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ABSTRACT

This paper describes the application of orthogonal transfor-
mations to detect the El Nifio/Southern Oscillation (ENSO)
built-up and other ocean related phenomena by detecting
the multivariate change in the monthly mean sea surface
temperature (SST) as given by the NOAA/NASA AVHRR
Oceans Pathfinder data. The transforms applied include can-
onical correlations analysis based multivariate alteration de-
tection (MAD) variates and maximum autocorrelation fac-
tors (MAFs). The results show that the large scale ocean
events associated with ENSO related changes are concen-
trated in the first MAFs of MADs.

1. INTRODUCTION

This paper deals with detection of non-trivial change in mul-
tivariate, bi-temporal data. The term “non-trivial change”
here means non-affine change between two points in time,
i.e., change due to for instance an additive shift in mean
level (offset) or a multiplicative shift in calibration of a mea-
suring device (gain) is not detected.

The method applied which is called multivariate alter-
ation detection (MAD) [9, 11, 12] is based on the estab-
lished multivariate statistical technique canonical correla-
tions analysis (CCA) [8] and post-processing by the maxi-
mum autocorrelation factors (MAF) transformation [16, 7].
Here, the method is applied to detect change in the 1996-
1997 AVHRR Oceans Pathfinder sea surface temperature
data. The method is reported with other case studies in
[9, 12, 10].

Analysis of multi-temporal oceanographic data is of-
ten performed by means of empirical orthogonal functions
(EOFs) as described in [14]. The analysis carried out here
can be considered as an extension to the usual EOF analysis.

This work was carried out in the GEOSONAR project funded by
the Danish Research Councils Earth Observation Programme. The
GEOSONA R homepage is http://manicoral .kms.dk/PK/geosonar.html.

2. METHODS

When analysing changes in panchromatic images taken at
different points in time it is customary to analyse the dif-
ference between two images, possibly after some normal-
isation. The idea is of course that areas with no or little
change have zero or low absolute values and areas with large
changes have large absolute values in the difference image.
If we have two multivariate images with variables at a given
location written as vectors (without loss of generality we
assume that E{ X} = E{Y'} = 0)

X=X ..X)"' ad Y=M...%" @
where £ is the number of spectral bands, then a simple change
detection transformation is

X-Y = [Xi—-Y .. Xy =Y. 2
If our image data have more than three channels it is diffi-
cult to visualise change in all channels simultaneously. To
overcome this problem and to concentrate information on
change, linear transformations of the image data that op-
timise some design criterion can be considered. A linear
transformation that will maximise a measure of change in
the simple multispectral difference image is one that max-
imises deviations from no change for instance the variance

Var{vy (X1 = Y1) + -+ (X = Vi) } = 3)
Var{v" (X - Y)}.

Avreas in the image data with high absolute values of v (X —
Y') are maximum change areas. A multiplication of vec-
tor v with a constant ¢ will multiply the variance with ¢2.
Therefore we must make a choice concerning ». A natu-
ral choice is to request that v is a unit vector, vTv = 1.
This amounts to finding principal components of the simple
difference images.

A more parameter rich measure of change that allows
different coefficients for X and Y and different numbers of



spectral bands in the two sets, p and ¢ respectively (p < q),
are linear combinations

a"X = aXi+-+a,X, 4)
V'Y = biYi+-+bY, (5)

and the difference between them a” X — b’ Y. This mea-
sure also accounts for situations where the spectral bands
are not the same but cover different spectral regions, for in-
stance if one set of data comes from Landsat MultiSpectral
Scanner (MSS) and the other set comes from Landsat The-
matic Mapper (TM) or from SPOT High Resolution Visi-
ble (HRV) which may be valuable in historical terrestrial
change studies. In this case one must be more cautious
when interpreting the multivariate difference as multivari-
ate change.

To find @ and b [5] uses principal components (PC) ana-
lysis on X and Y considered as one concatenated vector
variable. [6] applies PC analysis to simple difference im-
ages as described above. The approach suggested in [5] de-
fines a and b simultaneously but the method does not have
a clear design criterion. Also, bands are treated similarly
whether or not they come from different points in time. The
approach suggested in [6] depends on the scale at which the
individual variables are measured (for instance it depends
on gain settings of a measuring device). Also, it forces the
two sets of variables to have the same coefficients (with op-
posite sign), and it does not allow for the case where the
two sets of images have different numbers of channels. A
potentially better approach is to define a set of a and b si-
multaneously in the fashion described below. Again, let us
maximise the variance, this time Var{a”X — b"Y}. A
multiplication of a and b with a constant ¢ will multiply
the variance with ¢2. Therefore we must make choices con-
cerning a and b, and natural choices in this case are re-
questing unit variance of a” X and 7Y . The criterion
then is: maximise Var{a” X — "Y'} with Var{a” X} =
Var{b”Y'} = 1. With this choice we have

Var{aT X - 'Y} (6)
= Var{aTX} + Var{b"Y} — 2Cov{a" X,b" Y}
= 2(1—Corr{a”X,b"Y}).

