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Abstract This paper deals with the design of controllers for pitch regulated,

variable speed wind turbines where the controller is used primarily for controlling

the (rotor and generator) speed and the electric power through a collective pitch

angle and the generator torque. However, other key parameters such as loads

on the drive train, wings and tower are in focus. The test turbine is a 2 MW

turbine used as a bench mark example in the project ”Aerodynamisk Integreret

Vindmøllestyring” partly founded by the Danish Energy Authority under contract

number 1363/02-0017.

One of the control strategies investigated here in this report, is based on a LQ

(Linear time invariant system controlled to optimize a Quadratic cost function)

strategy. This strategy is compared to a traditional PI strategy. As a control object

a wind turbine is a nonlinear, stochastic object with several modes of operation.

The nonlinearities calls for methods dealing with these. Gain scheduling is one

method to solve these types of problems and the PI controller is equipped with

such a property. The LQ strategy is (due to project time limitations) implemented

as a fixed parameter controller designed to cope with the situation defined by a

average wind speed equal to 15 m/sec.

The analysis and design of the LQ controller is performed in Matlab and the de-

sign is ported to a Pascal based platform and implemented in HAWC.

In general a LQ controller can be designed as a compromise between minimizing

several effects including the performance parameters as well as the control effort

parameters. In this report, however (and due to project time limitiation), only the

produced electric power has been in focus.

In the comparison between the two strategies the produced electric power for the

LQ controller has indeed been kept within a more narrow interval than for the PI

controller. One of the costs is however a high pitch angular speed. In one of the

LQ designs this costs (in terms of the pitch angular speed) is unrealistic high. In

a redesign the maximum pitch angular speed is reduced, but still higher that in

the case of the traditionally PI controller.

For reducing the pitch speed, further development in connection the LQ design,

should be directed i a direction where the pitch speed directly is included in the

design cost function. Also for reducing the loads, these should be included in the

design model and given a weight in the control objective function.

The work has been carried out under contract with the Danish Energy Agency

”Aeroelastic intregratet control” ENS1363/02-0017.

Print: Pitney Bowes Management Services Denmark A/S, 2005.
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1 Introduction

The work presented in this report is part of the EFP project titled ”Aerodynamisk

Integreret Vindmøllestryring” partly founded by the Danish Energy Authority

under contract number 1363/02-0017.
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Figure 1. Cp as function of λ and θ

This paper deals with the design of controllers for pitch regulated, variable speed

wind turbines where the controller is used primarily for controlling the (rotor and

generator) speed and the electric power through a collective pitch angle and the

generator torque. However, other key parameters such as loads on the drive train,

wings and tower is in focus. The test turbine is a 2 MW turbine described in

Appendix A in terms of HAWC input parameters.

The control strategies investigated here in this report, is based on the LQ (Linear

time invariant system controlled to optimize a Quadratic cost function) strategies

and compared to a traditional PI strategy. Traditional shall here be understood

in an extended meaning (see e.g. Figure 20). It is a PI based controlled equipped

with components and filters to cope with the characteristics of the wind turbine to

be controlled. The design of a PI controller can be model based or other principles

as well. The actual design can be found in [1]. The PI controller is based on gain
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Figure 2. Pr and ωr as function of wind speed v.Notice the 5 modes of operation,

the stop mode, the low mode, the mid mode, the high mode and the high mode.
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Figure 3. Stationary θ as function of wind speed.

scheduling, which is a type of (so called open loop) adaptive strategy enabling the

controller to operate at different wind speed.

The design of the LQ controller is a model based design in which the controller

can be designed to optimize a certain cost function reflecting the objective of the

control. It can also be designed to obtain certain locations of poles describing the

closed loop. In this report the first approach is applied. The analysis and design is

performed in a Matlab based platform and the design is ported to a Pascal based

platform and implemented in HAWC.

As a control object a wind turbine is a nonlinear, stochastic object with several

modes of operation. Some of these are quite classical with one or two set points.

