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ABSTRACT

A data-oriented and automatic approach to the ex-
traction of change information from time series of
multi- and hyperspectral imagery is presented . The
method applies the iteratively re-weighted multivari-
ate alteration detection (IR-MAD) algorithm to sig-
nal significant changes, recording the results in a
highly compressed, georeferenced binary image. A
prototype change extraction and archival system, im-
plemented as an extension to the ENVI/IDL remote
sensing data processing user interface, is illustrated
using time series of LANDSAT TM and ASTER mul-
tispectral imagery over the Nevada Nuclear Test Site
in the USA.

1. INTRODUCTION

The detection and classification of significant
changes in image time series is one of the most impor-
tant applications of remote sensing with earth obser-
vation satellites. Within the context of the Global
Monitoring for Security and Stability (GMOSS)
Network of Excellence, for example, anthropogenic
changes are of particular interest: population move-
ments, infrastructure modification, deviations from
declared information, clandestine military activities,
and the like. The monitoring process implies the
acquisition and maintenance of a large database of
satellite imagery from diverse sensors with differ-
ent spatial, spectral, and temporal resolutions for
the areas of interest. Manual examination of such
a database for the identification of relevant changes
will generally be impractical.

A data-oriented and fully automatic approach to the
extraction of change information from multi- and
hyperspectral imagery can be achieved with the it-
eratively reweighted multivariate alteration detection
(IR-MAD) transformation [1, 2, 3, 4]. Based entirely
on the second-order statistics of the no-change obser-
vations (which are extracted in an iterative scheme as
described below), the image pixels may be labelled
according to their change probabilities. The MAD

transformation has been successfully applied to loca-
tion of clandestine underground nuclear explosions,
see [5].

By setting significance thresholds, binary images of
significant changes or, alternatively, tables of the lat-
itude/longitude of the changes, can be generated for
all available pairs of co-referenced images without
any human intervention whatsoever. Furthermore,
since the IR-MAD transformation is invariant under
linear, affine transformations of the pixel intensities
of the images involved [1, 3], results are insensitive
to instrument gain and (linear) atmospheric correc-
tions to the input data. Prior processing for change
detection is often unnecessary.

2. IR-MAD

The pixel intensities for two N -band multispectral
images of the same scene acquired at different times
t1 and t2 may be represented by random vectors F

and G, respectively. We can make a linear combi-
nations of the intensities of the spectral bands for
each acquisition time, creating scalar images char-
acterized by the random variables U = a

>
F and

V = b
>

G and then examine the difference U − V .
This combines all of the change information into a
single image, but one has of course still to choose
the coefficients a and b in some suitable way. In [1]
it is suggested that they be determined so that the
correlation ρ between U and V is minimized subject
to var(U) = var(V ) = 1, implying that the resulting
difference image U − V will have maximum variance
(maximum spread in its pixel intensities). Minimiz-
ing the correlation between the two linear combina-
tions is achieved via standard canonical correlation
analysis (CCA) and generates, through solution of
a coupled eigenvalue problem, a sequence of trans-
formed difference images

Mi = Ui − Vi, i = 1 . . . N, (1)

referred to as the MAD variates. They have, by
virtue of the chosen ordering of eigenvalues, succes-
sively decreasing variance. The MAD variates have
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nice statistical properties which make them very use-
ful for visualizing and analyzing change information
[1, 4]. Thus for instance they are uncorrelated, with

cov(Mi,Mj) = 0, i 6= j, var(Mi) = σ2
Mi

= 2(1−ρi),
(2)

where ρi = corr(Ui, Vi) and is determined by the
square root of the ith eigenvalue.

