
The interpolation is based on the isotropic Gaussian model for
the experimental semi-variogram in Figure 5 (nugget effect 18
m?, range 1.890 m and sill 364 m?). We have kriged to 100 by
100 points in a 100 m by 100 m grid using a moving window
to include the points from which to interpolate. The search ra-
dius of the moving window was 2,000 m and the estimation for
each point was based on minimum 4 and maximum 20 points.
We see that the interpolated map shows a good correspondance
with the map of sample sites in Figure 2. Figure 7 shows the
corresponding OK variances. We see that the kriging variance
is large where the distances to the nearest samples are large.
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C.4 Other Types of Kriging

If we wish to estimate average (also known as regularised)
values over an area or a volume rather than point values, we
may use block kriging which can be combined with several other
forms of kriging.

If more variables are studied simultaneuously the above meth-
ods for description of spatial correlation may be extended to
handle the spatial covariation between all pairs of variables in
the form of cross semi-variograms or cross-covariance func-
tions. Also more variables may be interpolated simultaneuously
using cokriging. Cokriging is most useful when one variable is
sampled on fewer locations than other correlated variables. Uni-
versal kriging is a method for the case where the mean value is
described by linear combinations of known functions ideally de-
termined by the physics of the problem at hand. Also methods
for non-linear kriging exist such as lognormal kriging, multi-
Gaussian kriging, rank kriging, indicator kriging and disjunc-
tive kriging. References here are [1], [3], [9], [14].

C.5 Conclusions, kriging

The above sections and examples demonstrate the following
properties of kriging:

« Kriging is a type of interpolation that gives us both an estimate
based on the spatial structure of the variable in question as ex-
pressed by the auto-covariance function (or the semi-variogram)
as well as an estimation variance which is minimised.

o The kriging estimator is the best linear unbiased estimator
(BLUE) in the sense that it minimises the estimation variance.
Also it is exact, i.e., if we interpolate to a point which coincides
with an existing sample point, kriging gives the same value as
the one measured and the kriging variance is zero.

o The kriging system and the kriging variance depend on the
auto-covariance function (or the semi-variogram) and the spatial
layout of the sample locations only and not on the actual data
values. If an auto-covariance function (or a semi-variogram)
is known (or assumed or imposed) this has important potential
for minimising the estimation variance in experimental design
(i.e., in the planning phase of the spatial lay-out of the sampling
scheme).

o The solution of the kriging system implies a statistical dis-
tance weighting of the data values which enter into the inter-
polation. Also for OK, the weights are scaled so they add to
one. Furthermore, possible redundancy in the form of clustering
of the sample locations is accounted for; the above mentioned
screening effect is due to this de-clustering.

« Because of the implicit re-estimation of the mean value for
each new point constellation, OK is well suited for situations
where the mean is not constant over the study region, i.e., where
we don’t have first order stationarity.

Further, the kriging system has a unique solution if and only if
the covariance matrix C' (Section III-C) is positive definite; this
also guarantees a non-negative kriging variance.

The strength of kriging may be attributted to a combination
of the above characteristics.

If we choose to formulate the kriging system in terms of the
auto-covariance function which is done in this note, we must as-
sume (or impose) second order stationarity, i.e., the same auto-
covariance function over the entire study area. The system may
also be formulated in terms of the semi-variogram and in this
case we must assume the intrinsic hypothesis, i.e., the same
semi-variogram over the entire study area.

These assumptions may seem to be a drawback of kriging but
if deterministic methods are applied, we implicitly make similar
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assumptions. It can hardly be considered as a drawback of geo-
statistical methods that we are forced to consider whether such
assumptions are appropriate.

IV. FINAL REMARKS

A sampling strategy may be based on the dependence of the
kriging variance on the distance to the nearest samples. If the
auto-covariance function (or the semi-variogram) and the sam-
ple locations are known, we can determine the kriging weights
and the kriging variances before the actual sampling takes place.
If the variances become too large in some regions of our study
area we may modify the sample locations to obtain smaller vari-
ances. Also, to obtain a good estimate of the nugget effect which
is an important parameter for the outcome of the kriging process,
it may be an advantage to position some samples close to each
other.

In multivariate studies where the joint behaviour of several
variables is investigated, rather than interpolating the original
variables we may interpolate combinations of them. For in-
stance we may interpolate principal components or factors re-
sulting from a factor analysis or a spatial factor analysis, [19],
[20], [11], [21], [22]. Generel references to multivariate statis-
tics are for example [23], [24]. [25] is written especially for
geographers, [15] for geologists.

Also temporal aspects in connection with the application of
data that vary in both space and time may be important. Spatio-
temporal semi-variograms and spatio-temporal kriging are dealt
with in for example [26], [27]. A GIS for handling of temporal
data is described in [28].
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