Other mode of operations are untraditional. The nonlinearities calls for methods

dealing with these. Gain scheduling is one method to solve these types of problems.
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In the first section, section 2, a simplified LQ control strategy is outlined. It is

based on the most simple model of a wind turbine and only includes the rotational

degree of freedom. In this context several different mode of operation depending

of the wind speed is outlined.

In the next section, section 3, a more realistic model including the flexibility in

the drive train is investigated. The control task i however narrowed and is only

focusing on the problem of controlling the wind turbine in a region with average

wind speed equal to 15 m/sec. The resulting controller is fixed parameter controller

In section 4 the PI controller and its components is described in details. The

core of the controller is basically a PI-regulator that adjust the pitch angles and

generator on basis of measured rotational speed.

The comparison between the two strategies is described in section 5. To test the

performance of the two controller a series of load calculations at 15 m/sec has

been performed. The wind speed of 15 m/s is chosen since the LQ-regulator has

only been tuned to this wind speed. To test the robustness some parameter vari-

ations with respect to turbulence seed, turbulence intensity and yaw error. A

representative number of load sensors has been compared.

Risø-I-2320(EN) 7



2 Basic model (WT0)

In connection to control, design models are often of lower order and complexity

than models used for process design and understanding. The most basic model of

a wind turbine includes only the rotation. The rotor speed, ωr, is given by

Jtω̇r = Tr − Tgr

where:

Tr =
Pr

ωr

Pr =
1

2
ρπR2v3Cp(θ, λ)

and

λ =
v

ωrR
Tgr = NgTg

The wind turbine can be controlled by means of the generator torque, Tg, and the

pitch angle, θ, i.e. the control vector is:

u =

[

θ

Tg

]

x = ωr

and the state of the system is the rotational speed ωr.

The Cp has a maximum at θ∗ and λ∗ (see Figure 1). This optimum can only be

obtained in a region of operation (mid mode). Both the produced power and the

speed is limited. Due to the generator the speed is limited both from above and

below. For a fixed speed mode operation (high and low mode) the optimal θ is

a function of λ. In the top mode both the speed and produced electric power is

limited.

In this report we will only focus on a comparison in the top mode in which the

produced power (Pe) and speed (ωr) are controlled. The resulting controller:

ut =

[

θo

Tgo

]

− L

[

ωr − ωro

z

]

where z is an integral state, i.e. obey

ż = ωro − ωr

Notice, this in fact is a PI controller. The design of the controller, i.e. the deter-

mination of the gain L, can be carried out using a LQ design in which the cost

function

J = E

{
∫

εT Qε dt

}

is minimized. Here the (extended) error vector ε is given by

ε =









NTgo 0 0 Ngωro

0 1 0 0

0 0 1 0

0 0 0 1

















ωr − ωro

z

θ − θo

Tg − Tgo









(1)

and the weight matrix, Q, reflects the compromise between reducing the errors

in Pe (first row), the integral of the speed error (second row) and the control

activities in θ and Tg (third and fourth row).
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In this design a linearized model has to be used. Let

x = ωr − ωro, u =

[

θ − θo

Tg − Tgo

]

The linearized model

ẋ = Ax + Bu

is valid in a region around the point of linearization (see Figure 5 and 6). In

the comparison shown later the point of linearization is for a wind speed equals

15 m/s.
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Figure 5. The A matrix from the linearized model as function of wind speed.
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Figure 6. The B vector from the linearized model as function of wind speed.
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3 Flexibility in drive train (WT1)

If the flexibility in the drive train is included then the model is described by the

following tree differential equations:

Jrω̇r = Tr − Tgr

Jgω̇g = Trg − Tg

δ̇ = ωr −
1

Ng

ωg

where as previous

Tr =
Pr

ωr

Pr =
1

2
ρπR2v3Cp(θ, λ)

and

λ =
v

ωrR
Trg =

1

Ng

Tgr Tgr = Ksδ + Csδ̇

In this situation the state vector is augmented to

x =





ω̃r

ω̃g

δ̃



 u =

[

θ̃

T̃g

]

as well as the system matrices A and B (which are determined for vo = 15 m/s).

