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The statistical techniques of multivariate alteration detection, minimum/

maximum autocorrelation factors transformation, expectation maximization

and probabilistic label relaxation are combined in a unified scheme to visualize

and to classify changes in multispectral satellite data. The methods are

demonstrated with an example involving bitemporal LANDSAT TM imagery.

1. Introduction

To quote Singh’s review article on change detection (Singh 1989): ‘The basic

premise in using remote sensing data for change detection is that changes in

land cover must result in changes in radiance values … [which] must be large with

respect to radiance changes from other factors’. When comparing multispectral

images of a given scene taken at different times on a pixel-by-pixel basis, it is first

necessary to correct the pixel intensities as much as possible for uninteresting
differences such as those due to illumination and atmospheric conditions. The

images being compared must also be co-registered to a high accuracy to avoid

spurious signals resulting from registration errors. See for instance Richards and Jia

(1999) and references therein.

Having performed the necessary preprocessing steps it is common to examine

mathematical functions of the spectral bands involved (differences, ratios or linear

combinations) which in some way bring the change information contained within

them to the fore. We can define unsupervised classification of changes in this context as

the estimation of probability distributions for change and no-change pixels in spectral
band functions, in particular in the absence of a priori ground reference information.

On the basis of the probabilities, appropriate labels may be assigned to the image

pixels as being no-change or as belonging to one or more change categories.

In this paper we describe an analysis sequence, based on standard algorithms and

essentially free of adjustable parameters, for the unsupervised classification of

changes in bitemporal, multispectral satellite imagery. The procedure is founded on

the multivariate alteration detection or MAD transformation for change enhance-

ment proposed originally by Nielsen et al. (1998) which, because of its favourable
statistical properties, provides a suitable starting point. The MAD transformation

generates a set of mutually orthogonal difference images (MAD variates) of

decreasing variance having the same spectral dimension as the original multispectral

images to which it is applied. It is explained in § 2, together with a further processing
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step, the maximum autocorrelation factor (MAF) transformation, see Green et al.

(1988), which serves to reduce dimensionality and to enhance spatial coherence as

well as signal to noise ratio. In § 3 the MAD/MAF variates are treated individually

in terms of a mixture model for change and no-change. The parameters of the model

are calculated with the expectation maximization (EM) algorithm to obtain better

estimates of the variances of the no-change pixels and to set optimal decision

thresholds. Section 4 extends this idea to cluster the change and no-change pixels in

the full MAD/MAF feature space. Section 5 describes the use of probabilistic label

relaxation (Richards and Jia 1999) to incorporate spatial information into the final

change classification. In § 6 examples of the techniques applied to the classification

of changes in a LANDSAT TM bitemporal image are presented. Some conclusions

are given in § 7.

2. The MAD transformation

Briefly, the MAD transformation is as follows (see Nielsen et al. (1998) for a more

detailed discussion). We first represent two N-dimensional multispectral images of a

scene acquired at times t1 and t2 by random vectors F, resp. G, assumed to be

multivariate normally distributed with zero mean. After forming the scalar difference

D~ a> F� b> G, ð1Þ
the vectors a and b are chosen, analogously to the principal components

transformation, so as to maximize the variance of D, with the additional constraints

imposed that

var( a> F)~var( b> G)~1: ð2Þ

This means that the resulting difference image D will show maximum spread in its

pixel intensities. If we assume that the spread is primarily due to actual changes that

have taken place in the scene over the interval t22t1, then this procedure will

enhance those changes as much as possible.

The determination of the a and b that satisfy (1) and (2) is equivalent to a

canonical correlation analysis (CCA) which transforms each set of variables F and G
such that their mutual correlation is displayed unambiguously, see Anderson (2003).

CCA determines N eigenvalues ri
2 and N pairs of eigenvectors ai,bi, i51,…,N and,

accordingly, N difference components of the form (1). These are referred to as the

MAD variates. In addition, an iterative re-weighting scheme (Nielsen 2005) is used

which establishes an increasingly better background of no-change against which to

detect change. This is done by putting higher weights on observations of no-change

in the calculation of the statistics for the CCA.

The quantities ai
TF and bi

TG are called canonical variates. The square root of the

eigenvalues ri are the correlations between them. The MAD variates themselves are

orthogonal (uncorrelated):

cov Di,Dj

� �
~2dij 1{rið Þ ð3Þ

and invariant under affine transformations. This invariance can be exploited, e.g. to

determine time-invariant features for relative radiometric normalization (Canty et al.