If no physical reflectance changes have occurred in
the scene, the MAD variates, being uncorrelated and
nearly normally distributed, should obey a multi-
variate normal distribution with diagonal covariance
matrix. Change observations would deviate more or
less strongly from a normal distribution. In the pres-
ence of genuine change, we expect an improvement
of the sensitivity of the MAD transformation if we
place emphasis on establishing an increasingly bet-
ter background of no change against which to detect
change. This can be done in an iteration scheme in
which observations are weighted by the probability of
no change, as determined on the preceding iteration,
when estimating the sample means and covariance
matrices which determine the MAD variates for the
next iteration [2]. The probability weights may be
obtained by examining the MAD variates directly.
Let the random variable Z represent the sum of the
squares of the standardized MAD variates:

Z =

N
∑

i=1

(

Mi

σMi

)2

, (3)

where σMi
is given by the last equality in Equa-

tions (2). Then, since the no-change observations are
normally distributed and uncorrelated, their realiza-
tions should be approximately chi-square distributed
with N degrees of freedom (distribution function
Pχ2;N (z)). Change observations will have anoma-
lously large values of Z. For each iteration, the ob-
servations can then be given weights determined by
the chi-square distribution, namely

Pr(no change) = 1 − Pχ2;N (z). (4)

Thus Pr(no change) is the probability that a sample
z drawn from the chi-square distribution could be
that large or larger. A small z implies a large prob-
ability of no change. Other weighting schemes are
possible.

3. IMAGERY AND PREPROCESSING

Since 1962, all nuclear tests in the USA have been
underground and most of them have taken place at
the Nevada Test Site (NTS). A moratorium on un-
derground testing has been in effect since October,
1992. An exhaustive list of US nuclear tests from
July 1945 through September 1992 has been pub-
lished by the US Department of Energy [6] as well
as by Springer et al. [7]. In order to test the pro-
posed scheme, a series of Landsat TM and ASTER

Table 1. Multispectral satellite imagery over the
Nevada Test Site.

Date Time (GMT) Sensor
May 28, 1986 17:45:38 TM5
May 31, 1987 17:45:35 TM5

April 18, 1989 17:50:19 TM5
May 26, 1991 17:43:59 TM5
June 2, 2000 19:00:24 ASTER

October 1, 2001 18:52:58 ASTER
July 6, 2003 18:38:32 ASTER

images covering all or portions of the NTS was ac-
quired for the periods 1986-2003, see Table 1. A
spatial/spectral subset of one of the LANDSAT im-
ages covering the Pahute Mesa test area is shown in
Figure 1.

Each image series (LANDSAT and ASTER) was
co-registered by applying a contour matching algo-
rithm [8] and using first-order polynomial, nearest-
neighbor resampling. The RMS errors were less than
0.5 pixel. In addition, the six short wave infrared
(SWIR) bands of the ASTER images were sharp-
ened to the 15m ground resolution of the three visual
near infrared (VNIR) bands with a wavelet fusion
technique [9]. The processed ASTER images thus
consisted of nine spectral bands each.

Figure 1. LANDSAT TM image over the Pahute
Mesa area of the Nevada Test Site, acquired May
26, 1991. The three infrared bands 4, 5 and 7
are displayed in blue, green and red, respectively.
The across- and along-track ground sample distance
(GSD) is 30m.
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Figure 2. Screenshot showing a portion of the LANDSAT TM scene of Figure 1 (left) and corresponding change
information over three time intervals as an RGB composite (right). The time intervals are: red: May 28, 1986
- May 31, 1987, green: May 31, 1987 - April 18, 1989, blue: April 18, 1989 - May 26, 1991. Changes occurring
in two or three intervals have corresponding mixed colors(yellow, cyan, magenta or white). The locations and
codenames of underground nuclear test explosions that took place in these intervals are marked. The top insert
on the left is a widget (graphical interface) which displays the interval over which changes occurred at the chosen
pixel location (bottom insert).

4. AUTOMATIC CHANGE
EXTRACTION

In order to create a simple, compact database of
changes in a time series of satellite images, the fol-
lowing strategy was adopted1:

1. A given directory is scanned to extract filenames
of the co-registered images contained therein.

2. The images are sorted according to increasing
acquisition time.

3. For each consecutive pair of acquisitions:

(a) The IR-MAD algorithm is run to conver-
gence.

(b) The chi-square statistic, Equation (3), is
determined at each pixel location.

(c) A threshold is set for high probability of
change and all pixels are labelled accord-
ingly as change (1) or no-change (0).

(d) A 3×3 median filter is run on the resulting
binary array and the end result is added as
a band to a multi-band image in standard
ENVI format (constituting the database).