We shall request that a” X and b”'Y are positively corre-
lated. Therefore, determining the difference between linear
combinations with maximum variance corresponds to deter-
mining linear combinations with minimum (non-negative)
correlation. Determination of linear combinations with ex-
treme correlations brings the theory of canonical correla-
tions analysis to mind.

2.1. Canonical CorrelationsAnalysis, CCA

Canonical correlations analysis investigates the relationship
between two groups of variables. It finds two sets of linear
combinations of the original variables, one for each group.

The first two linear combinations are the ones with the largest
correlation. This correlation is called the first canonical cor-
relation and the two linear combinations are called the first
canonical variates. The second two linear combinations are
the ones with the largest correlation subject to the condition
that they are orthogonal to the first canonical variates. This
correlation is called the second canonical correlation and
the two linear combinations are called the second canonical
variates. Higher order canonical correlations and canonical
variates are defined similarly.

If we denote the dispersion or covariance matrix of the
one set of variables (X) X1, the dispersion of the other set
of variables (Y) X2, the covariance between them X5,
and the canonical correlation p then we get

2 = 0S5y, Sna _ 'S, 315, o
aTzlla bTEQQb
or
212227212210 = p’Zua (8)
22121_1121211 = p2222b (9)

i.e., we find the desired projections for X by considering
the conjugate eigenvectors a4, . . ., a, corresponding to the
eigenvalues p? > --- > p2 > 0 of 21,3, By; with re-
spect to 31;. Similarly, we find the desired projections for
Y by considering the conjugate eigenvectors by, ..., b, of
Y01 2;11212 with respect to 3o, corresponding to the same
eigenvalues p?.

This technique was first described in [8] and a treatment
is given in most textbooks on multivariate statistics (good
references are [4, 2]).

[18] deals with (iterated) PC analysis of the same vari-
able at the two points in time and consider the second PC
as a (marginal) change detector for that variable. [18] also
introduces spatial measures such as inverse local variance
weighting in statistics calculation and Markov random field
modelling of the probability of change (vs. no change).

2.2. The MAD Transformation

In accordance with the above we define the multivariate al-
teration detection (MAD) transformation as

X I'x by I'x —bl'Y)T(10

y - [a, X -b,Y ... a; X —b; Y] (10)
where a; and b; are the defining coefficients from a standard
canonical correlations analysis. X and Y are vectors with
E{X} = E{Y} = 0. The dispersion matrix of the MAD
variates is

D{a"X -b'Y} = 2(I-R) (11)

where I is the pxp unit matrix and R is a pxp matrix con-
taining the sorted canonical correlations on the diagonal and
zeros off the diagonal.



The MAD transformation has the very important prop-
erty that if we consider linear combinations of two sets of
p respectively ¢ (p < g) variables that are positively cor-
related then the pth difference shows maximum variance
among such variables. The (p— j)th difference shows maxi-
mum variance subject to the constraint that this difference is
uncorrelated with the previous j ones. In this way we may
sequentially extract uncorrelated difference images where
each new image shows maximum difference (change) un-
der the constraint of being uncorrelated with the previous
ones. If p < ¢ then the projection of Y on the eigenvec-
tors corresponding to the eigenvalues 0 will be independent
of X. That part may be considered the extreme case of
multivariate change detection. As opposed to the principal
components of simple differences the MAD variates are in-
variant to affine transformations (including linear scaling),
which means that they are not sensitive to for example gain
settings of a measuring device, and to linear radiometric and
atmospheric correction schemes.

2.3. The MAF Transformation

To find maximum change areas with high spatial autocorre-
lation a MAF post-processing of the MAD variates is sug-
gested. The MAF transformation can be considered as a
spatial extension of PC analysis in which the new variates
maximise autocorrelation between neighbouring pixels rather
than variance (as with PCs). MAF analysis corresponds to
CCA between multivariate image data and the same image
data spatially shifted. Also the MAF transformation is in-
variant to affine transformations (including linear scaling).

3. DATA

The data used in the case study come from the NOAA/NASA
AVHRR Oceans Pathfinder SST dataset maintained and made
available by PO.DAAC at JPL, California, USA. NOAA
is the National Oceanographic and Atmospheric Adminis-
tration, NASA is the National Aeronautics and Space Ad-
ministration, AVHRR, the Advanced Very High Resolution
Radiometer, is a multispectral instrument on board a se-
ries of NOAA satellites, SST is sea surface temperature,
PO.DAAC is the Physical Oceanography Distributed Active
Archive Center, and JPL is the Jet Propulsion Laboratory.
More specifically, the data used are the global equal-angle
best SST monthly mean values of the daytime (ascending)
0.5 degree (54 km) data [13].

Based on radiative transfer theory the satellite data are
calibrated to temperatures that are nominally accurate to
0.3°C [3].

4. RESULTSAND DISCUSSION

For space constraint reasons neither the original monthly
mean SST for 1996 and 1997 nor the monthly mean SST

anomalies for 1996 and 1997 with the temporal mean sub-
tracted are shown. Fig. 1 shows the difference of monthly
mean SST for 1996 and 1997 (1997 minus 1996”) stretch-
ed linearly between —10.0 °C and 10.0°C.