2004). If the eigenvectors ai,bi, i51,…,N, are sorted according to increasing

eigenvalue ri
2, the MAD variates will be sorted according to decreasing variance.
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The sum of squares of standardized variates

x2N~
D1

sD1

� �2

z � � �z DN

sDN

� �2

, ð4Þ

is approximately chi-square distributed with N degrees of freedom where soi is the
standard deviation of Di.

The MAD transformation can be augmented by subsequent application of the

minimum/maximum autocorrelation factors (MAF) transformation, in order to

improve the spatial coherence of the difference components, see Nielsen et al. (1998).

When image noise is estimated as the difference between intensities of neighbouring

pixels, the MAF transformation is equivalent to a minimum noise fraction (MNF)

transformation (Green et al. 1988), which generates image components with

maximum signal to noise ratio (SNR). In fact, the eigenvalues li of the MAF

transformation are related to the SNR approximately by (Green et al. 1988)

SNR~
2

li
{1, i~1, . . . ,N: ð5Þ

The MAD/MAF variates thus generated are also orthogonal and invariant under

affine transformations.

3. Decision thresholds

Decision thresholds for change pixels can be set in terms of standard deviations

about the mean for each MAD/MAF component separately. This may be done

subjectively, for example by saying that all pixels in an image component D whose

intensities are in the interval [22sD,2sD] are no-change pixels and constitutes what

is usually understood as change vector analysis, see Singh (1989).

We can do better than this, however, using a Bayesian technique proposed by

Bruzzone and Prieto (2000) in a similar context, which tries to minimize the

misclassification error. Let us consider the following simple mixture model for the

probability density p(d) of a random variable D representing one of the MAD/MAF

variates:

p dð Þ~p djNCð Þp NCð Þzp djC{ð Þp C{ð Þzp djCzð Þp Czð Þ, ð6Þ
where C + , C2 and NC denote positive change, negative change and no change,

respectively. Thus p(d|NC) is the probability density of the no-change pixels and

p(NC) is the corresponding mixing coefficient, etc. The set of n observations

S5{di|i51,…,n} may be grouped into four disjoint sets:

SNC , SC{, SCz, SU~S\SNC|SC{|SCz,

with SU indicating the set of ambiguous pixels. (The symbols < and \ denote set

union and set difference, respectively.) These sets can be determined in practice by

setting generous, scene-independent thresholds for change and no-change pixel

intensities, e.g. 2sD/2,di,sD/2 for NC, di,23sD and di.3sD for C2 and C + ,
respectively.

Let p(NC|di) be the a posteriori probability for a no-change pixel conditional on

measurement di. We have the following rules for determining p(NC|di):
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1. digSNC: p(NC|di)51

2. digSC¡: p(NC|di)50

3. digSU: p(NC|di)5p(di|NC)p(NC)/p(di)

Rule (3) follows from Bayes’ Theorem, and we assume

p(dijNC)~
1ffiffiffiffiffiffi

2p
p

:sNC

:exp {
(di{mNC)

2

2s2NC

 !
:

Starting values for the moments and mixture coefficient sNC, and p(nc) can be

estimated from the set SNC. Applying the EM algorithm, we then update the

parameters according to the prescription

m0NC~
X
i[S

p(NCjdi)di
.X

i[S

p(NCjdi)

( s0NC )2~
X
i[S

p(NCjdi)(di{ m0NC )2
.X

i[S

p(NCjdi)

p0(NC)~
1

jSj
:
X
i[S

p(NCjdi),

ð7Þ

where the prime denotes the new values. Equations (7) are derived e.g. in Bishop

(1995). They can now be iterated together with the corresponding equations for C +
and C2 to estimate the change and no-change densities. One then determines the

upper change threshold dU which minimizes the probability of misclassification as a

solution of

p djNCð Þp NCð Þ~p djCzð Þp Czð Þ:

Taking logarithms,

1

2s2Cz

d{mCz

� �2
{

1

2s2NC

d{mNCð Þ2~ log
sNC

sCz

: p Czð Þ
P NCð Þ

� �
~ : A

with solutions

dU~
mCzs2NC{mNCs

2
Cz+sNCsCz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNC{mCz

� �2
z2A s2NC{s2Cz

� �q
s2NC{s2Cz

:

(The appropriate sign must be chosen.) A similar expression obtains for the lower

threshold dL. The values of any three MAD/MAF variates lying above dU or below

dL can be conveniently displayed in RGB coordinates, thus giving a colour-coded

representation of significant changes that have taken place between the two scenes.

