
Chapter 13

Analysis of geochemical data
sampled on a regional scale
K. Conradsen, A. A. Nielsen and K. Windfeld

When working with the analysis of geochemical data on a regional scale one
will often encounter calibration problems arising from the chemical analysis
of sampies that might be collected over several years in geographical units. A
procedure for remo val of such geographical unit patterns is described. Stream
sediment sampies are collected at 33992 sites and analyzed for the content of
26 elements. Semivariograms, the geostatisticai analogue af spatial autocorrel
ation functions, are estimated, modeled and applied in interpolating to a
regular grid. The interpolation method used is kriging, in which the mean
square prediction error is minimized taking the spatial correlation in to account.
Heavy mineral sampies are collected at 3094 sites and analyzed for the content
of several economically interesting minerals. Based on the nonparametric
method, CART (classification and regression trees) probability maps for the
accurrence af gold and cassiterite are canstructed using the krige d stream
sediment data as predictors. This method is very useful for geologists when
studying geological structures on a regional scale.

13. 1 Geostatistics

The basis of geostatistics is the idea of considering the observed values of a
geochemical, a geophysical or another natural variable at a given set of
positions as a realization of a stochastic process in space. For each position
x in a domain f2 there exists a measurable quality z(x), a so-called regionalized

variable. f2 is typically a subset of PÆ2 or of PÆ3. z is considered a particular
realization of a random variable Z(x). The set of random variables
{Z(x) I x E .s&} constitutes a random function. Z(x) has mean value E{Z(x)} =
Il(X) and covariance cov {Z(x), Z(x + h)} = C(x, h). If the covariance is trans
lation invariant over fØ, i.e. C(x, h) = C(h), Z is said to be second-order
stationary. Often Z(x) is assumed to follow a normal or a lognormal distri
bution. This statisticai view on natural phenomena was introduced by
Georges Matheron in 1962-63 and is described in great detail in David
(1977) and in Journel and Huijbregts (1978). An introductory textbook
is Clark (1979). David (1988) looks back on ten years of application of
geostatistics.

The classical application of geostatistics has been the calculation of ore
reserves. Here it is applied to describe the spatial distribution of geochemical
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elements over large areas (in the order of tens of kilometers by tens of
kilometers). The spatial autocorrelation structure is described by means of
semivariograms and if such autocorrelation is present it is utilized in inter
polation performed by kriging, a best linear unbiased estimator (BLUE).

Point measurements of geochemical, geophysical or other natural variables
or measurements taken over areas or volumes, also known as supports, are
in principle continuous phenomena in space. If 'dense' sampling is performed
the continuous nature of the variable in question will be reflected in the
covariation of neighboring samples. If taken further apart from each other
there will be little or no covariation between samples. Whether sampIes are
'dense' depends on the variable in question and sample sizes. AIso, the
autocorrelation re veal ed will depend on the scale at which one is operating.
Ditferent autocorrelation structures ean be present simultaneously at ditfer
ent scales (mineralizations at the size of a few meters vs. regional variations
at the size of tens of kilometers); this is referred to as nested structures.

The above remarks on autocorrelation applies to cross-correlations also
if more than one variable is studied at a time.

13.1.1 The semivariogram

Consider two scalar values z(x) and z(x + h) measured at two point s in space
x and x + h separated by h. z is considered a particular realization of a
random variable Z. The variability is described by the autocovariance
function

C(x, h) = Ef(Z(x) - Il)(Z(x + h) - Jl)}.

The variogram is defined as

2y(x, h) = E{[Z(x) - Z(x + h)Y:.

In general the variogram will depend on the location in space x and on the
displacement vector h. Note that the variogram represents a more general
concept than that of the covariance function since the increment process
Z(x) - Z(x + h) may have well-defined properties which the basic process
Z(x) does not possess. The in trins ic hypothesis in geostatistics is that the
variogram is independent of the location in space and that it depends on
the displacement vector only:

2y(x, h) = 2y(h).

Second-order stationarity of Z(x) implies the intrinsic hypothesis. y(h) is
called the semivariogram. The autocovariance function and the semivario
gram are related by

y(h) = C(o) - C(h).

