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Abstract

This paper describes the application of orthogonal transformations to detect multivariate change in the monthly mean sea surface

temperature (SST) as given by the NOAA/NASA Oceans Pathfinder data. The transforms applied include multivariate alteration

detection (MAD) variates based on canonical correlation analysis, and maximum autocorrelation factors (MAFs). The method

described can be considered as an extension to empirical orthogonal function analysis that is specially tailored for change detection

in spatial data since it first maximises differences in the data between two points in time and then maximises autocorrelation between

neighbouring observations. The results show that the large scale ocean events associated with the El Ni~nno/Southern Oscillation

related changes are concentrated in the first SST MAF/MAD mode and the two first sea surface height MAF/MAD modes. The

MAD/MAF analysis also revealed a spatially correlated structure in the Western Mediterranean Sea that turned out to be related to

a strong semi-annual variation in the SST for 1997 which was difficult to resolve from a traditional principal component analysis.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper deals with detection of non-trivial change
in multivariate, bi-temporal data, i.e., data from two

points in time. The term ‘‘non-trivial change’’ here

means non-affine change between two points in time,

i.e., change due to an additive shift in mean level (offset)

or a multiplicative change is not detected.

The method applied, which is called multivariate al-

teration detection (MAD) (Nielsen, 1994, 1999; Nielsen

and Conradsen, 1997; Nielsen et al., 1998), is based on
the established multivariate statistical technique canon-

ical correlation analysis (CCA) (Hotelling, 1936; Cooley

and Lohnes, 1971; Anderson, 1984) and post-processing

by the maximum autocorrelation factors (MAF) trans-

formation (Switzer and Green, 1984; Switzer and Inge-

britsen, 1986; Green et al., 1988). Here, the method is

applied to detect change in the 1996–1997 NOAA/

NASA AVHRR Oceans Pathfinder sea surface tempera-

ture (SST). The data from 1996 are considered as 12

variables from one point in time and the data from 1997
are considered as 12 variables from another point in

time.

Analysis of multitemporal oceanographic data is of-

ten performed by means of principal component (PC)

analysis or empirical orthogonal functions (EOFs) as

described in (Preisendorfer, 1988). Since the method

applied here first maximises differences in the data be-

tween two points in time and then maximises autocor-
relation between neighbouring observations the analysis

carried out can be considered as a spatial change or

difference focused extension to the usual PC or EOF

analysis.

PC analysis concentrates information on different

uncorrelated modes with high variance in the time-

varying signal analysed whereas the combined MAF/

MAD analysis finds modes of high degree of change
between two points in time with high spatial autocor-

relation. As opposed to the traditional PC analysis the

applied MAF/MAD analysis thus concentrates specifi-

cally on finding regions with a high degree of change and

high autocorrelation between neighbouring observa-

tions simultaneously.
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The drawback of PC or EOF is mostly related to the

lack of physical basis for the decomposition potentially

making interpretation difficult. However, it can also be

considered as an advantage that there is no prejudice as

to what results to expect. The MAF/MAD transforma-

tion implicitly assumes that high spatial autocorrelation

is useful. This is a very relevant assumption since the
monthly mean SST is dominated by atmospheric scale

signals (Leeuwenburgh, 2001).

It must be noted, however, that the regions of largest

variance in SST (captured by the PC analysis) are nor-

mally also associated with spatially correlated signals on

regional and basin-wide scales. Consequently, the test

case will yield roughly similar results when investigating

basin-wide structures like El Ni~nno/Southern Oscillation
(ENSO).

2. Methods

When analysing changes in images taken at different

points in time it is customary to analyse the difference

between two images, possibly after some normalisation.

The idea is of course that areas with no or little change

have zero or low absolute values and areas with large

changes have large absolute values in the difference

image. Below vectors are written in bold, scalars are not.
If XðrÞ is a multivariate observation at location r at one
point in time and YðrÞ is an observation of the same

variables at the same location r at another point in time

XðrÞ ¼ ½X1ðrÞ � � �XkðrÞ�T and

YðrÞ ¼ ½Y1ðrÞ � � � YkðrÞ�T ð1Þ

(without loss of generality we assume that

EfXðrÞg ¼ EfYðrÞg ¼ 0) where k is the number of

variables, then a simple change detection transformation

is

X 
 Y ¼ ½X1 
 Y1 � � �Xk 
 Yk�T ð2Þ
(for ease of notation we drop the location index r).

To concentrate information on change, linear trans-

formations of the data that optimise some difference

criterion can be applied. Consider linear combinations

aTX ¼ a1X1 þ � � � þ apXp ð3Þ
bTY ¼ b1Y1 þ � � � þ bqYq ð4Þ
(p6 q) and the difference between them aTX 
 bTY . This
measure in principle also accounts for situations where

the variables at the two points in time are not the same
or equal in number. In this case one must be cautious

when interpreting the multivariate difference as multi-

variate change.