1and implemented in a prototype IDL program running

within the ENVI remote sensing graphical user interface.

4. The change database is provided with the same
georeferencing data as the co-registered images
and stored on disk in compressed (GZIP) for-
mat.

4.1. Decision thresholds

After a single application of the CCA transforma-
tion, i.e., without iteration, the resulting MAD vari-
ates Mi given by Equation (1) are necessarily un-
correlated [1]. To the extent that they are also nor-
mally distributed, the statistic Z given in Equation
(3) should be chi-square distributed with N degrees
of freedom. After iteration to convergence, how-
ever, only the no-change observations determine the
statistics for the CCA transformation, and the result-
ing IR-MAD variates, consisting as they do of both
change and no-change pixels, will no longer be un-
correlated. Moreover, depending on the proportion
of true change observations, their histograms may
deviate more or less strongly from a Gaussian and
even be multi-modal. For this reason the step 3(c)
in the preceding strategy, i.e., setting a threshold on
the chi-square image, is somewhat problematic. It
nevertheless may be sufficient to choose a threshold
based on the the assumption that all sums of squares
of the standardized IR-MADs obey a chi-square dis-
tribution. That is, after iteration the quantities σMi
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Figure 3. Similar to Figure 2 showing a portion of an ASTER scene over the Pahute Mesa region (left) and
corresponding change information over two time intervals as an RGB composite (right). The time intervals are:
red: June 2, 2000 - October 1, 2001, cyan: October 1, 2001 - July 6, 2003. No underground tests took place
during these periods.

in Equation (3), hitherto determined according to (2)
and corresponding to no-change observations only,
are replaced by the standard deviations estimated
from all of the IR-MAD variates. Then a threshold
can be chosen to signify significant change. We chose
the 99.9 percentile of the chi-square distribution.

4.2. Results

For part of the time series of Table 1, consisting of
four 2000×2000-pixel LANDSAT scenes covering the
entire Pahute Mesa and Yucca Flat areas of the NTS
(3600 km2), the compressed change database gener-
ated according to the scheme described above occu-
pied about 80 kB of disk space. This is to be com-
pared with the

4 images × 6 bands × 4, 000, 000 pixels = 96MB

occupied by the image time series itself. Figure 2
shows the operation of a simple IDL widget (graph-
ical interface) for querying the database for changes
occurring at any given pixel location, here over the
Pahute Mesa area. The widget can be invoked from
the ENVI display menu of any georeferenced repre-
sentation of the area of interest (e.g., a rasterized
map). When accessed by the widget, the database
is temporarily de-compressed and made available to
ENVI until the widget is closed. This is illustrated

on the right hand portion of the Figure, where code-
names and locations of underground tests that took
place have also been inserted manually. A simi-
lar screenshot is shown in Figure 3, this time for
ASTER data. In this case, no underground tests
took place during the time intervals spanned (mora-
torium). Significant changes in the vicinity of one of
the previous test sites are nevertheless observed. Fig-
ure 4 similarly depicts a portion of the NTS LAND-
SAT change database over the Yucca Flat region,
showing the recorded significant changes and the un-
derground testing activities which took place over
two time intervals in question. There is good tem-
poral and spatial correspondence between recorded
test locations and times and observed change sig-
nals, although many change signals are not directly
associated with known underground tests events.

5. CONCLUSIONS

We have described an approach to extracting and
archiving change information automatically from
satellite imagery time series based on the IR-MAD
algorithm. For arid/desert scenes in which signifi-
cant anthropogenic changes are not masked or con-
fused by seasonal changes in vegetation, the proce-
dure works reliably and condenses the essential infor-
mation on geographical locations and time intervals
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Figure 4. Color composite of a portion of a change database showing changes over the Yucca Flat area of the NTS
between May 28, 1986 and May 31, 1987 (red) and between April 18, 1989 and May 26, 1991 (cyan). Regions
where changes occurred in both intervals are white. The locations and codenames of underground nuclear test
explosions that took place in the two intervals are marked and colored correspondingly. The large feature bottom
left is a salt flat which is occasionally flooded.

of significant change into a tiny fraction of the stor-
age space occupied by the source data.
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