Note that C(o) = 02.
An estimator for the semivariogram is the mean of the squared ditferences

between any two measurements z(xJ and z(xj + h):

l N(h)

'((h) = 2N(h) Jl [z(xj) - z(xj + h)J2,
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where N(h) is the number of point pairs separated by h. Y is called the
experimental semivariogrwH. Pooling in both magnitude and argument of h
is often performed. Pooling in the magnitude of h - i.e. the distance between
sampies - is done to obtain a sufficiently high N(h) to ensure a small
estimation variance (N(h) is proportional to the estimation variance). Pooling
in the argument of h - i.e. the direction - is done to check for anisotropy.

There is an extensive literature on the problems one encounters when
estimating experimental semivariograms on real world data, cf. e.g. Cressie
(1985).

In arder to be able to define characteristic quantities for the semivariogram
(and in order to apply the semivariogram in kriging, see below) a model is
often assumed. An often used semivariogram model is the spherical model
with nugget effect. A reason for this is the easy interpretability of the
parameters. Assuming isotropy and setting Ihl = h the form of this model is

o

y*(h) = Co + Cl [~~ - ~(~JJ
CO+ Cl

if h= O

if O < h < R

if h~R,

where Co is the nugget effect and R is the range oj'infiuence. Co/(Co + Cl)
is the relative nugget effect and Co + C l is the sill (= 0'2). The nugget effect
is a discontinuity in the autocorrelation function at h = O due to both
measurement errors and to micro-variability, the structure of which is not
available at the scale of study. This variability thus tums up as noise. The
range of influence is the distance at which covariation between measurements
stops; measurements taken further apart are uncorrelated. The spherical
semivariogram model with nugget effect can easily be extended to e.g. a
double spherical model with nugget effect to allow for nested struetures:

y*(h) =

o

Co + Cl [L!~- ~l!-)3J+ C2 [~l!-- ~(l!-)3J2R1 2R1 2R2 2 R2

Co + C + c [~l!-- ~(l!-)3Jl 2 2 Rz 2 R2

CO+C1+C2

ir h = o

where Co is the nugget effeet and R2 is the range of influence. Cal

(Co + Cl + C2) is the relative nugget effect and Co + Cl + C2 is the sill.
Other modeis for the semivariogram such as linear, bilinear and exponential
modeis are often used also.

The parameters in the above semivariogram modeis y* ean be estimated
from the experimental semivariograms y by means of iterative, nonlinear
least squares methods. Different weights of the estimated values in the
experimental semivariogram y may be considered. A weighting with the
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number of point pairs included in the estimation for each lag distance seems
natural. Also, if one is interested in a good model for smalllags a weighting
with the inverse lag distance applies.

Another important coneept in geostatisties is regularization, i.e. the averag
ing of a random funetion over a domain fØ. Let x E fØ. The regularized value
Zy of Z is - VC:'-, e..l:;,(z.

Z'l = I~I L Z(x) dx,

where IfØl is the area (or volume) of fØ. Similarly for the moment funetions,
e.g.

"((sd, fJ8) = IcQil\fJ81 L ty(x - y) dy dx.

Thus "((sd, fJ8) is the regularized semivariogram when one end of the displaee
ment veetor h = x - y varies in sd and the other end of h varies in fJ8. This
integral ean be either solved analytieally for eertain semivariogram modeis
and supports of simple geometry or solved numerieally.

What is said above about autoeovarianee funetions and variograms ean
easily be extended to covariance funetions and eross-variograms if more
variables are studied simultaneously.

13.1.2 Kriging

Suppose that the random variable Z(x) is sample d on a number of supports
(eould be points) fØl"", fØn giving the following sealar measurements
Z(X1), ... , Z(X,J We now want to estimate Z'l on a support fØ where Z is
not sampled (or Z is sample d on a part of fØ only). We are looking for a
linear, unbiased estimator:

n

Z;j = I W;Zq,
i= 1

E{Z'l - Zq} = O.

The unbiaseness eondition of the estimator gives
nI Wi= 1.

i= 1

The estima!ion varianee (ar the mean squared error) is

0~ = E{(Zq - Zq?}.

The kriging estimate is defined by the values of the weights Wi that mini
mize the estimation varianee 0~ subject to the eonstraint that the sum
of the (kriging) weights is unity. This ean be done by introdueing a
Lagrangian multiplier and set ting eaeh of the n partial derivatives
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o[d-2A(~i'=lWi-l)]/OWi=O leading to the (n+l)x(n+l) set of
equations

"I wi'1(fZj, gz;) + A = '1(EØj, .0)),
i= 1

j= l, ... , n

with the kriging variance (or the minimum mean squared error)
"

ai = I Wi'1(gzi, gz) + A - '1(.0), .0)).
i=l

Of eourse this ean be expressed in term s of the eovarianee funetion also
"I w/~(.0)j' gz;) - A = C(gzj, 22),

i= 1

with the kriging varianee

j = l, ... , n

"

ai = - I W/~(2Zi' 22) + A + C(gz, gz).
i= 1

Both kriging systems ean be written in matrix form, here expressed by means
of the eovarianee funetions

Cw=c

with

C(221, gz,,)

C=
C(.0),,, gz,,)

1 O

w' = (w 1, ... , w,,, - A)

and

c' = (C(EØl, gz), ... , C(22,,, 22), 1).