To maximise a measure of change let us maximise the

variance of aTX 
 bTY . A multiplication of a and b with
a constant c will multiply the variance with c2. Therefore

we must make choices concerning a and b, and natural

choices are requesting unit variance of aTX and bTY .
The criterion then is: maximise VarfaTX 
 bTYg with

VarfaTXg ¼ VarfbTYg ¼ 1. With this choice we have

VarfaTX 
 bTYg ¼ VarfaTXg þ VarfbTYg

 2CovfaTX ; bTYg

¼ 2ð1
 CorrfaTX; bTYgÞ ð5Þ

We shall request that aTX and bTY are positively cor-

related. Therefore, determining the difference between

linear combinations with maximum variance corre-

sponds to determining linear combinations with mini-

mum (non-negative) correlation. Determination of

linear combinations with extreme correlations brings the

theory of CCA to mind.

2.1. Canonical correlations analysis

CCA investigates the relationship between two

groups of variables. It finds two sets of linear combi-

nations of the original variables, one for each group.

The first two linear combinations are the ones with the

largest correlation. This correlation is called the first
canonical correlation and the two linear combinations

are called the first canonical variates. The second two

linear combinations are the ones with the largest cor-

relation subject to the condition that they are orthogo-

nal to the first canonical variates. This correlation is

called the second canonical correlation and the two

linear combinations are called the second canonical

variates. Higher order canonical correlations and ca-
nonical variates are defined similarly.

This technique was first described in (Hotelling, 1936)

and a treatment is given in most textbooks on multi-

variate statistics; good references are (Cooley and Loh-

nes, 1971; Anderson, 1984). For a description of CCA

extended to more than two groups of data, see

(Kettenring, 1971; Nielsen, 1994; Nielsen, 2002).

2.2. The MAD transformation

In accordance with the above we define the MAD

transformation as

X
Y

� �
!

aTpX 
 bTpY

..

.

aT1X 
 bT1Y

2
64

3
75 ð6Þ

where ai, and bi are the defining coefficients from a
standard CCA. X and Y and are vectors with

EfXg ¼ EfYg ¼ 0. The dispersion matrix of the MAD

variates is

DfaTX 
 bTYg ¼ 2ðI 
 RÞ ð7Þ
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where I is the p 
 p unit matrix and R is a p 
 p matrix

containing the sorted canonical correlations on the di-

agonal and zeros off the diagonal.

The MAD transformation has the very important

property that if we consider linear combinations of two

sets of p respectively q (p6 q) variables that are posi-

tively correlated then the pth difference shows maximum
variance among such variables. The (p 
 j)th difference

shows maximum variance subject to the constraint that

this difference is uncorrelated with the previous j ones.

In this way we may sequentially extract uncorrelated

difference images where each new image shows maxi-

mum difference (change) under the constraint of being

uncorrelated with the previous ones. The MAD variates

are invariant to affine transformations (including linear
scaling), which means that they are not sensitive to for

example offset in the data and to linear radiometric and

atmospheric correction schemes.

2.3. The MAF transformation

To find maximum change areas with high spatial

autocorrelation a MAF post-processing of the MAD

variates is suggested. The MAF transformation can be

considered as a spatial extension of PC analysis in which

the new variates maximise autocorrelation between

neighbouring pixels rather than variance (as with PCs).

Also the MAF transformation is invariant to affine

transformations (including linear scaling). The MAF

transformation is described in (Switzer and Green, 1984;
Switzer and Ingebritsen, 1986; Green et al., 1988).

3. Data

The data used are global monthly mean values of

1996–1997 SST data from the NOAA/NASA Oceans

Pathfinder AVHRR SST database.
Global 1996–1997 monthly mean values of sea sur-

face height (SSH) anomalies are from the NASA/GSFC

Ocean Altimeter Pathfinder database. These are inter-

polated TOPEX/Poseidon radar altimeter point obser-

vations.

In the analysis of these data statistics for the trans-

formations applied are calculated only where non-

missing values are available for all 24 months.

Fig. 1. Eight first PCs of 1996–1997 AVHRR monthly mean SST.
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4. Results

Regional and global scales SST analysis, using EOF

and related orthogonal decompositions, have been de-

scribed in numerous studies, e.g. (Weare et al., 1976;

Hsiung and Newell, 1983; Hu et al., 1994). Also, EOF

analysis using two years of T/P SSH data have been
presented by (Hendricks et al., 1996). Coupled pattern

analysis between SST and SSH have been presented by

(Leuliette and Wahr, 1999; Nielsen et al., 2001; Hilger

et al., 2001).

