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Outline

* Imaging of epilepsy patients
* Fetal MR
* Image segmentation
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Surgical Planning for Epilepsy

« Epilepsy
— affects over 2.5 million Americans, approximately 1%
of population across the world.

— Annual health care cost of $12.5 billion per year in
USA.

— 75% of patients have their first seizure in childhood.

— 20% of patients become candidates for surgery after
a long period of partially effective medication that can
have debilitating educational and sociological side
effects.

— Hetereogeneous causes and consequences of
epilepsy in pediatric patients.
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Pediatric Epilepsy Surgical Planning

« Objective: Enable an early and effective
surgical intervention by accurate
identification and localization of seizure foci.

* Imaging of epilepsy:
— Structural : MRI, DTMRI.
— Metabolic/function: PET,SPECT,MRS,fMRI.

— Electrical imaging key to seizure focus
localization: EEG, MEG.
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Preoperative visualization

* Teenage qirl with refractory seizures
» Suspected cortical dysplasia

* Aim to detect and visualize:
— Region of dysplasia (MRI)
— Connected white matter (DT-MRI)
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Preoperative visualization

e

Corticospinal tract

Projections through the corpus
callosum.
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White matter near dysplasia
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Preoperative visualization

Language localization in 7 year old boy.
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Preoperative visualization

e ‘ FLAIR cortical dysplasia with MRI, DT
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PET and MRI fusion

Localization of PET hypoperfusion with MRI.
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Visualization of CT with intracranial strips and grids
allows precise determination of anatomical location of

electrodes that detected seizures during long-term
monitoring.
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Invasive Source Localization
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CT with strip/grid/depth electrodes
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CT and preop MRI fusion
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3D visualization of electrodes
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EEG/MEG Source Imaging
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EEG/MEG Source Reconstruction

Reconstruct the
Measure EEG and/or MEG. ¢ rrent distribution.

EEG/MEG inverse problem
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The source model

Microscopic current flow (~5%x10-> nAm)
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Equivalent Current Dipole (Primary current) (~50 nAm)
Size of Macroscopic Neural Activity

~30 mm?2 = 5.5%x5.5 mm?

parameters:

position :x,y, z
direction : 6, ¢
magnitude : u
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Bioelectromagnetic field simulation

Place a dipole Compute the EEG

Simulate
quasistatic

Maxwell
equations.

EEG forward problem

Computational Radiology Laboratory.
Slide 36



Bioelectromagnetic field simulation

Place a dipole Compute the MEG

Simulate
quasistatic

Maxwell
equations.

MEG forward problem
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The forward problem:
Volume conductor modeling

3 Shell Boundary Element (BE) Finite Element (FE)

Geometry  Conductivity Geometry Conductivity Geometry Conductivity
Skin unrealistic unreal. Skin realistic realistic Skin realistic realistic
Skull unreal. unreal. Skull realistic unrealistic Skull realistic realistic
CSF unreal. unreal. CSF CSF realistic realistic
GM unreal. unreal. GM unrealistic GM realistic realistic

(1 isotropic value)

WM unreal. unreal. WM WM realistic realistic
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EEG Source Imaging Solution

Patient-Specific Segmentation §
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Registration
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Imaging Enables Guidance in Surgery

» Patient specific modeling with:
— Advanced image acquisition.

— Automated image analysis.
« Segmentation.
* Registration.
— Increased computational capacity and

efficient algorithms to simulate
electromagnetic propagation.

» Expanding accuracy and robustness.
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MRI Volumetric Reconstruction
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How is fetal imaging performed?

» Ultrasonography
* Magnetic Resonance Imaging (MRI)

* Biometry based on 2D measurements




Fetal Brain Volumetry

» Fetal brain volumetry is crucial for the
quantitative evaluation of fetal development.
« Butitis limited by
— dependency on motion-free scans,
— tedious manual segmentation, and

— spatial inaccuracy due to thick-slice acquisitions.

* We present an image processing pipeline to
address these limitations. This involves fetal

brain MRI volumetric reconstruction and
segmentation.



What is current fetal MRI practice?

» Single-shot fast spin echo (SSFSE) MRI for
fast snapshot imaging in the presence of
intermittent fetal motion.
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What do the images look like?

Multiple ssFSE images are acquired in fetal orthogonal
planes (axial, coronal, sagittal).




What do the images look like?