The solution to the kriging system expressed in matrix form by means of
the eovarianee funetion is

w = C-IC.

Tfthe supports .0), gz 1, ... , 22" ean be eonsidered point s the kriging performed
is referred to as point kriging, otherwise it is referred to as block kriging or
panel kriging.
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A few remarks on some ve ry important properties of kriging:

• Kriging is an interpolation form that provides us with not only an
estimate based on the covariance structure of the variable in question
but also an estimation variance.

• The kriging system has a unique solution if and only if the covariance
matrix {Cij}' i,j = I, ..., n is positive definite; this als o ensures a nonnega
tive kriging variance.

• The kriging estimator is a best linear unbiased estimator (BLUE) and it
is also exact, i.e. if the support to be estimated coincides with any of the
supports of the data included in the estimation, kriging pro vides an
estimator equal to the known measurement and a zero kriging variance.

• The kriging system and the kriging variance depend only on the covari
ance function (semivariogram) and on the spatiallay out of the sampled
support s and not on the actual data values. lf a covariance function is
known (or assumed) this has import an t potential for minimizing the
estimation variance in experimental design (i.e. in the planning phase of
the spatiallayout of the sampling scheme).

In all applications of kriging the problem of assuming stationarity arises.
Universal kriging is a technique that allows for some forms of nonstationarity
part of which is modeled as a trend in the mean value, that is described
either as a linear combination of known functions or by means of local
Taylor expansions. The type of spatial irregularity we are facing in the
application below is not suitable for that type of solution. The nonstation
arity is ve ry nonlinear and all attempts at 'fitting' with 'regular' functions and
modeis have failed. Another possible approach when analyzing multivariate
observations is co-kriging. Here one could take the spatial covariation be
tween different variables into account in the 'adjustment'. Again, the spatial
irregularity in the case study below is not suited for that type of solution.
Hence, the ordinary kriging method described above is applied in the case
study. Universal kriging, co-kriging and other advanced types of kriging will
not be elaborated on here; go od reference s are Journel and Huijbregts (1978),
Myers (1982) and Carr (1985).

13.1.3 Case study: central Spain

This section describes applications of geostatistical methods in the analysis
of stream sediment geochemical data from a large area in central Spain. The
work reported constitutes part of a project described in Conradsen et al.
(1990).

(a) Geochemical data
Sampies were collected at 33 992 sites in 16 mapsheets (a mapsheet covers
approximately 30 km x 20 km). All sampies were analyzed for the contents
of 27 geochemical elements by inductively coupled plasma emission spec
trometry (JCP). The element s are

P, As, Sb, Sn, Pb, B, Zn, Cd, Hg, Cu, Ag, Ni, Co, Fe,
Mn, Cr, Mo, W, V, Nb, Y, Be, Ba, Al, Mg, Ti and Sc.
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For proprietary reasons, all contents have been scaled by a constant factor.

Each observation holds information on UTM coordinates (universal trans
verse Mercator projection), element contents and lithology code.

Sc is a multiplicative correction element added manually and not present
in nature in these samples. For several elements there is a detection limit
problem. Based on information from geologists the folIowing procedure was
decided upon:

• Tf the content z of an element is < 5 p.p.m. replace that value with
3·5 p.p.m. which is the approximate center of mass for a triangle with
baseline [O, 5J p.p.m.

• Tf the content Zi of an element at sample site i is ~ 5 p.p.m. replace that
value with Zi,COTT= ZiSCmean/SCi'

The value of SCmeancan be chosen as the overall mean or as a mean for
individual mapsheets. As no visual difference was observed the simpier
method applying the overall mean was preferred.

When inspecting sample site images of the individual element s a conspicu
ous mapsheet effect is noted, cf. plate. The effect is due to calibration
problems in the chemical analysis of the samples. To facilitate a regional
stud y the effect is removed by means of a method explained below.