The linearized description is

ẋ = Ax + Bu + Bvv

where the signals are deviation away from stationary values.

Besides the dynamics of the wind turbine a model of the wind speed variations is

included. From the simulation data obtained from HAWC, a model

ẋw =







− 1

τ1

1 0

0 − 1

τ2

1

0 0 − 1

τ2






x +





0

0

1



 et

v =
[

1 0 0
]

xw

can be obtained. The wind variations are modelled as driven by white noise et.

The time constants are estimated to be 3.1 sec, 0.6 sec and 0.02 sec. This model

is of course only valid in a region around vo = 15 m/sec.

The total system can then be described by:

˙̄x =





A BvCw 0

0 Aw 0

−1 0 0



 x̄ +





B

0

0



u

Here the augmented state vector is

x̄ =





x

xw

z





and the design of the controller

u = u0 − Lx̄

10 Risø-I-2320(EN)



is based on the cost functions (1) in which

ε =









0 Tgo 0 0 0 0 0 0 ωgo

0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0







































ω̃r

ω̃g

δ̃

xw1

xw2

xw3

z

θ

Tg































(2)

Notice, the first row in the extended error signal reflects the focus on Pe, the second

on the integral state, the third (which has zeros weight) reflects the deformation

of the drive train and the fourth row reflects the control activity in θ.

With a weight matrix Q equals

Q = vv v = diag(
[

1

P0

500

P0

0 5e−5

θ0

]

)

the resulting gain matrix is:

L =

-1.3036 -0.0019 0.0200 -0.0305 -0.0105 -0.0002 0.9301

-0.0001 71.2415 0.0000 -0.0000 -0.0000 -0.0000 0.0001

Let us denote this design as WT1a. The gain (i.e. the 2,2 element in L) from

the error on ωg to the generator torque, Tg, can be compared to the non linear

strategy

Tg =
P0

ωg

≃ −71.24(ωg − ω0)

The control design show above focus to a large degree on keeping the produced

electric power Pe constant. The flexibility in the drive train has not been given

any attention. This can easily be changed by given this error a weight different

from zero. If other effect are considered to be minimized then the extended error

in (2) has to include this effect (i.e. the matrix has to be extended with additional

row(s) and some elements in v. The results are illustrated in Figure 8-17

The focus in the design og WT1a is primarily on Pe which results in a quite active

control especially seen in the variation in θ (see Figure 8 and Table 3.

In order to reduce the large control activity in θ the weight has changed to:

Q = vv v = diag(
[

1

P0

500

P0

0 5e−4

θ0

]

)

the resulting controller (denoted as WT1b) has a gain matrix which is:

L =

-0.3813 -0.0006 -0.0142 -0.0205 -0.0106 -0.0002 0.0940

-0.0041 71.2415 -0.0002 -0.0002 -0.0001 -0.0000 0.0010

Besides that the controller has been equipped with a device for limiting the pitch

rate. In the actual case the slev rate has been set to 6 deg/sec. The results are

illustrated in Figure 18-19

Risø-I-2320(EN) 11
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Figure 8. Variation in θ for the WT1a design.
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Figure 9. Variation in Tg for the WT1a design.
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Figure 10. Variation in ωr for the WT1a design.
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Figure 11. Variation in ωg for the WT1a design.
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Figure 13. Variation in Pe for the WT1a design.
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Figure 14. Deformation of blade in plane for the WT1a design.
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Figure 15. Deformation of blade out of plane for the WT1a design.
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Figure 16. Deformation of tower sidewise for the WT1a design.
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Figure 17. Deformation of tower in the wind direction for the WT1a design.

PI WT1a WT1b

std. θ (deg) 2.9946 3.0731 3.0383

std. θ̇ (deg/sec) 0.7723 5.6336 1.8372

max(|θ̇|) (deg/sec) 2.5800 24.7720 6.0000

std. Tg KNm 0.2277 0.0732 0.1905

std. ωr (rad/sec) 0.0369 0.0082 0.0304

std. ωg (rad/sec) 3.1667 1.0273 2.6743

std. δ (rad) 0.0005 0.0007 0.0007

std. Pe (kW) 10.9046 2.0614 2.1270

std. dx (m) 0.1838 0.1810 0.1721

std. dy (m) 0.4771 0.4857 0.4370

std. tx (m) 0.0289 0.0179 0.0219

std. ty (m) 0.0505 0.0654 0.0484

Table 1. Standard deviation (over the last 3/4 of the series) for key signals. The

third line contains however maximum values. The standard deviation is also shown

for the defomation of the blades in the plane (dx) and out of plane (dy) and

deformation of the tower sidewise (tx) and in the wind direction (ty).
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Figure 18. Variation in θ for the WT1b design.
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Figure 19. Variation in θ̇ for the WT1b design.
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4 Standard PI Control

The turbine controller is basically a PI-regulator that adjust the pitch angles and

generator on basis of measured rotational speed. The controller diagram can be

seen in Figure 20. In this Figure different parts of the regulation can be seen.

In basic the regulator consist of a power controller and a pitch controller. The

power controller is adjusting the reference power of the generator based on a table

look up (2) with input of the rotor speed. This table has been created on basis

on quasi static power calculations. In this table the overall characteristics of the

turbine control regarding variable speed, close to rated power operation and power

limitation operation are given.

In the power regulation it is important to avoid too much input of especially

the free-free drive train vibration. If not taken into consideration this vibration

could very well be amplified through the power control creating very high torque

oscillations. Therefore a special band stop filter (1) has been applied to filter out

this vibration frequency. For the current turbine the filter is implemented as a 2nd

order Butterworth filter with center frequency at the free-free eigenfrequency.

To limit the aerodynamic power to the turbine a PI-regulator (3) is applied that

adjusts the reference pitch angle based on the error between rotational speed and

rated speed. The PI-regulator has a minimum setting of zero deg, which makes

the turbine operate with zero pitch angle at low wind speeds. The proportional

and integral constants Kp and Ki are set to respectively 1.33 and 0.58, which

corresponds to an eigenfrequency of 0.1 Hz and a damping ratio of 0.6.

A special gain scheduling (5) to adjust for increased effect of pitch variations at

high wind speed compared to lower speeds is applied. This gain scheduling handles

the linear increasing effect of ∂P
∂θ

with increasing wind speed and pitch angle. This

gain function is implemented following the expression gain(θ) = 1

1+ θ

KK

where the

value KK is the pitch angle where the gain function shall be 0.5.

To increase the gain when large rotor speed error occurs another gain function

(4) is applied to the PI-regulator. This gain function is simply 1.0 when the rotor

speed is within 10% of rated speed and 2.0 when the error exceeds 10%. This very

simple gain function seems to limit large variations of the rotational speed at high

wind speed.

The pitch servo is modeled as a 1st order system with a time constant of 0.2 sec.

The maximum speed of the pitch movement is set to 20 deg/sec.

The generator is modeled as a 1st order system with a time constant of 0.1 sec,

which means that the reference torque demand from the regulator has a little

phase shift before executed. A drive train filter has been included in the generator

model to decrease response at the free-free drive train frequency. This filter makes

sure that any torque demand at the free-free frequency is counter phased before

entering the structural model.

Risø-I-2320(EN) 19



Figure 20. Control diagram of regulator. Input is measured rotational speed and

output is reference electrical power to generator and reference collective pitch angle

to pitch servo.
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5 Comparison between WT1a and
PI

To test the performance of the two controllers against each other a series of load

calculation at 15 m/s has been performed. The wind speed of 15 m/s is chosen since

the LQ-regulator has only been tuned to this wind speed. To test the robustness

some parameter variations with respect to turbulence seed, turbulence intensity

and yaw error. A representative number of load sensors has been compared.

I general the LQ-regulator is adjusted to very fast pitch angle variations and

reaches pitch angle speed up til 60 ◦/s, which is way more than achievable in

praxis. This is however a result of the optimization procedure of the regulator

where no limit in the pitch angle speed has been included. In this optimization

the main effort has been to keep the fluctuations in power and rotational speed

small. These two parameters has indeed been kept within a more narrow interval

than for the PI-regulation, but on the cost of pitch angle speed. The turbine loads

for the two concepts are in general very similar, but for the tower loads a increase

in loads has been seen for the LQ-regulator.

In the calculations performed with the PI-regulator a first order filter with a time

constant of 0.2 s has been used to represent the dynamic behavior of the pitch

servo, whereas no dynamics has been included in the LQ-regulator simulations.

Risø-I-2320(EN) 21



5.1 Effect of different wind track realizations
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Figure 21. Comparison of rotational speed..
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Figure 26. Comparison of flapwise blade root bending moment.
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Figure 27. Comparison of pitch moment in blade root. No effects of acceleration

forces include.
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Figure 28. Comparison of tower bottom tilt moment.
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Figure 29. Comparison of tower bottom side moment.
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5.2 Effect of different turbulence intensity
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Figure 30. Comparison of rotational speed..
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Figure 31. Comparison of electrical power.
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Figure 32. Comparison of pitch angle.
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Figure 33. Comparison of pitch angle velocity.
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Figure 34. Comparison of generator torque.
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Figure 35. Comparison of flapwise blade root bending moment.
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Figure 36. Comparison of pitch moment in blade root. No effects of acceleration

forces include.
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Figure 37. Comparison of tower bottom tilt moment.
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Figure 38. Comparison of tower bottom side moment.
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5.3 Effect of error in yaw angle
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Figure 39. Comparison of rotational speed..
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Figure 40. Comparison of electrical power.
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Figure 41. Comparison of pitch angle.
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Figure 42. Comparison of pitch angle velocity.
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Figure 43. Comparison of generator torque.
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Figure 44. Comparison of flapwise blade root bending moment.
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Figure 45. Comparison of pitch moment in blade root. No effects of acceleration

forces include.
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Figure 46. Comparison of tower bottom tilt moment.
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Figure 47. Comparison of tower bottom side moment.
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6 Conclusion

In this paper two control strategies has been investigated and compared. One

strategy, which in some sense consists the base line for comparison, is a PI based

controller equipped with Butterworth filters, mode switching and gain scheduling.

The last property has been incorporated in order to deal with the nonlinear effects

involved in connection to wind turbine control. The other strategy is a LQ based

controller which due to time limitation has (only) been implemented as a fixed

parameter controller and designed for operating in a region around a wind speed

equal to 15 m/sec. In other words there has not been take any measures in the

design to cope with nonlinearities except for the ridge limitation. The resulting

controller, WT1a, is equipped with a Kalman filter for estimating the state in the

wind model.

In general a LQ controller can be designed as a compromise between minimizing

several effects including the performance parameters as well as the control effort

parameters. In this report, however (and due to project time limitiation), only the

produced electric power has been in focus.

In the comparison between the two strategies the produced electric power for

the WT1a has indeed been kept within a more narrow interval than for the PI

controller. The cost is however a higher pitch angular speed, and thereby larger

forces on the pitch actuator system. For the two strategies the variation in control

inputs, i.e. the pitch and generator torque, are measured as standard deviation

or variance quite similar. However, the pitch activitiy in the WT1a design has a

large component in the high frequency region, which can be seen as previously

mentionend a high pitch angular speed. In the WT1b design the weight on the

pitch activity has been increased slightly which result in a slightly larger variation

in Pe but a huge reduction in the pitch speed. However, not less than the PI

control strategy. The WT1b design has in this report been tested for one wind

speed realization with a average wind speed equal to 15 m/sec.