Since it is the no-change pixels which we expect to obey the chi-square distribution,

see equation (4), we can replace the denominators sDi
with sNCi

, i.e.,

x2N~
D1

sNC1

� �2

z � � �z DN

sNCN

� �2

, ð8Þ
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where s2NCi
is the variance of the no-change component for the ith MAD/MAF

variate as determined in the mixture model. The probability that a given observation

could exhibit a chi-square (8) or smaller can be interpreted as the change probability

and be represented as a grey-scale image.

According to Bruzzone and Prieto (2002) good results can also be obtained with

non-parametric, kernel-based initial estimates of the probability densities of the

change and no-change pixels, again with the help of the EM algorithm. Rather than

pursue this idea, however, we extend in the following the above parametric approach.

4. Clustering of changes

The procedure described in the preceding section has the disadvantage that only

changes signalled by at most three MAD/MAF variates can be displayed at one

time. Furthermore, only two change categories (negative and positive) are modelled

in each variate. Clustering of the change pixels can of course be applied in the full

dimensional feature space, where the number of clusters chosen determines the

number of change categories. The approximate chi-square distribution of the sum of

squares of the standardized variates (4) allows the labelling of pixels with high no-

change probability. These can be excluded from the clustering process in the same

manner as in the preceding section, i.e. by ‘freezing’ their membership probabilities

to 1 for the no-change class.

We apply the algorithm of Gath and Geva (1989), which they refer to as fuzzy

maximum likelihood estimation (FMLE), and which is essentially equivalent to the

EM algorithm; see, e.g. Hilger (2001). We begin by defining the change pixels as

those having a chi-square exceeding a threshold

t~x2N,P, ð9Þ
where P is the probability of observing a value lower than t (typically we choose

P50.99). Denote the MAD/MAF observations by the vectors

di , i~1, . . . ,n

and let uki be the membership probability of the ith pixel to the k th cluster. If there

are K change clusters in all, with k50 denoting the no-change cluster, we have

XK
k~0

uki~1, i~1, . . . ,n, ð10Þ

and the probability of cluster k is given by

P kð Þ~ 1

n

Xn
i~1

uki, k~0, . . . ,K, ð11Þ

The cluster sample means mk and sample covariance matrices Fk can then be written

in terms of the membership probabilities as

mk~
1

nP(k)

Xn
i~1

uki di

Fk~
1

nP kð Þ
Xn
i~1

uki di {mkð Þ di {mkð Þ>, k~0, . . . ,K :

ð12Þ
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These in turn themselves determine the membership probabilities according to

uki~P(kj di ),
the posterior probability for cluster k conditional upon observation di. That is,

invoking Bayes’ Theorem and assuming each cluster to have a multivariate normal

density distribution, we have

uki~P kj dið Þ~CP kð ÞP di jkð Þ

~CP kð Þ 1ffiffiffiffiffiffiffiffiffiffijFk j
p exp {

1

2
di {mkð Þ>F{1

k di {mkð Þ
� �

,
ð13Þ

where C is a normalization constant independent of k which can be determined from

(10). Starting from some initial choice of the memberships uki, the FMLE algorithm

consists of the iteration of equations (10)–(13) until convergence. In this calculation

the no-change pixels, as determined from the chi-square threshold (9), have their

class memberships frozen in order to reduce the number of iterations necessary for

convergence. Finally, all pixels are labelled according to the maximum membership

probability:

label ið Þ~arg max
k[ 0,...,Kf g

uki: ð14Þ

Because of the exponential distance dependence of the fuzzy cluster membership

in (13), the algorithm is very sensitive to initialization conditions, and can even

become unstable. To avoid this problem we follow a suggestion of Gath and Geva

(1989) and first obtain initial values for the uki by preceding the calculation with a

fuzzy C-means clustering for which the class memberships follow an inverse square

law (Dunn 1973).