(b) Semivariograms and kriging
To reveal the spatial structure of the individual element s and to prepare the
interpolation by means of kriging experimental semivariograms were calcu
lated. To allow for the mapsheet effect semivariograms were calculated before
the removal of this effect but without allowing interaction between map
sheets, i.e. no point pair across any mapsheet border was included in the
calculation. Spherical modeis with nugget effect were estimated by means
of a weighted, iterative, nonlinear least-squares estimation procedure.
Figure 13.1 shows semivariograms for the natura l logarithm of the content
of some elements (measured in p.p.m.).

Point kriging to a regular UTM grid with point s in a 500 m x 500 m grid
was perforrned for individual element s using the nearest 20 neighbors re

sulting in 192 lines with 234 sampies each. A speed-up feature used is the ~

exploitation of the fact that all element s have the same neighbors, based on l))the sampling layout only to build a neighborhood table. The application of
this speed-up feature and point (vs. block) kriging reduced the CPU time
for kriging one element in the study area from approximately 26 hours to
approximately 2 hours and 10 minutes on a DEC MicroVAX II. The plate
shows kriged Cr and kriging variance for Cr.

In a small part of the study area (one mapsheet) a pilot study on co
kriging and kriging of principal components was carried out. This study
showed very littie visual difference between these more advanced forms of
kriging and ordinary kriging.

(c) Mapsheet calibration
One of the major problems in the analysis of stream sediment data in the
study area is the very distinct mapsheet pattern observed when displaying
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Figure 13.1 Experimental and modeled semivariograms for some elements in central
Spain.

the sampies as images. This obvious nonstationarity is due to problems in
the chemical analysis of the sampies and it violates the assumptions under
lying many of the statisticai techniques used in the analysis of spatial patterns.
Therefore a method for removing the mapsheet pattern and thus calibrating
the data is called for when the object is to analyze the area as a whole.

The general idea in the methods considered for mapsheet pattern removal
is to transform observed values in the mapsheets using monotone transform
ations in order to preserve structure such that observations in neighboring
mapsheets that are dose to each other in distance have similar histograms.

Linear transforms are simple monotone transformations. It turns out that
linear transformations are not sufficient for removing the mapsheet pattern.
The phenomenon is more complex.

A method based on local histogram matching was found to have a
satisfactory performance, removing the mapsheet pattern while preserving
the spatial structure in the images. The method starts out in one mapsheet,
transforming the neighboring mapsheets to match at the common borders.
Afterwards the neighboring mapsheets of these transformed mapsheets are
transformed. The scheme propagates throughout the whole area until all
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mapsheets conform to one another in the sense that there are no discontinu
ities along the mapsheet limits in the image.

Consider for example the mapsheet layout in Figure 13.2.
The transformation scheme can start out in any mapsheet. For simplicity

let us start in mapsheet I (MS I). Then the method works as follows:

Leave the observations in MS lunchanged. Now, consider the observations
in a narrow band on each side of the mapsheet limt shared by MS I and L
MS2. To transform the observations in MS2 use the transformation that

makes the histogram of the narrow band in MS2 equal to that of the narrow
band in MSI.

In determining the transformation a number of empirical quantiles - for
exam pIe, the 5, 10, 15, ... per cent quantiles - are determined from each of
the two narrow bands. The transformation tak es the quantiles in MS2 to
the corresponding quantiles in MSI. Between the quantiles we have used
linear interpolation. Outside the range specified by the chosen quantiles a
linear transformation from [min, min] to the lowest quantile and from the
highest quantile to [max, max], respectively, is used; min denotes the over
all minimum, max the overall maximum of the element in question. This
transformation removes a possible discontinuity along the mapsheet limit
between MSI and MS2. Analogously, MS3 is transformed to remove dis
continuities along the mapsheet limit shared by MSI and MS3.

Now, in transforming MS4, two transformations are determined: one
corresponding to MS2 and one corresponding to MS3. The actual transform
ation applied is a convex combination of these two. For each observation
in MS4 the weight on each transformation is inversely proportional to rhe
distance to the corresponding mapsheet limit. Thus, the observation z in
MS4 with distance d2 and d3 to MS2 and MS3 respectively gets transformed

MS1

MS3

MS2

MS4

Figure 13.2 Example mapsheet layout.
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with the transformation T:

d3 d2

T(z) = -d d T2(z)+ -d d T3(z)2+ 3 2+ 3

where T2 and T3 are the two transformations that correspond to MS2 and
MS3. It is easy to generalize this idea to transforming a mapsheet to match
more than two neighboring mapsheets by using convex combinations of
transformations.

The transformation scheme propagates thi s way until all mapsheets have
been transformed.

The mapsheet smoothing is carried out on the logarithm of the Sc
corrected variables. Observations below 5 p.p.m. have been simulated from
a triangular distribution before Sc-correction in order to avoid problems
with degenerate histograms in the determination of smoothing transform
ations.

Two examp1es of the transformation are shown in Figure 13.3. The result
of the calibration can be seen in the plate. Note that the very distinct
mapsheet pat tern present before the calibration is removed. At the same
time the overall spatial structure is preserved.

13.2 Predictian af heavy minerals

CART (C1assification And Regression Trees) is a new and often powerful
alternative to classica1 parametric methods in classification and regression.
The methodo1ogy was developed in the 1970s and early 1980s and it is
described in Breiman et al. (1984). In this section we will briefly describe
what CART does, focusing on1y on the classification part.

In classification, one has measurements on an object and then one uses
some sort of decisionrule to decide to which class the object be1ongs. In our
case we have measurements of concentrations of some geochemica1 variables

8

6

o 2

er

4

Mapsheet 1

6 8

Mn

Mapsheet 1

Figure 13.3 Examples of mapsheet transformations.
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and we want to predict whether the concentration of gold, for example, is
detectable or not. To construct a decision rule we need some data for which

we know to what clas ses the cases belong. This is called the training set or
the learning set. The decision rule that CART produces is in the form of a
binary decision tree. An example is given in Figure 13.4.

CART grows trees by operating on the training set of the data. A node in
the tree corresponds to a subset of the data. To begin with, we have a node
containing all the cases in the learning set (training set).

In the tree-growing proces s, we need a strategy for determining the splits
in the tree. Suppose we only have two clas ses: O and 1. A split of a node is
good if it do es a good job of separating class O and class l in the two
des cen ding nodes. One rule is to maximize decrease in node impurity for
each split. For thi s we need a measure i(t) of node impurity for a node t.
The Gini index has been found useful. It has the form

i(t) = L p(k I t)p(j I t)
j*k

= ( L p(k I t))2 - L p2(k I t)j*k k

= 1- Lp2(klt).
k

This function has the desired properties of symmetry, concavity and non
negativeness required, and it is computationally attractive. This is not insig-

Figure 13.4 CART tree for gold.
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nificant since the function is evaluated many times in the process of growing
the tree.

CART examines all the coordinate splits of the form x < c, where
c E [min (x), max (x)J and x is a measured variable. By this we mean: all
cases satisfying x < c go left and the rest go right.

For each x there will exist a value of c that yields the best split in terms
of separating the c1asses. The split chosen by CAR T is the best of the best
individual variable splits, resulting in the best overall split on a single
variable. This procedure is repeated in a recursive manner for the descendant
nodes, until a very large tree is constructed with pure terminal nodes or very
few cases in these. This means that if we run all cases down the tree, use the
plurality rule for predicting the c1ass (i.e. the rule that assigns to a terminal
node the c1ass for which the proportion of learning set cases is largest), all
cases will be predicted correctly, i.e. the re substitution estimated misc1assifi
cation rate is O! Of course this is too optimistic. We have modeled the 'noise'
as well as the structure in the training data. Hence, we need a more 'honest'
estimate of the true error rate. This ean be accomplished by setting aside
some cases from the learning set in a test set not used in the actual tree
gro wing process. This test set is used to estimate the true error rate by
running it down the tree and recording the proportion of misc1assified cases.
The concept of setting aside learning set cases for model selection and error
estimation is generally denoted cross-validation, a common technique in the
context of non-parametric computer-intensive modeis.

The large initial tree grown is too large so we need to prune it in a
reasonable manner. A cost-complexity measure is introduced of the form

total cost = misc1assification cost + a x complexity of tree.

For each value of a there exists a unique subtree ofthe initial tree, minimizing
the total cost. By increasing a starting at O we obtain a sequence of smaller
and smaller subtrees. The final tree selected in the sequence is the one that
minimizes the error rate as estimated by use of the test set.

CART has features for handling missing data, linear combinations splits,
variable importance ranking, c1ass priors and misc1assifications costs as well;
for further details cf. Breiman et al. (1984).