For reducing the pitch speed, further development in connection to the LQ design,

should be in a direction where the pitch speed directly is included in the design

cost function. Also for reducing the loads, these should be included in the design

model and given a weight in the control objective function.
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A HAWC input file

HEAD HAWC input for "Aeroelastisk int. styring" /*

80m trnhjde. nkp 15 m/s /*

Ris testcase ;

DEFINE_STRING CASE_IDENTIFICATION wtlq1t31;

DEFINE_STRING STRUCTURE_FILE_EXT 001 ;

DEFINE_STRING AERODYN_FILE_EXT 001 ;

DEFINE_STRING PROFILE_FILE_EXT 001 ;

DEFINE_STRING GENERATOR_EFFICIENCY_FILE_EXT 001 ;

DEFINE_STRING GEAR_BOX_EFFICIENCY_FILE_EXT 001 ;

DEFINE_STRING EXTERNAL_REGULATION_NAME wtlq1t.dll ;

DEFINE_STRING TURB_FILE_PATH .\turb\ ;

DEFINE_STRING MANN_TURB_FILE_EXT 1 ;

PARAMETERS TURBINE 3 2 4 2 ;

PARAMETERS GEAR_BOX 85.0 2 1 ;

PARAMETERS GENERATOR 150.0 9.99E3 2000.0 0.75 1600.0 1 ;

PARAMETERS TILT 6.00 ;

PARAMETERS HAM_DYNAMIC_STALL 1.50 6.00 0.75 0.14 *

0.53 0.30 0.70 0.95 1 12 ;

;

PARAMETERS EXTERNAL_REGULATION 0.025 ; Ts

EXT_CONTR_SENS HUB_SPEED 1;

EXT_CONTR_SENS GENERATOR_SPEED 2;

EXT_CONTR_SENS SHAFT_DEFORMATION 4 0 0 0 0 1 0 *

0 0 0 0 3 0 ;

EXT_CONTR_SENS PITCH_BEARING_ANGLE 1 1 1 *

4 5 6 ;

EXT_CONTR_SENS SIMULATED_TIME 15 ;

;

PARAMETERS PITCHABLE_BLADE_PART 2 3 0.0 0.0 0.0 ;

ROTOR BASIC_LAYOUT 3 2 0.00 0.00 0.00 *

0.00 0.00 0.00 *

0.00 0.00 0.00 0.0 ;

DAMPING TOWER 0.0 0.0 0.0 3.06E-3 3.06E-3 1.45E-3 ;

DAMPING SHAFT 0.0 0.0 0.0 1.00E-3 1.00E-3 3.20E-3 ;

DAMPING BLADE 0.0 0.0 0.0 1.39E-3 9.00E-4 1.39E-3 ;

DEFINITION AEROCAL_INDUCTION 32 1.0 1.0 1.0 0.1 1.0 *

4.0 4.0 4.0 0.4 4.0 *

2.0 2.0 2.0 2.0 1.0 ;

; DEFINITION AEROCAL_MODIFICATIONS 1 1 15 ;

; rho u0 h0 slope yaw sigma/u0 r0 shear

DEFINITION WIND_FIELD 1.25 15.00 80.00 0.00 0.00 0.20 0.55 4 ;

; DEFINITION WIND_FIELD 1.25 5.00 80.00 10.00 0.00 0.20 0.55 4 ;

DEFINITION TURBULENCE_MANN 80.0 32 4096 80 1 1.0 0.8 1.0 0.5 1 2; Stoch.wind.

; DEFINITION TOWER_AERODYNAMIC_LOAD 0.6;

; DEFINITION TOWER_SHADOW 1.200 2.150 1.5 1;

; Blade nodes

NODE BLADE 1 1 0.000 0.000 0.000 ;

NODE BLADE 1 2 0.000 0.000 2.000 ;

NODE BLADE 1 3 0.000 0.000 7.000 ;

NODE BLADE 1 4 0.000 0.000 12.000 ;

NODE BLADE 1 5 0.000 0.000 20.000 ;

NODE BLADE 1 6 0.000 0.000 25.000 ;

NODE BLADE 1 7 0.000 0.000 28.000 ;

NODE BLADE 1 8 0.000 0.000 31.000 ;

NODE BLADE 1 9 0.000 0.000 34.000 ;

NODE BLADE 1 10 0.000 0.000 36.000 ;