The statistics calculations for the data transformations
are carried out only where all 24 months have valid data for
SST. Figs. 2 and 3 show the MADs and the MAF/MADs
stretched linearly between mean F3 standard deviations.
Here the 1996 data are considered as 12 variables (X in
Eq. 10) and the 1997 data are considered as 12 variables
(Y in Eqg. 10). Fig. 4 shows the correlations between the
the monthly mean SST for 1996 and 1997 and the MAF/-
MADs. Due to space limitations no other images or details
from the statistical analysis are shown.

Due to the great variation in mean temperature ranging
more than 30°C between the poles and the Equator more or
less no other variations in SST are visible—not even sea-
sonal or El Nifio Southern Oscillation (ENSO) related sig-
nals.

By considering the twelve 1996 monthly mean SST as
12 variables from one point in time and the twelve 1997
monthly mean SST as 12 variables from another point in
time, the analysis focuses on inter-annual changes in SST.
Consequently the annual signal which corresponds to the
largest variation SST is suppressed. By forming the 12
monthly averaged SST differences between 1997 and 1996,
as presented in Fig. 1, inter-annual variations become vis-
ible. Large scale changes related to the ENSO signal are
clearly seen, but also differences in the North Sea, Baltic
regions during June and July can be seen. Similarly, dif-
ferences in the Mediterranean Sea during September and
October, and along the west coast of the USA during June
through December are visible in the differences in Fig. 1.

In 1997 and 1998, one of the largest ENSO events on
record in the Pacific Ocean occurred, with the onset in mid-
1997 leading to a peak in early 1998 following the charac-
terisation in [15]. The onset is clearly seen in the simple
differences in Fig. 1 starting in May 1997 and increasing
throughout the rest of the year.

Fig. 2 shows the MADs of the 1996-1997 monthly AVHRR
mean SST. The largest variance captured in MAD 1 is found
in coastal areas, and also in the Mediterranean Sea, however
these structures have very limited spatial extend. In most of
the twelve MADs, structures related to the ENSO can be
found, but these are most dominant in MADs 9-12. The
correlations over time between the 1996-1997 SSTs and the
MADs (not shown) indicate relatively short period signals
for the first MADs, whereas long period structures being in-
creasingly trend-like are seen for MADs 9-12 which are the
MADs dominated by the ENSO event.

Upon transforming the MADs via MAF (Fig. 3) creating
change variables which have maximum autocorrelation be-
tween neighbouring pixels, change features of largest spa-
tial extend are isolated in MAF 1, and so forth in the higher
order MAFs. Whereas any physical interpretation is diffi-



cult

using the MADs, the MAFs of the MADs exhibit more

physical realism and more ease of interpretation. Features
of large spatial autocorrelation like the ENSO signal con-
centrate in the first MAFs as seen in Fig. 3. In the MADs

the
the

large scale increased surface temperatures in 1997 in
eastern part of the Pacific Ocean were found in MADs

9-12. Similarly, the correlations in MAF/MAD 1 between

the
site

1996-1997 SSTs in Fig. 4 are very high but with oppo-
signs for the two years indicating a shift or trend-like

structure for this MAF, se also [1]. One further finding in
MAF 1 is the apparent basin scale opposite SST signature to

the

jacent to 1996 and 1997 have not been studied it is difficult

ENSO event in the South Atlantic Ocean. As years ad-

to establish whether either 1996 or 1997 was anomalous.
However, recalling that seasonal upwelling along the coast
of Ghana and the Ivory Coast is most likely the result of re-
mote wind forcing and Kelvin wave propagation along the
Equator, it is likely that the EI Nifio mechanism may be as

imp

ortant to the Atlantic as it is to the Pacific [17].
Most other MAFs are seen to have structure in the Pa-

cific that ressembles the structure of the Intertropical Con-
vergence Zone and the South Pacific Convergence Zone,

and consequently being related to the ENSO dynamics. Sim-

ilarl
rent

y dynamics related to the Antarctic Circumpolar Cur-
are clearly seen in MAFs 2 and 3 and several higher

order MAFs. Here the correlations between the 1996 and
1997 (Fig. 4) are also changing on monthly scales indicat-
ing that the differences stem from dynamically active areas.

MAF 1 also contains some significant signals in the north-

ern-most parts of the North Atlantic Ocean. These struc-

ture
but

s should most likely be found in higher order MAFs,
appear in MAF 1 probably due to the spherical shape

of the Earth which means that a one degree longitude band
narrows with the cosine to the latitude, such that one degree
longitude corresponds to 110 km at the Equator, but only 50
km at 65 degrees decreasing towards the pole.

The NOAA/NASA AVHRR Oceans Pathfinder SST database
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Fig. 1. Simple differences of 1996-1997 AVHRR monthly mean SST (1997 minus 1996”)




Fig. 2. MADs of 1996-1997 AVHRR monthly mean SST




Fig. 3. MAF/MADs of 1996-1997 AVHRR monthly mean SST
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