In order to discriminate among different choices for the number of change

clusters we again follow Gath and Geva (1989) and first define a ‘fuzzy

hypervolume’ given by

FHV~
XK
k~0

ffiffiffiffiffiffiffiffiffiffi
jFk j

p
:

The partition density PD is then defined according to

PD~S=FHV , ð15Þ
where S is the number of change pixels within unit Mahalanobis distance of a cluster

prototype:

S~
Xn
i[R

XK
k~0

uki, R~ ij di {mkð Þ>F{1
k di {mkð Þv1

n o
:

An optimal choice for K is one which maximizes the partition density.

5. Post-classification processing

With Richards and Jia (1999) we note that a possible misclassification of a pixel in

(14) could in principle be corrected by examining the membership probabilities of
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pixels in its neighbourhood. They describe a method referred to as probabilistic label

relaxation, which we have adapted here to improve potentially our classification

result and take spatial information into account.

Let Qm(k) be a neighbourhood function for some pixel m which corrects its cluster

membership probability ukm according to the prescription

u0km~ukm
Qm kð ÞPK

j~1 ujmQm jð Þ , k~1, . . . ,K ,

or, written as a vector equation,

u0m ~ um
Qm

u>m Qm

, ð16Þ

where um5(u0m,…,uKm)
T and Qm5(Qm(0),…,Qm(K))

T. The denominator ensures

that the corrected result is also a probability, i.e. that

XK
k~1

u0km~1:

The neighbourhood function should reflect the spatial coherence of the image. In

order to define that function, a compatibility measure for a neighbourhood N of

pixel m is first postulated:

Pmn kj‘ð Þ, n[N,

namely, the conditional probability that pixel m belongs to class k, given that a

neighbouring pixel ngN belongs to class l. Evidence that m should be classified to k

would then be (Richards and Jia 1999)

Pmn kj‘ð Þu‘n, n[N: ð17Þ
This is the conditional probability that pixel m is in class k if neighbouring pixel n is

in class l, multiplied by the probability that n actually is in class l. The

neighbourhood function Qm(k) is obtained by summing over all terms like (17):

Qm kð Þ~
XK
‘~1

Pmn kj‘ð Þu‘n

or in vector notation,

Qm ~Pmn un ,

where Pmn is a K6K matrix of compatibility measures. Equation (16) can thus be

written finally as

u0m ~ um 6
Pmn un

u>m Pmn un
, ð18Þ

where fl indicates component-by-component multiplication. The matrix Pmn is

easily estimated directly from the originally classified image.

The probabilistic label relaxation procedure can be iterated arbitrarily. However

too many iterations may lead to a widening of the effective neighbourhood of a pixel
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to such an extent that irrelevant spatial information may falsify the final

classification. Experience shows that the best results are obtained after 3–4

iterations, see Richards and Jia (1999).

6. Application to bitemporal satellite imagery

The classification procedures described in the foregoing sections will be illustrated

with a bitemporal multispectral image. The image chosen, figures 1 and 2, consists of

two Landsat 5 TM scenes acquired on March 29 and then again on May 16, 1998

over a semi-arid agricultural area in Hindustan, India.

The scenes were registered to one another by applying an automatic contour

matching algorithm due to Li et al. (1995) and using first-order polynomial, nearest-

neighbour resampling. The RMS errors were less than or equal to 0.5 pixel. Because

of the robustness of the MAD transformation, no radiometric corrections were

applied to the two scenes. The most evident change that took place between the

acquisitions is the shallow flooding at the western end of the reservoir.

After performing the MAD/MAF transformations as described in § 2, the MAD/

MAF variates were ordered according to decreasing signal to noise ratio, see

equation (5). The values obtained are shown in table 1. The last three components

with low signal to noise were eliminated from subsequent analysis.

Figure 3 shows a scatter plot of the two MAD/MAF variates derived from the

change components with highest signal to noise ratios, i.e. components 1 and 2.

Figure 1. LANDSAT 5 TM image (band 4, Gaussian stretch) acquired on 29 March 1998.
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Change pixels scattered away from the intense no-change cluster centred at the

origin are clearly evident.

We next illustrate the automatic determination of decision thresholds as discussed

in § 3. Figure 4 shows a fit of the mixture model (5) to a MAD/MAF variate. The

thresholds are chosen at the left and right intersections of the three normal

distribution functions.

In figure 5 we see the result of thresholding the difference components with the

automatically determined decision thresholds. A MAD/MAF component lying within

the lower and upper no-change thresholds is coloured middle grey (RGB intensity

127). This serves to make negative changes more visible. Moreover the pixel intensities

are stretched across ¡16 (!) standard deviations in the respective component so that

changes less than or exceeding this amount are saturated at 0 or 255.

