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Abstract. The support vector domain description is a one-class classi-
fication method that estimates the shape and extent of the distribution
of a data set. This separates the data into outliers, outside the decision
boundary, and inliers on the inside. The method bears close resemblance
to the two-class support vector machine classifier. Recently, it was shown
that the regularization path of the support vector machine is piecewise
linear, and that the entire path can be computed efficiently. This pa-
per shows that this property carries over to the support vector domain
description. Using our results the solution to the one-class classification
can be obtained for any amount of regularization with roughly the same
computational complexity required to solve for a particularly value of
the regularization parameter. The possibility of evaluating the results
for any amount of regularization not only offers more accurate and re-
liable models, but also makes way for new applications. We illustrate
the potential of the method by determining the order of inclusion in the
model for a set of corpora callosa outlines.

1 Introduction

The support vector domain description (SVDD) [1, 2] is a one-class classification
method for unlabeled data that is closely related to the support vector machine
(SVM) [3] for labeled (training) data with two or more classes. While SVM
separates two classes using a hyperplane, SVDD separates data from outliers
using a hypersphere. The idea is to find the minimal sphere that encapsulates
the data, allowing for some points to be outside the boundary. Formally, this
amounts to,

min
R2,a,ξi

∑

i

ξi +λR2, subject to (xi −a)(xi −a)T ≤ R2 + ξi, ξi ≥ 0 ∀i, (1)

where X = [xT
1 . . .xT

n ]T is the n×p data matrix with xi ∈ R
p, R is the radius, a

is the center of the sphere, and ξi is the amount by which point i is allowed to be
outside the sphere. The parameter λ determines the amount of regularization.
A large value of λ puts focus on the radius, leading to a smaller sphere while
the ξi are allowed to grow large. If λ is small, the resulting sphere will be large



while the total distance of outlying points shrinks. The setup in Equation 1 is
convex and can be solved using Lagrange multipliers αi ≥ 0 and γi ≥ 0,

Lp :
∑

i

ξi + λR2 +
∑

i

αi(xix
T
i − 2axT

i + aaT − R2 − ξi) −
∑

i

γiξi. (2)

At the minimum, the derivative of each variable is zero, giving

∂Lp

∂R2
= 0 ⇔ λ =

∑

i

αi, (3)

∂Lp

∂a
= 0 ⇔ a =

∑

i αixi
∑

i αi

=

∑

i αixi

λ
, (4)

∂Lp

∂ξi

= 0 ⇔ αi = 1 − γi. (5)

Equation 5 and the fact that αi ≥ 0, γi ≥ 0,∀i, gives that 0 ≤ αi ≤ 1. Further-
more, we have the Karush-Kuhn-Tucker complimentary conditions,

αi(xix
T
i − 2axT

i + aaT − R2 − ξi) = 0, (6)

γiξi = 0. (7)

Equations 5, 6 and 7 give that αi = 1 for points outside the sphere and αi = 0
for points on the inside. By continuity, αi will travel from 1 to 0 as point i passes
the boundary from outside the sphere to the inside. Inserting Equations (3-5)
into (2) gives the Wolfe dual form which is to be maximized w.r.t. (3-5),

Lw : max
αi

∑

i

αixix
T
i −

1

λ

∑

i

∑

j

αiαjxix
T
j : 0 ≤ α ≤ 1,

∑

i

αi = λ. (8)

This is a quadratic optimization problem with linear constraints. As such, it
can be solved using some quadratic programming algorithm. This is a slight
reformulation of the original setup [1] which uses a regularization parameter
C = 1/λ. As in [4] we favor the description above since 0 ≤ α ≤ 1 instead of
0 ≤ α ≤ C which facilitates the interpretation of the coefficient paths αi(λ).

Equation 3 determines the valid range for the regularization parameter to
λ ∈ [0, n].

