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Objective

Accelerated and improved computational
algorithms forming 3D volumes to assess
neural ultrastructure in large transmission
electron microscopy (TEM) images.

Image Registration: finding the transformation that
aligns images into one frame of reference.
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Mapping of objects and their
connections.

Inherently multi-scale
processes. Small circuits
extend through volumes of
many cubics of um

Slow! Terabyte-scale volumes

Inter-expert and intra-expert
variability
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Reconstruction of neural circuitry from serial

sections of TEM

* Tissue sample is slices into ultrathin sections with a
diamond knife and then each slice is imaged by an
electron beam passing through the tissue.

» Building volumes requires to precisely mosaic
distorted image tiles and register distorted mosaics.
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Smith, S. J. (2007). “Circuit reconstruction tools todai”. