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Manifold Valued Statistics

For almost all problems involving

non-linearity, (Riemannian) mani-

folds are useful modeling tools. But

the loss of vector space structure

means that the usual Euclidean

space statistical operations must be

redefined. For some operations

this is easy, e.g. kNN, which relies

solely on the metric structure. For

others, it is considerably harder.

Regression, SVM, and PCA has

been generalized to manifolds, but,

even for these operations, many

unsolved issues remain. One is how

to compute the result of the oper-

ations. Often, problems appears

as optimization problems involving

variations of geodesics. This work

considers such problems, how they

can be solved without linearizing

the manifold, and how the resulting

computations allow the computa-

tion of Principal Geodesic Analysis,

a generalization of PCA to mani-

folds.

Principal Geodesic Analysis, PGA,

finds geodesics subspaces of a

manifold which either maximizes

the variance of the projection of a

dataset to the subspaces or mini-

mizes the reconstruction errors. In

Euclidean space, we have
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using orthogonal projections. For

manifolds, this translates, in the

variance formulation of PGA, to
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Sv = Expµ(span {Vi−1, v})

which uses the manifold projection

πSv
(xj) of the data point xj to the

geodesic subspace Sv and mani-

folds distances by the metric d(·, ·).

Experiment: Human Poses

The pose of a human body can

be represented by spatial coordi-

nates of the end-effectors: joints

and end-points of bones. Since

the length of bones is constant, the

poses will reside on a (3k − b)-

dimensional implicitly represented

manifold M = F−1(0). Here

Fi(x) = ‖ei1 − ei2‖
2 − l2i ,

where ei1 and ei2 denote the coordi-

nates of the end-effectors and li the

constant length of the ith bone.

In [SLHN10], we perform linearized

and exact PGA and get differences

as follows:

Princ. comp.: 1 2 3 4

angle (◦): 5.30 2.19 1.82 1.21

approx. sq. res.: 2.43 1.17 0.43 0.10

exact sq. res.: 2.41 1.18 0.44 0.11

difference: 0.05 -0.01 -0.01 -0.01

difference (%): 0.5 -0.6 -2.3 -13.3

Furthermore, we can predict these

differences using indicators.

Camera output:

A recorded pose:

First principal component of eight

poses:

The human pose manifold is rela-

tively curved and the recorded data

show large variation. This gives no-

table differences between the two

methods. For other datasets (e.g.

bicycle chain shape manifolds), the

differences are neglible showing

that linearization is a good approx-

imation for these cases.

Exact PGA Algorithm

In [SLN10], we perform gradi-

ent descent or similar optimiza-

tion methods on the cost function

defining PGA. The hard part is dif-

ferentiating d(µ, πSv
(xj))

2, and, in

particular, the projection πSv
(xj),

which itself is an optimization

problem. Using the IVP’s for the

first and second derivative of the

exponential map, we get this gradi-

ent.

An iteration of exact PGA:

The computations are heavy, but

the indicators can determine if

the linearized algorithm (tangent

space PCA) is sufficient.

Differences in tagents space:
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Differences on manifold:

We see several interesting non-

Euclidean effects: the minimiz-

ing residual and maximizing vari-

ance formulations are not equiva-

lent, variance can decrease when

including more principal compo-

nents, the greedy definition of PGA

results in weak performance, etc.

Exponential Map, Jacobi Fields, and

Derivatives

Jacobi fields arises from the var-

ion of the initial velocity of

geodesics. Geodesics can be de-

scribed by ODE’s in which the ini-

tial velocity appear as initial val-

ues. By differentiating the initial

values, we get ODE’s generating Ja-

cobi fields, and second derivaties of

the exponential map. Theses ODE’s

are fundamental in computing ex-

act PGA.

Furthermore, Jacobi fields allow es-

timation of the sectional curvature

of the manifold by the equation

‖Jt‖ = t−
1

6
Kq0(σ)t

3 + O(t4)

Upper bounds for the injectivity ra-

dius, the minimum length of non-

minizing geodesics, can also be

computed using vanishing Jacobi

fields.

The presented research is joint work with François Lauze, Søren

Hauberg, and Mads Nielsen.
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