Figure 2. The same scene as in figure 1 but acquired on 16 May 1998.

Table 1. Signal to noise ratios.

MAD/MAF SNR

1 45.4
2 13.4
3 6.8
4 2.4
5 2.0
6 1.7
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In addition to the changes associated with the lake level and water quality,

substantial changes in the agricultural fields to the north of the lake are evident.

These changes are predominantly in intense green, that is in MAD/MAF variate 2.

Figure 6 shows the correlation of the three variates with the earlier LANDSAT

Figure 3. Scatter plot of MAD/MAF variates 2 vs. 1.

Figure 4. Mixture model fit to the histogram of a MAD/MAF variate.
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Figure 5. Change image with thresholds on MAD/MAF components 1, 2 and 3 displayed in
red, green and blue, respectively.

Figure 6. Correlation of three MAD/MAF variates with t1 scene, 1 red, 2 green and 3 blue.
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image acquired on March 29, 1998 (figure 1). Note that variate 2 is most strongly

correlated with the Landsat TM vegetation band 4, as is to be expected.

Next we consider clustering the no-change pixels with the procedure of § 4. The

first question is the appropriate number of clusters to use. Figure 7 displays the

partition density, equation (15), as a function of number of change clusters ranging

from 1 to 8, determined after convergence of the FMLE algorithm. A fairly

convincing local maximum is evident for five change clusters and this number was

accordingly chosen.

Figure 8 shows the clustered change pixels after convergence for five change

clusters, projected onto the 1–2 MAD/MAF plane. It is to be compared with the

scatter plot in figure 3. The no-change cluster is shown in black.

Figure 9 illustrates the effect of post-classification processing with probabilistic

label relaxation (§ 5). The spatial coherence of the change classes improves

remarkably.

The final product, that is, the unsupervised change classification including post-

classification, is shown in figure 10. By complementing this representation with

ground reference data, the five classes may be assigned to real change categories,

thereby giving a quantitative analysis of ground cover changes that have taken

place.

7. Conclusion

We have introduced and demonstrated a generally applicable and straightforward

method for visualization and classification of changes in multispectral satellite

imagery, based on well-established algorithms in image analysis and pattern

recognition and building upon the robustness of the MAD and MAF transforma-

tions for extracting change information from bitemporal multispectral data and for

enhancing signal to noise.

Figure 7. Plot of partition density vs. cluster number.
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For visualization we applied a probability mixture model and the EM algorithm

to variates of the MAD/MAF transformations to allow the automatic determination

of optimal (error-minimizing) decision thresholds for component-wise discrimina-

tion of change from no-change pixels. The result was a colour-coded representation

of significant changes that had taken place. This procedure is closely related to

change vector analysis (Singh 1989), a technique most commonly used with

untransformed spectral bands or with the tasselled cap transformation. In such cases

a direct physical interpretation of the change signals is sometimes possible.

Invariably, however, the change–no-change decision thresholds are treated as

adjustable parameters. The automatic threshold determination procedures of § 3

could clearly be applied here as well, although we are not aware of anyone having

Figure 8. Projection of five change clusters onto the 1–2 MAD/MAF plane.

Figure 9. Portion of clustered image before (left) and after four iterations of probabilistic
label relaxation.
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done so. We have preferred to use the MAD/MAF transformed variables because of

their robustness, their orthogonality, their approximate normal distribution and

their ability to enhance signal to noise. Physical interpretation of change can still be

accomplished by examining correlations with the spectral bands in the original

scenes, as was illustrated in figure 6, see also Nielsen et al. (1998).

We then performed an unsupervised classification of change and no-change pixels

with the FMLE method of Gath and Geva (1989), a variant of the EM algorithm,

which allowed for hyper-ellipsoidal clusters and clusters of differing sizes, and

included a criterion for choosing the best number of classes. Apart from the choice

of the chi-square percentile for fixation of no-change pixels, no other adjustable

parameters were involved. Advantage was then taken of the probabilistic

interpretation of class memberships established by the FMLE algorithm to apply

post-classification processing to improve the spatial coherence of the change classes

obtained.

Quantitative comparisons of unsupervised classification methods are notoriously

difficult, see for example Duda and Canty (2002). In any case we are unaware of

other work which could be critically compared with the clustering approach

described here.
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