13.2.1 Case study: Central Spain

The CAR T methodology has been used to construct tree-structured predic
tors for heavy minerals of economic interest in central Spain. The motivation
for constructing modeIs for prediction of hea vy mineral data using the stream
sediment data is that we want to estimate structural maps of heavy minerals
in the area. Only the structural map for cassiterite is described below.

Conventional methods for interpolation such as kriging are not feasible
because of the extreme skewness of the distribution of heavy minerals concen
tration at the sample points and also because of sparsity of heavy minerals
samples. Essentially an indicator variable for the occurrence of a heavy
mineral is recorded. The stream sediment data are sampled more densely so
that if we ean build a model for predicting heavy mineral occurrences based
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on stream sediment variables, we can get an interpolated image using the
kriged images of the stream sediments as predictors.

Stream sediment sampIes were collected at 33992 sites in the study area.
At some of these sites heavy mineral sampIes were collected also. Two
different laboratories were used for the chemical analysis of heavy minerals.
For calibration reasons only the sample s analyzed by one laboratory were
used in constructing the modeIs. There are 3094 sampIes from this laboratory,
i.e. there are 3094 observation s of stream sediment and heavy mineral data
at the same locations.

The CART methodology was chosen because it is a new and powerful
technique used with success in other research areas. It handles different types
of data in an elegant and unified way and interactions between predictors
are automatically taken into account. Furthermore results have shown a
good agreement between the structural images obtained using the CART
trees and geological information from the area.

(a) CART trees for cassiterite
The distribution of cassiterite concentration is extremely skewed so an
indicator I(c.ss> 0'05) for cassiterite concentration greater than 0·05 g/lO l
rat her than the original concentrations was used in the analysis. The model
should then predict whether the cassiterite concentration is detectable or
not based on geochemical variables eoncentrations. Using the CART meth
odology, the tree shown in Figure 13.5 was selected.

In the construetion proeess of the tree, 1/3 of the observations (994 cases,
the test set) were used in the cross-validation of the model and for choosing

Figure 13.5 CART tree for cassiterite.
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a right-sized tree. Running these cases down the tree yielded the classification
matrix shown in Table 13.1.

As a standard feature CART makes a variable importance ranking based
on a measure of predictive value of the individual predictors (here the stream
sediment variates). The variable importance list for predicting cassiterite is
given in Table 13.2.

Now, having constructed the tree we are able to run new cases down the
tree and predict cassiterite occurrence. Also associated with each terminal
node in the tree is an estimate of the probability of cassiterite occurrence,
given that a case ends up at that particular node. These estimates can be
obtained from running the test set down the tree.

To construct a structural image of the probability of cassiterite occurrence
we run each pixel down the tree using the kriged images of stream sediment
varia bles. The image for cassiterite is shown in the plate. Also shown in the
plate is a structural image of the probability of gold occurrence. Different
gray tones in these images correspond to different terminal nodes in the
classifkation trees.

Table 13.1 Test set classification matrix for cassiterite.

Predicted class
O

lTotal

True O

768 (79%)204 (21 %)972 (100%)
Class I

6 (27%)16 (73%)22 (100%)

Total

774 (78%)220 (22%)994 (100%)

Table 13.2 CART variable importance ranking for predicting cassiterite.

Variable Relative importance

Ti

Mg
Nb
Al

Zn
Cu
Ni
Cr
V
Ba
Co
y
Fe
As

Mn
V
Sb
Pb
Sn
Be

100
52
46

36
35

35

33
31
31

28

28

26
26

25
25
24

21
21
12
12
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13.3 Conclusion

A method for handling nonstationarity problems due to calibration problems
for spatial data has been presented. The method uses a propagating weighted
transformation scheme. It is simple and works well in practice.

AIso we have shown an application of a combination of classical geostatist
icai interpolation and CART, a modem tree-structured classification method.
We have found an interesting connection between the tree-structure of the
classifier and the geological structures in the images. This ean be seen in the
structural image produced by running the pixels of the interpolated images
down the classification tree.

One should be careful in interpreting the classification trees. Spatial corre
lation ean be responsible for the correlation between the heavy minerals re
sponse and the stream sediment sample values. This means that a classifica
tion tree cannot be extrapolated to another area outside the images analyzed.
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Figure 13.6 Cr before mapsheet pattern removal.

Figure 13.7 Cr after mapsheet pattern removal.
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Figure 13.8 Kriged Cr.

Figure 13.9 Kriging variance for Cr.
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Figure 13.10 CART probability map for gold.

Figure 13.11 CART probability map for cassiterite.