Multiple ssFSE images are acquired in fetal orthogonal
planes (axial, coronal, sagittal).
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What do the images look like?

Multiple ssFSE images are acquired in fetal orthogonal
planes (axial, coronal, sagittal).




What do the images look like?

* Due to motion and thick slice acquisitions the
out-of-plane views do not reflect the 3D
anatomy and coherent tissue boundaries.

Axial view Sagittal view Coronal view



Limitations and objective

* Thick slice acquisitions are necessary to maintain
high signal-to-noise ratio.

* Inter-slice motion artifacts are typically observed.

« 3D fetal brain MR is desired for improved evaluation
and automated segmentation and analysis.




How to reconstruct 3D fetal MRI?

A first simple idea: define the high-resolution
3D image space, resample the SSFSE
scans, and average the resampled scans.
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Axial view Coronal view Sagittal view

Not effective! Motion correction 1s needed.



Correction for Motion

Slice-to-volume registration

— 3D Rigid registration to an estimated
reconstructed volume.

— The first estimation is obtained by averaging the
SSFSE scans.




Scattered data interpolation (SDI)

« After motion correction, the voxels from
slices will be scattered data in the 3D
volumetric image space.

X
Regular grid interpolation
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Scattered data interpolation (SDI)

» Scattered data interpolation is performed
using sample weighting through kernels.

[1] Rousseau et al. Acad. Radiol. 20006; [2] Jiang et al. IEEE Tran Med.
Imag. 2007



Limitations of SDI

« SDI result depends on the choice of the
iInterpolation kernel and the kernel size.

* Thick-slice voxels are heterogeneous and involve
signal averaging in the slice select direction, thus
they should not be approximated as points.

Imm x Imm x 4mm




Our approach: Slice acquisition model

Imaged object noise

K 2D slice \ / number of\shces

Y,=DBSM X+V, , k=1,..n

/ \ \ Motion (3D)

Down-sampling

Slice selection profile (3D)
PSF blur

T SOk‘ <As, /2

[4] Gholipour & Warfield MICCAI'09; [5] Gholipour et al. IEEE Tran Med. Imag. 2010



Image reconstruction

* Find the high-resolution image (X)

— Maximum likelihood estimation to minimize an
error function between the reconstructed
volume and the acquired slices.

X = ArgMin
X

Y d(Y,.DBSM,X)

k=1

= ArgMin S0 B,SM, X, [ + AJCK];
k=1




Super-resolution reconstruction

* [terations of slice-to-volume registration,
scattered data interpolation, and maximum
likelihood super-resolution reconstruction.

Estimated
Slices sllce-Fo-vo!ume > S_cattered qata q Super-resolupon volume TC yes >
registration interpolation reconstruction

Reconstructed
? no volume

Reference volume

Super-resolution reconstruction through iterative maximum
likelihood error minimization:

- _
" =X"+a Y M;S;BD; (zk -DB,SM, g”) -ACTCx’

| k=1




Data and experiments

o 22 Fetal MRI cases

—1.5-T TwinSpeed Signa system (GE Healthcare)
with an 8-channel phased-array cardiac coill.

— without maternal sedation or breath-hold.

— Multiple SSFSE MRI with in-plane resolution of
0.7 to 0.8 mm and slice thickness of 3 or 4 mm.

— The gestational age (GA) range of 19.28 to
38.43 weeks (mean 27.892, stdev 6.8706).



Results — 19 week fetus

Axial
SSFSE
4 mm
slices

3D
recon.
Volume
0.8 mm

axial plane coronal plane sagittal plane



Axial
SSFSE
6 mm
slices

Results — 36 week fetus

axial plane

coronal plane

sagittal plane



Results — 2mm slice acquisitions

SagittalS
SESE
2 mm
slices

3D
recon.
Volume
0.8 mm




Supervised automated segmentation

intracranial volume  tissue types parenchyma brain volume



Fetal brain MRI| segmentation

» Evaluation of brain segmentation
— Comparison to manual segmentation for 5

randomly chosen cases

— Dice overlap measure, and
— specificity and sensitivity measures

C3

C6

C11

C13

C16

Dice index

0.9330

0.9206

0.9480

0.9575

0.9700

Specificity

0.9977

0.9948

0.9984

0.9953

0.9978

Sensitivity

0.9498

0.9444

0.9205

0.9594

0.9943




Intracranial and brain volumetry

2'7.86 week fetus 31.43 week fetus

Intracranial volume 210.13 mL Intracranial volume 308.57 mL
Brain volume 160.13 mL Brain volume 202.52mL



Automated brain volumetry

» Comparison of Brain Volumes (BV) (in
milliliters) using our volume reconstruction
and supervised automated segmentation
algorithm vs. using manual segmentation

on high-resolution volumetric images.