For most data sets, a hypersphere is an unsuitable representation of the data.
Increasing the dimensionality using basis expansions h(x) allows for more flexible
decision boundaries. Replacing x by h(x) in Equation 8, we note that the dual
can be expressed in terms of inner products 〈h(xi), h(xj)〉. These can be replaced
by Ki,j = K(xi,xj), where K is some suitable kernel function,

Lw : max
αi

∑

i

αiKi,i −
1

λ

∑

i

∑

j

αiαjKi,j : 0 ≤ α ≤ 1,
∑

i

αi = λ. (9)

In the remainder of this paper, the more general kernel notation will be used.



The squared distance from the center of the sphere to a point x is,

f(x) = ‖h(x) − a‖2 = K(x,x) −
2

λ

∑

i

αiK(x,xi) +
1

λ2

∑

i

∑

j

αiαjKi,j (10)

The squared radius of the sphere can therefore be written R2 = f(xk), where
index k belongs to any point on the boundary (αk ∈ (0, 1)). Note that f(x), R2,
αi and index k are all dependent on λ.

2 Computing the Regularization Path

In this section we will prove that the coefficient path of each αi is piecewise lin-
ear in λ, and purpose an algorithm for their calculation using standard matrix
algebra. The increased interest in coefficient paths and their computation orig-
inates from the seminal work by Efron et al. [5], where the regularization path
of the LASSO regression algorithm is derived, leading to a highly efficient algo-
rithm. These results have since been generalized to hold for a range of regularized
problems [6, 7]. Specifically, it holds for support vector machines as described by
Hastie et al. [4]. Due to the alikeness of SVMs and the SVDD, the following
derivation of the regularization path for the SVDD is noticeably similar to that
of SVMs.

Define by I, O and B the sets containing indices i corresponding to points
on the inside, outside and on the boundary respectively, and let nI , nO, and nB

be the number of elements in these sets. The set A = I ∪ O ∪ B contains the
indices of all points.

As discussed above, αi = 1 for i ∈ O, αi = 0 for i ∈ I, and 0 < αi < 1 for
i ∈ B. There are four types of events where these sets change.

1. Point i leaves B and joins I; αi ∈ (0, 1) −→ αi = 0.
2. Point i leaves B and joins O; αi ∈ (0, 1) −→ αi = 1.
3. Point i leaves O and joins B; αi = 1 −→ αi ∈ (0, 1).
4. Point i leaves I and joins B; αi = 0 −→ αi ∈ (0, 1).

To determine which set a point x belongs to, we define a decision function,

g(x) = f(x)−f(xk) = K(x,x)−Kk,k−
2

λ

∑

i

αi

(

K(x,xi)−Kk,i

)

, k ∈ B, (11)

which has g = 0 for x on the boundary, g < 0 for x inside and vice versa.
The algorithm starts at λ = n, corresponding to the minimal sphere radius

with O = A and αi = 1, ∀i.
From an arbitrary configuration of I, O and B, λ is allowed to decrease until

the next event occurs. As in [4], let λl be the value of the regularization parameter
at step l. While λl < λ < λl+1, the sets remain static. Hence, g(xm) = 0,∀m ∈ B
in this interval. Using this, Equation 11 can be expanded and rearranged into

∑

i∈B

αi(Km,i − Kk,i) =
λ

2
(Km,m − Kk,k) −

∑

i∈O

(Km,i − Kk,i) ∀m ∈ B. (12)



This results in nB equations with nB unknowns αi, i ∈ B. However, for m = k,
it is seen that (12) degenerates into 0 = 0, making the system of equations rank
deficient. We therefore replace the equation for m = k by the auxiliary condition
in Equation 3.