NODE BLADE 1 11 0.000 0.000 38.000 ;

NODE BLADE 1 12 0.000 0.000 40.000 ;

NODE BLADE 2 1 0.000 0.000 0.000 ;

NODE BLADE 2 2 0.000 0.000 2.000 ;
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NODE BLADE 2 3 0.000 0.000 7.000 ;

NODE BLADE 2 4 0.000 0.000 12.000 ;

NODE BLADE 2 5 0.000 0.000 20.000 ;

NODE BLADE 2 6 0.000 0.000 25.000 ;

NODE BLADE 2 7 0.000 0.000 28.000 ;

NODE BLADE 2 8 0.000 0.000 31.000 ;

NODE BLADE 2 9 0.000 0.000 34.000 ;

NODE BLADE 2 10 0.000 0.000 36.000 ;

NODE BLADE 2 11 0.000 0.000 38.000 ;

NODE BLADE 2 12 0.000 0.000 40.000 ;

NODE BLADE 3 1 0.000 0.000 0.000 ;

NODE BLADE 3 2 0.000 0.000 2.000 ;

NODE BLADE 3 3 0.000 0.000 7.000 ;

NODE BLADE 3 4 0.000 0.000 12.000 ;

NODE BLADE 3 5 0.000 0.000 20.000 ;

NODE BLADE 3 6 0.000 0.000 25.000 ;

NODE BLADE 3 7 0.000 0.000 28.000 ;

NODE BLADE 3 8 0.000 0.000 31.000 ;

NODE BLADE 3 9 0.000 0.000 34.000 ;

NODE BLADE 3 10 0.000 0.000 36.000 ;

NODE BLADE 3 11 0.000 0.000 38.000 ;

NODE BLADE 3 12 0.000 0.000 40.000 ;

; Nacelle nodes

NODE NACELLE 1 0.0 0.000 0.000 ; Tower top

NODE NACELLE 2 0.0 -0.600 0.000 ; Gearbox

NODE NACELLE 3 0.0 -2.186 0.000 ; Main shaft flange

NODE NACELLE 4 0.0 -3.486 0.000 ; Rotor centre

; Tower nodes

NODE TOWER 1 0.000 0.000 0.000 ;

NODE TOWER 2 0.000 0.000 -25.000 ;

NODE TOWER 3 0.000 0.000 -50.000 ;

NODE TOWER 4 0.000 0.000 -80.000 ;

; 1 3 2 m0 Ix Iy(axel) Iz

DEFINITION CONCENTRATED_MASS 1 3 2 75.3E+3 409.4E+3 20.0E+3 367.7E+3 ;

TYPES BLADE_AERODYN_3 1 1 1 ;

TYPES BLADE_STRUCTURE_3 1 1 1 ;

TYPES SHAFT_STRUCTURE 1 ;

TYPES TOWER_STRUCTURE 1 ;

TYPES USE_CALCULATED_BEAMS ;

INITIAL AZIMUTH 0.000 1.9712 0.000 ;

;

WRITE BEAM_DATA_TO_RDA_DIRECTORY ;

;

RESULTS BLADE_CO_SYS_FORCE 2 ;

RESULTS BLADE_CO_SYS_DEFORM 1 ;

RESULTS FORCE_MOMENT_SIGN 4 ;

;

RESULTS TIME ;

; RESULTS AZIMUTH 0.0 ;

RESULTS ROTOR_SPEED ;

RESULTS GENERATOR_SPEED ;

RESULTS EXTERNAL_GENERATOR_MOMENT ;

RESULTS HUB_SPEED ;

RESULTS ELECTRICAL_POWER ;

RESULTS WIND_SPEED_AT_HUB 0 1 0 1 1 1 ;

RESULTS PITCH_BEARING_ANGLE 1 1 1 ;

; RESULTS SHAFT_FORCE_MOMENT 1 0 0 0 0 1 0 ;

; RESULTS ELEMENT_CL_CD_CM_DATA 3 0 0 0 0 0 0 1 ;

