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Summary. In this paper we describe a neural network used to make a simple
contextual classifier using a two layer feed-forward network. The best number of
hidden units is chosen by training a network with too many hidden units. We then
prune the network using Optimal Brain Damage (OBD). The pruned networks
have a better generalisation error because they only have the weights that reflect
the structure of the data and not the noise. We study the possibility of using a
Network Information Criterion (NIC) to decide when to stop pruning. \Vhen we
use NIC we ean estimate the test error of a network without using an independent
validation set.

As a case study we use a four band Landsat-2 Multispectral Scanner (MSS) im­
age from southern Greenland. To classify a pixel in the non-contextual case we use
the four variables from the MSS bands only. In the simple contextual case we aug­
ment the feature vector with the four mean values of the MSS bands from the four
nearest neighbours. We notice an increase in the number of correct classified pixels
when using the contextual classifier. AIso, the application of the simple contextual
classifier gives a small overall increase in the posterior probability.

1. Introduction

In this paper we study the use of neural networks for classification of remote
sensing images. When classifying remote sensing data it is important to use
eontextual information because the data often have a lot of noise.

When working with neural networks it is important to find the correet
network size. We study the use of pruning weights in the network. Thereby
we ean train a network that is too big, prune some of the connections and
then choose the network that is optimal. We investigate the use of a Network
Information Criterion to find the optimal network.

In section 2 we describe the 2-layered network architecture that we use
and in seetion 3 we discuss the optimisation method. In section 4 we discuss
Optimal Brain D amage , the method that we use to remove weights from
the network. Section 5 deals with a Network Information Criterion that can

be used to test which of the many networks we train is best. In section 6
we discuss the contextual classification and section 7 is devoted to a case

study where we apply our methods to an image taken with the Landsat-2
Multispectral Scanner (MSS).
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2. Network Architecture

We use a 2-layer feed forward network. In the hidden layer we use hyperbolie
tangent as aetivation funetion. The weight from input i to hidden unit j is
denoted as Wji. We include a bias by setting Xo = 1. So a hidden unit is
deseribed by the equations

, Xo = 1 (2.1)

(2.2)

(2.3)

In the output layer we use soft-max as aetivation function (ak is found
by weighting the output from the hidden layer Zj, like (2.1))

exp(ak)yk=----­
2:k' exp(ak')

We use the eross-entropy as energy funetion

1 N c n

E= N LLt~ln(~~)
n=l k=l k

(2.4)

where N is the number of training samples, C is the number of classes and ti::

is the target value for observation n in class k.
By ehoosing soft-max as aetivation funetion in the output layer and eross­

entropy as energy function we have ensured that the network is optimal for
classification and we ean interpret the output as probabilities [1].

3. Network Training

We use a Broyden-Fleteher-Goldfarb-Shanno (BFGS) quasi Newton method
[4] for optimising the network. In a Newton method you make aseeond order
estimation of the energy funetion and make a step towards the minimum

(3.1)

The Cl: parameter is used to make sure that the energy is deereasing. It is
found by line minimisation. When using aseeond order method you have to
ealculate the seeond derivative of the energy funetion (the Hessian matrix).
This gives two problems. The Hessian might not be positive definit e and
is eomputationally expensive to estimate. Instead we use a quasi Newton
method. This is mueh faster and we ean ensure that the estimate of the
Hessian will always be positive definite. We update the estimate ofthe Hessian
after eaeh step. The updating equation for the estimate of the Hessian (GT)
is
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GT+l = GT + ppT __ (G_Tv_)_(_V_T_G_T_)+ (VTGTV)UUT
pTv vTGTv

. We have defined these veetors:

(3.2)

(3.5)

(3.3)

(3.4)v = gT+l _ gT

P GTVu=------
pTv vTGTv

Where w are the weights and g is the gradient. When we have estimated the
Hessian we make a Newton step (3.1) in the deseent direetion of the energy
funetion. In the line minimisation we make a parabolie fit [4] to the energy
funetion. The algorithm is initiated by setting GO to the identity matrix, so
the first step is a gradient deseent step.

4. Optimal Brain Damage

When we start training the network we have a fully eonneeted network. But
it is not eertain that all the eonnections are needed for the classifieation. By
pruning the network we inerease the generalisation of the network beeause
we reduee the number of parameters in the model without inereasing the
energy function signifieantly. The idea in Optimal Brain Damage (OBD) [3]
is to estimate the inerease in the energy function when we remove one weight
from the network (the salieney for that weight). We then remove the weights
with the lowest salieneies and retrain the network. We eontinue this proeess
until the energy function starts growing dramatieally.

OBD ean be used to deeide how many hidden units will be needed in the
network. We ean train a network that we know is too big and then we ean
prune it. During the pruning some of the hidden units will be removed. We
ean also use it to deeide if any of the features we use in the network are
unimportant. If a feature does not eontribute to the classifieation all weights
for that feature will be removed from the network.

When we estimate the inerease in energy we make a Taylor series for the
ehange in the energy. We assume that we are in a loeal minimum so the
gradient is O. Instead of ealculating the full Hessian matrix we assume that
it is diagonal and we make a diagonal approximation to the Hessian

SE

(4.1)

When we ealculate the diagonal approximation to the Hessian we further
assume that off-diagonal elements have no influenee on the diagonal elements



(5.1)
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By making this assumption we ean reduee the eomputational time dramati­
eally.

