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Abstract

The Dirichlet compound multinomial (DCM), which has recently been
shown to be well suited for modeling for word burstiness in documents,
is here investigated. A number of conceptual explanations that account
for these recent results, are provided. An exponential family approxima-
tion of the DCM that is substantially faster to train, while still producing
similar probabilities and classification performance is provided.

1 Introduction

The Dirichlet compound multinomial has previously been demonstrated capable at mod-
eling word burstiness. The DCM is both qualitatively and quantitatively, better than the
multinomial model on standard document collections (Madsen et al., 2005).

The DCM model is however not without problems. Though the Dirichlet distribution and
the multinomial distribution both are members of the exponential family, the compound
model of the two, the DCM, is not a member of the exponential family. Exponential fam-
ilies have many desirable properties (Banerjee et al., 2005), and it is therefore desirable to
use functions within the exponential family. Second, because of the relative complexity
of the DCM expression, understanding it’s behavior qualitatively is difficult. Third, DCM
parameters cannot be estimated quickly, i.e there is no closed form solution. When esti-
mating DCM parameters it is necessary to apply gradient descent methods (Minka, 2003),
which are costly and slow. Fast training is important not only for modeling large document
collections but also for using DCM distributions in more complex mixtures or hierarchical
models, such as LDA (Blei et al., 2003).

We here present an approximation of the DCM that is in the exponential family. An exact
solution of the maximum likelihood parameters for the approximate distribution is derived.
The approximate distribution can be computed efficiently (more than 100 times faster than
the DCM), and has a categorization accuracy similar to that of the DCM.

2 Approximation

In this section we derive an exponential family approximation of the DCM distribution that
we call the EDCM and investigate the qualitative behavior of the EDCM.

We start by taking a look at the DCM from equation?? where we define the new variable



s as the sum of the parameterss =
∑

w αw, still keeping in mind the document length
n =

∑
w xw.

p(x|α) =
n!

W∏
w

xw!

Γ (s)
Γ (s + n)

W∏
w=1

Γ (xw + αw)
Γ(αw)

. (1)

Where the parameters is controlling the degree of burstiness in the model. When train-
ing the DCM model, we find empirically thatαw << 1 for practically all words in the
vocabulary. For one class of newsgroup articles, the averageαw is 0.004 and out of the
59,826 parameters,99% are below0.1, 17 are above 0.5, and only 5 are above 1.0. Theα
parameters can therefore be regarded as being small.

A useful approximation that can be applied when theα’s are small is:Γ(x + α) ≈ Γ(x)α.
We further useΓ(x) = (x − 1)! whenx is an integer. From these approximations we get
the EDCM distribution1 q(x|β).

q(x|β) = n!
Γ (s)

Γ (s + n)

∏
w:xw≥1

βw

xw
(2)

For clarity, we have denoted the EDCM parametersβw. The parameters is therefore now
s =

∑
w βw. Theq(x|β) is not a proper probability distribution, that is it does not sum to

one, since we have used the approximation. It is however in principle possible to normalize
q(x|β) to sum to one, by summingq(x|β) over all values of x to get a normalizing constant
Z(β). This technicality is however not considered here2. In practice the values given by
Equation 2 are very close to those given by Equation 1. On a sample set of 4000 documents
from 20 different classesq(x|α) is highly correlated withp(x|α). On average,q(x|α)
only deviates by2.2% from p(x|β). This high correlation is because theΓ(x + α)/Γ(α)
approximation is highly accurate for smallαw values. For a typicalα- vector trained from
800 documents, of the 69,536 non-zero word counts, the approximation is on average3.9%
off. In Figure 1 the DCMα-parameters are compared with the EDCMβ-parameters. The
parameter values are close to be forming a straight line, showing high degree of similarity.

From Equation 2 we get some insight about the DCM as well as the EDCM, that was not
directly obvious from Equation 1. For fixeds andn, the probability of a document is
proportional to

∏
w:xw≥1 βw/xw. This means that the first appearance of a word w reduces

the probability of a document byβw, a word-specific factor that is almost always much less
than 1.0, while them’th appearance of any word reduces the probability by(m − 1)/m,
which tends to 1 asm increases. This behavior reveals how the EDCM, and hence the
DCM, allow multiple appearances of the same word to have high probability. In contrast,
with a multinomial each appearance of a word reduces the probability by the same factor.