; RESULTS ELEMENT_CL_CD_CM_DATA 5 0 0 0 0 0 0 1 ;

; RESULTS ELEMENT_CL_CD_CM_DATA 7 0 0 0 0 0 0 1 ;

; RESULTS ELEMENT_AERODYNAMICS 1 7 1.0 1 0 0 0 0 0 0;

RESULTS BLADE_FORCE_MOMENT 1 1 0 0 0 1 1 0 ; Rotor centre

; RESULTS BLADE_FORCE_MOMENT 1 2 0 0 0 1 1 0 ; R=1.2m

40 Risø-I-2320(EN)



; RESULTS BLADE_FORCE_MOMENT 1 5 0 0 0 1 1 0 ; r=20m

; RESULTS BLADE_FORCE_MOMENT 1 9 0 0 0 1 1 0 ; r=34m

RESULTS SHAFT_FORCE_MOMENT 4 0 1 0 1 1 1 ; Rotor centre

RESULTS TOWER_FORCE_MOMENT 1 1 1 0 1 1 1 ; Tower base

; RESULTS TOWER_FORCE_MOMENT 2 1 1 0 1 1 1 ; Tower h=25m

; RESULTS TOWER_FORCE_MOMENT 4 1 1 0 1 1 1 ; Tower top

RESULTS BLADE_DEFORMATION 1 12 1 1 0 0 0 0 ; Tip

RESULTS SHAFT_DEFORMATION 4 0 0 0 0 1 0 ; Rotor centre

RESULTS TOWER_DEFORMATION 4 1 1 0 0 0 0 ; Tower top

DEFINITION RESPONSE_CALC_LIMITS 1.0E-3 1.0E-3 0.0 5.0E-1 1 10 ;

RESULTS RESPONSE_TIME_OFFSET 0.0; 40.0;

; WRITE POWER 7.0 25.0 1.0 4 1 0.10 0.10 0.10 8 ;

WRITE RESPONSE 300.0 0.025 1 1 0 1 2 1 5 1 ;

STOP ;
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Abstract (Max. 2000 char.)

This paper deals with the design of controllers for pitch regulated, variable speed

wind turbines where the controller is used primarily for controlling the (rotor and

generator) speed and the electric power through a collective pitch angle and the

generator torque. However, other key parameters such as loads on the drive train,

wings and tower are in focus. The test turbine is a 2 MW turbine used as a bench

mark example in the project ”Aerodynamisk Integreret Vindmøllestyring” partly

founded by the Danish Energy Authority under contract number 1363/02-0017.

One of the control strategies investigated here in this report, is based on a LQ

(Linear time invariant system controlled to optimize a Quadratic cost function)

strategy. This strategy is compared to a traditional PI strategy. As a control object

a wind turbine is a nonlinear, stochastic object with several modes of operation.

The nonlinearities calls for methods dealing with these. Gain scheduling is one

method to solve these types of problems and the PI controller is equipped with

such a property. The LQ strategy is (due to project time limitations) implemented

as a fixed parameter controller designed to cope with the situation defined by a

average wind speed equal to 15 m/sec.

The analysis and design of the LQ controller is performed in Matlab and the de-

sign is ported to a Pascal based platform and implemented in HAWC.

In general a LQ controller can be designed as a compromise between minimizing

several effects including the performance parameters as well as the control effort

parameters. In this report, however (and due to project time limitiation), only the

produced electric power has been in focus.

In the comparison between the two strategies the produced electric power for the

LQ controller has indeed been kept within a more narrow interval than for the PI

controller. One of the costs is however a high pitch angular speed. In one of the

LQ designs this costs (in terms of the pitch angular speed) is unrealistic high. In

a redesign the maximum pitch angular speed is reduced, but still higher that in

the case of the traditionally PI controller.

For reducing the pitch speed, further development in connection the LQ design,

should be directed i a direction where the pitch speed directly is included in the

design cost function. Also for reducing the loads, these should be included in the

design model and given a weight in the control objective function.



Risø-I-2320(EN) 43