Fig. 1 shows the first eight of 24 SST PC modes. PC 1

clearly corresponds to the mean value of the SST being

highest at the Equator. The correlation with each

monthly mean SST varies around 0.95 (Fig. 2) with a
semi-annual period. The second PC mode corresponds

to the annual variation in sea level. PC modes 3 and 4

represent the largest inter-annual variations mostly as-

sociated with the ENSO event in the Pacific Ocean.

The following PC modes 5–7 are relatively difficult to

interpret. The correlations of the PC 5–7 all show a

clear semi-annual pattern but the spatial structure in

the Pacific Ocean resembles the structure of the Inter-
tropical Convergence Zone and the South Pacific Con-

vergence Zone. The MAF/MAD analysis does a much

better job in separating these signals. The remaining

PC modes 9–24 are not shown here as they are noisy

with small correlations to the original monthly mean

SST.

Fig. 3 shows the first eight of 12 SST MAF/MAD

modes. Fig. 4 shows the correlations between the the

monthly mean SST and the first eight MAF/MADs.
These correlations are calculated only where MAF/

MAD mode 1 has values greater than 1.5 or smaller

than )1.5. In the analysis the 1996 data are considered

as 12 variables (X in Eq. (6)) and the 1997 data are

considered as 12 variables (Y in Eq. (6)).

By considering the 1996 and 1997 monthly mean SST

as two sets of 12 variables any identical signals in the

two years get suppressed. Consequently, the annual
signal, which corresponds to the largest variation in SST

will get suppressed along with the semi-annual signal.

Only changes in the annual and semi-annual signal will

appear in the MAF/MADs along with other inter-

annual changes such as the ENSO event. Transforming

the MADs with MAF creates change variables which

have maximum autocorrelation between neighbouring

pixels. Features of large spatial autocorrelation like the
ENSO signal will consequently concentrate in the first

MAF/MADs as seen in Fig. 3.

Fig. 2. Correlations between 1996–1997 AVHRR monthly mean SST and PCs 1–8.
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The correlations between the first MAF/MAD mode
and the monthly mean SST (Fig. 4) is clearly dominated

by the the El Ni~nno event in the Pacific Ocean. In the

North Atlantic Ocean the MAF/MAD modes 1 and 2

both exhibit a structure similar to that observed by

Andersen et al. (2002).

Most other MAF/MADs are seen to have spatial

structure in the Pacific that resembles the structure of

the Intertropical Convergence Zone and the South Pa-
cific Convergence Zone, and consequently being mostly

related with ENSO dynamics. MAF/MADs 9–12 are

not shown here as they are noisy with small correlations

to the original monthly mean SST.

A closer investigation is carried out below, for the

Central Pacific Ocean and the Western Mediterranean

Sea to demonstrate the differences and similarities be-

tween the PC and the MAF/MAD analyses of monthly
mean SST data.

4.1. El Ni~nno/Southern Oscillation

In 1997, one of the largest ENSO events on record

in the Pacific Ocean occurred, with the onset in early

1997 leading to a peak in both SST and sea surface
height in the eastern Pacific Ocean towards the end of

1997, following the characterisation in (Rasmusson and

Carpenter, 1982). The features associated with the

ENSO event are very large basin-wide coherent struc-

tures, and as such exhibiting large autocorrelation. The

MAF/MAD analysis therefore concentrates these in the

lowest order MAF/MAD modes as seen in Fig. 3. On

the other hand the ENSO event is also associated with
the largest variance in the SST, and will also be clearly

isolated using a PC or EOF analysis as well. Referring

to Fig. 1 (PC) and Fig. 3 (MAF/MAD) there is an ob-

vious similarity between PC 3 and PC 4 and, MAF/

MAD 1 and 2. However, the MAF/MAD analysis fo-

cuses the ENSO related events in the lowest order MAF/

MADs.

In Fig. 5 an El Ni~nno mask has been introduced and
the correlations with the original monthly mean SST are

calculated under this mask. The mask is limited by

15�S–15�N and 150–280�E. Introducing such a region

increases the correlations between the MAF/MADs and

the monthly mean SST dramatically. The shape of the

correlation curves for MAF/MADs 1 and 2 in Fig. 4 are

Fig. 3. Eight first MAF/MADs of 1996–1997 AVHRR monthly mean SST.
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similar those in Fig. 5 showing how this region domi-

nates the global correlation pattern.