5. Network Information Criterion

The Network Information Criterion (NIC) [5] estimates the test energy for a
neural network without using a test dataset. So when training and pruning a
neural network you do not need an independent validation dataset to select
the best network. When you ealculate the NIC you use your energy function
(2.4) and add a term for the eomplexity of the model

1
NIC = E(x, t, w) + Ntr(G(w)Q(W)-l)

where x is a matrix with all input data for the network and t is a matrix
with all the target values. We have defined

G(w) = V[Y'e(xn, tn, w)]

Q(w) = E[Y'Y'e(xn, tn, w)]

(5.2)

(5.3)

where e is the energy for one observation from the dataset and Y' means the
gradient.

Murata [5] argues that the modeis you compare with NIC should be hier­
arehieal, so that eaeh model is a sub-model of the other modeis. But Ripley
[6] proves that this is not neeessary. It is diseussed in [6] how you should
estimate (5.2) and (5.3). If NIC should work properly it requires that there
is a strong single loeal minimum. If this is not the case the eomplexity term
might ehange dramatieally depending on which loeal minimum you end up
in. Another assumption is that there is enough data in the training set.

6. Contextual Classifi.cation

We wish to use eontextual information in the classifieation. We could use the

features from all the neighbouring pixels. But that would make the number
of weights 5 times bigger in the input layer. Instead we assume in our model
that the pixel on the north side of the pixel has the same influenee on the
classifieation as the pixel on the east, south and west side. We ean do this by



(6.1)

... + WXN + WXE + WXs + WXw + ...

... + W(XN + XE + Xs + xw) + ...

Fig. 7.1. Bands 4 and 7 af the Landsat MSS data.

7. A Case Study

forcing the weights in the input layer to be equal for the features from the
neighbouring pixels.

But we can find a simple r approach if we look at equation (2.1). If we
force some of the weights to be equal we get
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From this we see that instead of forcing the network to have equal weights
we sum the features that have equal weights before we start training the
network.

In the case of four neighbours we get the Switzer-filter [7]except for a scal­
ing factor. In the Switzer-filter you take the mean value of the neighbouring
pixels

1
Y = 4(XN + XE + Xs + xw) (6.2)

So we can introduce contextual information to the network by using the
Switzer-filter. We thereby avoid a huge increase in network size.

As a case study we use a 512x512 pixel four band Landsat-2 Multispectral
Scanner (MSS) image from southern Greenland. In Figure 7.1 is shown two
of the bands of the image. We have five different training classes in the image
with a total of 43000 pixels. We split the dataset up so t of the pixels are
used for training and the last i are used for testing.

-------- - - - -
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We first study the NIC. In Figure 7.2 we have plotted the training- and
test energy and the NIC against the number of weights in the network during
one training and pruning session. We notice that the NIC is very unstable
when there are many weights in the network. This might be· because the
number of weights is high compared with the number of data samples. So we
have to be eareful when we use NIC partieularly when we have many weights
in the network. But for a smaller number of weights it seems to be useful.
When we prune the network we are able to remove half of the weights in
the network and as ean be seen from Table 7.1 we get a small increase in
the generalisation beeause the pruned networks perform better. We train ten
networks and prune them. We ehoose the network with the lowest NIC if the
NIC is stable.
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Fig. 7.2. The training and test energy and NIC during one training and pruning
session. The full line is the training error, the dashed line is the test error and the
dotted line is the NIC.

In Figure 7.3 we see the classified images. It is seen that in the image where
we use the contextual classifier we get a significant reduetion in the number
of single pixels that are classified into another class than their neighbouring
pixels. If we study Table 7.1 we see how many pixels are classified correctly
for each of the classifiers. The classification of all classes is improved when
we use the contextual classifier. When using the contextual classifier there is
an overall inerease in the probability whieh means that the network is more
eertain that it has made the eorreet classification.

We have compared our results with other methods. If we use linear or
quadratic discriminant analysis [6, 1] we get results that are not as good as
the non-eontextual neural network. If we use CART [2]we get results that are
comparable with neural networks. We have also compared our results with
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Fig. 7.3. The left image shows the classified image when we use the non-contextual
classifier. The right image shows the image classified using the contextual classifier.

Table 7.1. Percentage of pixels that are classified correctly in the test set with the
methods we have used.

Method Correctly classified
Linear discriminant analysis

78.5 %

Quadratic discriminant analysis
79.7 %

Non-contextual NN (not pruned)
81.6 %

Non-contextual NN (pruned)
81.8 %

Non-contextual CART
81.8 %

Non-contextual NN (pruned) and modus filtering
84.8 %

Contextual CART
85.1 %

Contextual NN (not pruned)
86.6 %

Contextual NN (pruned)
86.8 %

another simple eontextual method. For the image c1assified with the non­
eontextual c1assifier we have made a modus filtering of the c1assified image
with a 3x3 kernel. The modus filter eounts how many pixels belong to eaeh
c1assin the kernel and then assigns the most frequent c1assto the centre pixel.
The result is shown in Table 7.1. It is better than the non-eontextual c1assifier
but not as good as the c1assifier where we use the eontextual information as
features to the neural network.

8. Conclusion

We have studie d pruning of the network weights and we have eome to the
result that approximately half the weights ean be removed from the network
and this reduetion results in an inerease in generalisation error. The use
of simple eontextual information ean improve the c1assification significantly.
Also we get the best results if we use contextual information as input for the
neural networks instead of doing post-processing on the data.
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