One consideration about the DCM was that it does not belong to the exponential family. We
now rewrite Equation 2 to the exponential family form. An exponential family distribution
has the formf(x)g(L) exp[t(x)h(β)] wheret(x) is a vector of “sufficient statistics” and
θ = h(β) is the vector of so-called “natural parameters”. We can writeq(x|β) in this form
as:

1The EDCM is not a true distribution while the integral over the EDCM is not exactly one.
2Sinceq(x|β) is not a proper probability distribution, we cannot calculate perplexity or other

probabilistic measures that tell how well the EDCM models the data, but the focus is here categoriza-
tion.



Figure 1: Comparison of theα-parameters of the DCM model and theβ-parameters of the
EDCM model. The parameter values follow a straight line, showing that the two methods of
estimation result in almost the same parameter values. Even for the large parameter values,
the approximation is quite accurate, though the approximation equations were conditioned
on having smallα values.

q(x|β) =

 ∏
w:xw≥1

xw

 n!
Γ (s)

Γ (s + n)
exp

 ∑
w:xw≥1

βw

 (3)

For the EDCM distribution, the sufficient statistics for a documentx are the normalized
data〈t1(x), ..., tW (x)〉 wheretw(x) = I(xw ≥ 1) andW is the number of words in the
vocabulary. The expression also shows that the natural parameters for the EDCM distribu-
tion areθw = lnβw.

3 Maximum Likelihood Estimation

The maximum likelihood estimate of the EDCM parameters can be determined by taking
the derivative of the log-likelihood function. This is in contrast to the complications in-
volved in determining the parameters of the DCM (Minka, 2003). From Equation 2 the
log-likelihood function can be determined.

Lβ(x) = log(n) + log (Γ(s + n)) +
∑

w:xw≥1

log(βw)− log(xw) (4)

Given a set of training documents, we can calculate the partial derivative of the log-
likelihood.

dLβ(x)
dβw

= |D|Ψ(s)−
D∑

d=1

Ψ(s + nd) +
I(xdw ≥ 1)

βw
(5)

Setting the derivative of the log-likelihood equal to zero and solving for the parametersβw

we get Equation 6.



βw =

D∑
d=1

I(xdw ≥ 1

|D|Ψ(s)−
D∑

d=1

Ψ(s + nd)
(6)

Sinceβw is part ofs, Equation 6 is not directly solvable as is. The parameter sums can be
computed though by summing over the wordsw in Equation 6.

s =
W∑

w=1

βw =

W∑
w=1

D∑
d=1

I(xdw ≥ 1

|D|Ψ(s)−
D∑

d=1

Ψ(s + nd)
(7)

Equation 7 can be solved numerically fors efficiently, since it only involves one unknown
parameter. Having solved fors, Equation 6 is easily solvable.

4 Experiments

In Figure 2 we start by comparing the parameter sumss of the DCM and EDCM followed
by a comparison of the likelihood for the two models. Thes-value tells to what extent that
burstiness is present in the data. The values are generally close to being the same, revealing
that the two models agree on the extent of burstiness. The probability estimates for the two
models are also similar, which shows that the approximations used for the EDCM model
are accurate.

(a) Sum of DCMαw versus sum of
EDCM βw

(b) Lα(x) (DCM) versus Lβ(x)
(EDCM)

Figure 2: Comparing the parameter sums (a) for the DCM and EDCM (degree of bursti-
ness) reveals that the two models agree on the burstiness. In (b) the log-likelihood for the
two models is compared for 4000 test documents. The log-likelihood estimated by the
approximation is close to the real thing.

For classification purposes we have compared the DCM and EDCM with the multinomial
model. The multinomial model is smoothed in an optimal way, and the accuracy of the
multinomial is therefore higher than in (Rennie et al., 2003).



Table 1: Classification accuracy for the 20 newsgroups and Industry Sector collections,
comparing the multinomial, DCM and EDCM. The scores are averages of 10 random splits.

DATA SET MULTINOMIAL DCM EDCM
20 NEWSGROUPS 0.855 0.862 0.864
INDUSTRY SECTOR 0.789 0.804 0.798

As we had hoped, the DCM and EDCM model have very similar classification perfor-
mances. In fact, for 20 newsgroups, the EDCM model actually performs better than the
DCM model. This is particularly encouraging considering the EDCM model was almost
150 times faster to train than the DCM model (19 seconds vs. 2788 seconds for a 20 news-
groups split using the fastest DCM fixed point training method). Both the DCM and EDCM
use a naive smoothing method and still performs slightly better than the multinomial.

5 Conclusion

The approximated DCM model, the EDCM, has added an additional insight by giving an
intuitive explanation for how the DCM models burstiness. The proposed approximation
to the DCM distribution further belongs to the exponential family of distributions and is
orders of magnitude faster to train. The estimated EDCM parameters and EDCM approx-
imated probabilities are close to the true DCM values, resulting in similar classification
performance for the two models.
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