In the east, months after the initial relaxation of the
trade winds, the thermocline deepens in the eastern part

of the Pacific. This causes the SST to increase in the

eastern part while remaining virtually constant in the

western part of the Pacific. On the other hand, the SSH,

which measures the integrated effect of heating of the

entire water column, increases dramatically in the east-

ern parts of the Pacific Ocean and decreases in the

western part of the Pacific. Detailed comparison with
the TOPEX/Poseidon monthly mean SSH effect is pre-

sented in Figs. 6 and 7 where the monthly mean SSH

anomalies have been subjected to the same MAF/MAD

analysis as the SST data. The correlations in Fig. 7 have

been calculated under the El Ni~nno mask as defined

above. Whereas MAF/MAD 1 shows the prolonged

signal in the Central Equatorial Pacific, that is a pre-
cursor to the El Ni~nno event (Hendricks et al., 1996), the

MAF/MAD 2 shows a strong east–west oscillation that

is characteristic of the ENSO event. The correlation

plots in Fig. 7 reveal the timing offset between these

modes. The SSH MAF/MAD mode 1 decreases from

around October/November 1996, the increase in sea

level in the eastern part of the Pacific (MAF/MAD 2) is

not initiated until March 1997. Closer inspection of the
MAF/MAD of the T/P SSH reveals track-like structures

associated with the location of the T/P ground tracks.

This ‘‘trackiness’’ should be of the order of a few cen-

timetres but is enhanced in the current investigation

Fig. 5. Correlations between 1996–1997 AVHRR monthly mean SST and MAF/MADs 1–2 calculated under El Ni~nno mask.

Fig. 4. Correlations between 1996–1997 AVHRRmonthly mean SST andMAF/MADs 1–8 (calculated only where the absolute value of MAF/MAD

1 is greater than 1.5).
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because the differences between T/P observations from

1996 and 1997 are investigated.

4.2. Western Mediterranean

Inspecting the lowest order MAF/MAD modes in

Fig. 3 reveals that particularly MAF/MAD 4 and to

some extent also MAF/MAD 2 exhibit a clear spatially

correlated signal in the Western Mediterranean Sea. No

clear conclusions can be drawn from inspecting the
global correlations with the monthly mean SST (Fig. 4).

All the first six PC modes (Fig. 1) show some signal in

the Western Mediterranean but the MAF/MAD analy-

sis focuses this spatially correlated signal in a few

components. To investigate the signal further, the cor-

relations were calculated under a Western Mediterra-

nean mask limited by 30–47�N and 0–15�E, and shown

in Fig. 8. MAF/MAD 4 shows a semi-annual signal in
1997 peaking at a correlation above 0.6 in July. A semi-

annual signal peaking at a correlation of 0.6 in April is

also seen in MAF/MAD 2 in 1997. However, for both

MAF/MADs no clear semi-annual variation is seen for
1996. Comparing this with a wavelet analysis of the

averaged SST time series for the Western Mediterranean

Sea (not shown) leads to the conclusion, that the semi-

annual signal was particularly strong in the Western

Mediterranean in 1997.

5. Conclusions

By design the MAD/MAF method isolates changes

with the highest autocorrelation, often the most im-

portant changes, in the lowest order modes. In the

MAF/MAD method we focus on change and autocor-

relation, and in the case shown we have 12 MAF/MAD

modes as opposed to 24 PC or EOF modes. The pro-

posed method seems to be superior for change detection,
since it focuses on patterns of large difference and high

autocorrelations as opposed to PC or EOF, which

Fig. 6. Two first MAF/MADs of 1996–1997 T/P monthly mean SSH.

Fig. 7. Correlations between 1996–1997 T/P monthly mean SSH and MAF/MADs 1–2 calculated under El Ni~nno mask.

Fig. 8. Correlations between 1996–1997 AVHRR monthly mean SST and MAF/MADs 1–4 calculated under Western Mediterranean mask.
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focuses on patterns of high variance. The largest vari-

ance in SST (captured by PC analysis) is, however, often

also associated with large spatially correlated signals on

regional and basin-wide scales, and as such the PC and

MAF/MAD methods will both capture signals like the

El Ni~nno. The current investigation also showed that this

was the case, but where El Ni~nno was concentrated in
modes 1 and 2 of the MAF/MAD analysis, the PC

analysis isolated this in the higher order modes 3 and 4.

The investigation of the El Ni~nno was furthermore ex-

tended to include the TOPEX/Poseidon monthly mean

SSH to demonstrate how the MAF/MAD method was

able to capture the prolonged precursor to the El Ni~nno
in one mode with a timing offset to the strong east–west

oscillation characteristic of the ENSO event.
The PC modes 5–7 were relatively hard to interpret

because there is no physical basis for the decomposition,

and these all showed temporal patterns of correlation

with a semi-annual period, whereas the spatial pattern

more assembled ENSO like structures. This was not the

case with the MAF/MAD analysis. The MAF/MAD

analysis was also able to identify a spatially correlated

signal in the western Mediterennean Sea which showed
up to be a stronger than usual semi-annual variation in

1997.
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