This procedure can be summarized in matrix form. Let Y be an n×n matrix
where Yi,j = Ki,j − Kk,j , ∀ (i, j) ∈ A and let y be a length n vector with yi =
Ki,i − Kk,k ∀i ∈ A. With the obvious definitions of submatrices, Equation 12
can be written

YB,BαB =
λ

2
yB − YB,O1nO

, (13)

where 1nO
is a vector of ones of length nO. This expression can be expanded to

include the conditions αi = 0 for i ∈ I and αi = 1 for i ∈ O. It also needs to
be augmented to replace the degenerate equation corresponding to index k with
the relation from Equation 3. We will now define matrices that implement this.

Let B−k be the boundary set with index k removed. Let Z be the n × n
identity matrix with ZB−k,B = YB−k,B and Zk,A = 1T

n . Let z be the length n
zero vector with zB−k

= yB−k
and zk = 2. Finally, let W be the n × n zero

matrix with WB−k,O = −YB−k,O and WO,O = InO
where InO

is the identity
matrix of size nO. The complete system of n equations for n unknowns is then

Zα =
λ

2
z + W1n. (14)

Providing Z is invertible, the resulting expression for α becomes,

α =
λ

2
Z−1z + Z−1W1n ≡ λp + q, (15)

an expression that is linear in λ.
Now that the functional form of each coefficient between two events has been

established, it remains to disclose the valid range [λl, λl+1] of λ. That is, we wish
to find λl+1 at which the next event occurs. We treat each of the four types of
events defined above separately.

The first event type occurs for αi, i ∈ B when αi → 0. By setting (15) equal
to 0 and solving for each value of λ, we get,

λi = −
qi

pi

, i ∈ B. (16)

Similarly for event two, αi = 1 when

λi =
1 − qi

pi

, i ∈ B. (17)

For either of the other two event types to occur, a point i in either I or O must
join the boundary. At this stage, g(xi) = 0. Inserting (15) into (11), the value
of the decision function at point i for some value of λ can be expressed as

g(xi, λ) = yi − 2Yi,A(p +
1

λ
q). (18)



To find the values of λ at which each point joins the boundary, g(xi, λi) = 0 is
solved for λi,

λi =
2Yi,Aq

yi − 2Yi,Ap
. (19)

Out of the candidates {λi} for λl+1, the largest candidate smaller than λl must
be the point at which the sets first change. Therefore, λl+1 = maxi λi subject to
λi < λl.

There is one final consideration. Event 1 may at any stage of the algorithm
lead to the boundary set B becoming empty, resulting in a violation of Equa-
tion 3. One or more points from O must therefore join B concurrently. The
calculation of candidates for λl+1 in (19) will fail in this case, as a consequence
of the new point not being placed on the current boundary. This behavior forces
a discontinuity in the radius function, which must increase discretely to encom-
pass the next point. Since α(λ) is a continuous function, Equation 4 shows that
the position of the hypersphere center a(λ) is also continuous. Hence, despite
the discontinuity of the boundary function, the next point to join B can be
established by finding the point in O with the smallest radius,

min
i∈O

f(xi) = min
i∈O

Ki,i −
2

λ
Ki,Aα +

1

λ2
αT KA,Aα. (20)

The entire process is summarized in Algorithm 1.

Algorithm 1 SVDD coefficient paths

1: Initialize λ = n and αi = 1 ∀i.
2: while λ > 0 do

3: if nB = 0 then

4: Add index i to boundary set B that satisfies (20).
5: Remove i from O.
6: end if

7: Given sets I, O and B, compute p = Z−1z/2 and q = Z−1W1n.
8: Calculate λ candidates according to event 1 using (16).
9: Calculate λ candidates according to event 2 using (17).

10: Calculate λ candidates according to event 3 using (19) with i ∈ O.
11: Calculate λ candidates according to event 4 using (19) with i ∈ I.
12: Choose candidate λl+1 with the largest value smaller than λl.
13: Calculate new coefficients, α = λl+1p + q.
14: Update sets accordingly.
15: end while

3 Examples

The algorithm was implemented using Matlab and tested on both synthetic
and real data sets. For the results presented here, a Gaussian kernel with Ki,j =



exp(−‖xi−xj‖
2/γ) has been used. High values of γ produce smooth and coherent

decision boundaries while smaller values give more wiggly and clustered results.
The choice of this parameter is application specific and is not discussed in this
paper. For the examples shown here, γ = 1 is used which results in smooth, but
not excessively constrained boundaries.