C3 C6 C11 C13 C16
BV (estimated) | 79.01 [39.14 416.96 |137.96 |325.50
BV (manual) |[77.17 [38.45 [416.00 [133.49 |313.17
BV (% error) (2.33% [1.76 % |0.23% [3.25% |3.79 %




Brain Volume (mL)

Brain volumetry Analysis

* Brain volume vs. gestational age (22 fetuses)
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Brain volumetry analysis

» The coefficient of determination (r?)
goodness-of-fit measures for linear,

uadratic, and exponential model fittings to

the volumetry data
— sug%ests that a quadratic model best describes

the BV, ICV, and PV changes vs. GA.
r- (ICV) [r? (BV) r (PV)
Linear fit 0.912 0.925 0.937
Quadratic fit 0.916 0.940 0.949
Exponential fit |0.810 0.850 0.829




3D segmentation and visualization

— |,

31.71 week normal fetus 37.14 week fetus with
Normal shape and morphology of the Craniosynostosis
ventricles is appropriately visualized

in 3D Abnormal head shape and the

enlarged and abnormal morphology
of ventricles in 3D



3D segmentation and visualization

« Surface model rendering of
a fetus (33.28 week)

— Body

— Face

— Cerebrospinal fluid
— Orbits

— Airways

— Lungs




Conclusion

We demonstrated an image processing pipeline
that resolves the limitations of current fetal brain
volumetry techniques by avoiding:

— dependence on motion-free scans

— tedious manual segmentation, and
— thick slice interpolation.

The algorithm utilizes motion correction, volumetric
reconstruction, and segmentation techniques.

The reconstructed volumetric images reflect
anatomic details and coherent structural
boundaries in 3D, which are not apparent in the
original SSFSE scans.
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MRI of Newborn Infants
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Motivation

* Increasing prevalence of surviving very low
birth weight premature infants

* Very low birth weight infants have high rates of
adverse neurodevelopmental outcomes:

— 10-15% develop cerebral palsy
— 50% develop significant neurobehavioral problems
Including
* Lowered IQ
- ADHD

* Anxiety disorders
» Learning difficulties

« Considerable educational burden with
significant economic and social implications.
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Newborn Brain: Structural MRI

Healthy SPGR
fullterm  (T1w) of

infant. infant with  §i
PVL. [\

CSE

(T2w) of

infant M

with PVL. . & B
Fullterm )
infant with
delayed | o
development. Skin shown in pink.
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Studying Brain Development

e

10 weeks Term equivalent
premature age

9 monthM

A sequence of MRI of the same infant: shortly after premature birth, at
term equivalent age, and at nine months. The sequence of growth of the
brain and development of myelination in the white matter can be best
followed by quantitative 3D assessment.

Computational Radiology Laboratory.
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MRI predicts later outcomes

« Quantitative analysis of tissue volume
from MRI at term equivalent age has
been shown to predict:

— Impaired visual function in VLBW infants at
age 2 (Shah et al. 20006)

— Object working memory deficits at age 2
(Woodward et al. 2005)

— PDI and MDI at age 2 (Thompson et al.
2008)
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Tissue Class Training Data

* Our previous work has utilized interactive

selection of per-subject training data:

— Time consuming,

— Subject to intra-rater and inter-rater variability,

— Enabled identification of subtle contrast between
different tissue types.

* We sought to develop an algorithm that avoids
per-subject interaction, while maintaining
excellent performance.

— Weisenfeld and Warfield, Neurolmage, 2009.
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Template to Target Registration

target template 1  template 2 template 3 template 4
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Tissue prototypes manually identified

target template 1  template 2 template 3 template 4

tissue class samples selected once on the original template images.
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Tissue prototypes transferred

target template 1  template 2 template 3 template 4

and then projected through the affine transform...
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Tissue prototypes transferred

target template 1  template 2 template 3 template 4

and then projected through the b-spline non-linear transform...
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Tissue prototypes transferred

target template 1  template 2 template 3 template 4

Different prototype configurations are projected onto the target subject
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Multiple Configurations on the Target

target config 1 config 2 config 3 config 4

The different prototype configurations represent the physical variation
among the template subjects. By adding template subjects, and
choosing prototypes by hand only once, a wider range of physical
variation can be accommodated. Once a template subject is added, it
Is re-used without further human intervention.

The image intensity data used is only from the individual under study
(the target).
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Multiple Configurations on the Target

target config 1 config 2 config 3 config 4

Each configuration of sample coordinates leads to a different
candidate segmentation of the target subject.

STAPLE is used to combined candidate segmentations.
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Configurations are Edited

estimated truth config 1 config 2 config 3 config 4

The previous iteration’s STAPLE output (top left) is used to identify
and eliminate prototypes which are inconsistent with the data.
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Adaptation of training data
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Evolution of feature space of training data through the
automated projection and editing process.

Tissue class boundaries in feature space are identified.
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Evaluation of training data

train

M A

M|[095+0.02 0.93+0.02

test

Posterior probability of correct
classification with manually and
automatically generated training data.

A [095+£0.01 0.97 £0.01
test

Subject M A’ A A A AFINAL
1 0.98 0.66 0.77 0.86 0.91 0.93
2 0.96 0.65 0.77 0.87 0.92 0.94
3 0.96 0.66 0.79 0.89 0.94 0.95
4 0.96 0.65 0.78 0.87 0.92 0.94
5 0.94 0.66 0.78 0.87 0.93 0.95
6 0.94 0.67 0.80 0.90 0.94 0.95
7 0.94 0.66 0.79 0.89 0.94 0.96
8 0.94 0.70 0.82 0.91 0.96 0.97
9 0.94 0.67 0.79 0.89 0.93 0.95
10 0.96 0.69 0.80 0.89 0.94 0.96
mean+sd [ 0.95+0.02 | 0.67 £0.02 079+0.02 0.88+0.02 0.93+001 095001

Improved
consistency of
GM, UWM and
CSF over
iterations of
editing of training
data.

Computational Radiology Laboratory.
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Segmentation comparison

Subject | CGM CSF myelin UMWM SCGM
I 0.95 0.82 0.63 0.95 0.92
2 0.89 0.94 0.80 0.89 0.86
3 0.89 0.93 0.71 0.91 0.89
4 0.84 0.95 0.70 0.85 0.81
5 0.92 0.93 0.77 0.93 0.88
6 0.89 0.98 0.77 0.93 0.85
7 0.93 0.96 0.70 0.96 0.89
8 0.91 0.97 0.79 0.93 0.87
9 0.87 0.94 0.66 0.91 0.80
10 0.94 0.80 0.67 0.95 0.88
meanzsd [ 0.90+£0.03 | 092 +0.06 | 0.72+0.06 | 092+ 0.03 [ 0.86 £0.04

Dice coefficient comparing interactive to automated tissue

classification.

Computational Radiology Laboratory.
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Segmentation comparison

Subject CGM CSF myelin UMWM SCGM

l experts | 0.86+£0.06 | 089+0.05|081+0.11 [ 0.85+0.05| 0.86 £0.08
automatic | 0.75 0.96 0.86 0.79 0.96

2 experts | 0.87 £0.06 | 093 +£0.02 | 096+0.05 [ 0.87 £0.06 | 0.90 £0.12
automatic | 0.77 0.98 0.96 0.72 0.74

3 experts | 0.90+004 [ 091 £0.02 |077+0.06 [ 0.88+0.03 | 091 £0.03
automatic | 0.77 0.97 0.81 0.78 0.95

4 expert |0.87 008|091 +0.02 |081+0.06|0.87+0.04 | 094 +0.04
automatic | 0.84 0.95 0.69 0.70 0.94

Comparison of predictive values of tissue
segmentations obtained by interactive drawing and by

automated tissue classification.

Computational Radiology Laboratory.
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Newborn brain segmentation
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Segmentation Algorithm

« Weisenfeld and Warfield, Neurolmage 2009

« Automatic estimation of training data is
comparable to interactive selection by an
expert.

« Automated segmentation compares well to
hand-drawn segmentations.

« Software for pediatric MRI| analysis, CRKIt,
supported by NIH.

Computational Radiology Laboratory.
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Bottom Line: Improved Patient Care

* Provide new capabilities that transcend
human limitations in intervention

 Increase consistency and quality of
Interventional treatments
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