Figure 1 shows a small data set of 25 points in two dimensions. Figure 1(a)
shows the resulting regularization path for λ values ranging from 0 to n = 25. The
piecewise linearity of the paths is apparent. Interpreting the paths for growing
λ, it can be seen that the most common behavior for a point is to join the
boundary from the inside and shortly after leave for the outside. However, it can
be seen that there are exceptions to this rule, despite the constant shrinkage of
the hypersphere. This is an effect of the movement of the sphere center.

0 5 10 15 20 25

0

0.5

1

λ

α

(a) Sample regularization path for the small data set below.

(b) Decision boundary at λ = 13. Circles, stars and squares
respectively denote inliers, outliers and points on the boundary.

Fig. 1. Example description of 25 points in two dimensions with the corresponding
regularization path.

The second experiment is an application that uses the asset of knowing the
entire regularization path. The goal is to order a large set of Procrustes aligned
shapes in ascending order according to the density of the corresponding distribu-



tion at each observation. This is done using two approaches. The first is based on
successive maximization of Mahalanobis distance. At each step, the observation
with the largest distance w.r.t. the current data set is removed. For n shapes,
this is performed n− 1 times, thus establishing an ordering. The second method
uses the SVDD and its regularization path. The order is established directly from
O as λ grows from 0 to n. The data consists of 582 outlines of the mid-sagittal
cross-section of the corpus callosum brain structure. This data set is part of the
LADIS (Leukoaraiosis and DISability) study [8], a pan-European study involv-
ing 12 hospitals and more than 600 patients. Figures 2 and 3 show the first and
last twelve observations of each ordering. The Mahalanobis distance measure is
based on the shape of the covariance matrix and assumes an ellipsoidal distri-
bution. Due to the use of kernels, the SVDD is able to model more complex
distributions, giving better estimates of the density at each observation. This is
particularly apparent among the inliers in Figure 3. The variance is clearly lower
for the SVDD-based ordering than for the Mahalanobis-based counterpart.

(a) First 8 selected (outliers)

(b) Last 8 selected (inliers)

Fig. 2. Ordering established by successive maximization of Mahalanobis distance.

(a) First 8 selected (outliers)

(b) Last 8 selected (inliers)

Fig. 3. Ordering established by the SVDD regularization path. Note the increased
dissimilarity among the outliers, as well as the increased similarity among later samples.

4 Discussion

The computational complexity of computing the entire path is low. Most of the
effort goes into solving the linear system in (15). To increase efficiency, we solve
(15) for points on the boundary only, i.e. using submatrices ZB,B, zB and WB,O.
The remaining values of αi (i ∈ I ∪ O) remain static. The resulting burden for
finding p and q is roughly O(n3

B) where typically nB << n. The most prominent



addition to this is the work involved in finding λl+1 which includes the multi-
plication of several length n vectors. In our experience, the number of iterations
is generally less than 2n, although more than 5n iterations is possible for very
dense data sets. In comparison, algorithms for solving quadratic programming
problems have O(nk), with k dependent on the choice of implementation.

Due to the exclusive use of kernels, the method handles data with many
variables well. The memory usage level is mainly due to the matrix YB,B, which
can grow large for data sets with many observations and the use of very uncon-
strained decision boundaries.

Knowledge of the entire regularization path is an important basis for picking
the appropriate amount of regularization. As shown in this paper, information
from the path itself can also be used directly as a data description method.
Furthermore, the SVDD is the basis for other methods such as support vector
clustering (SVC) [9], which may benefit from these results.
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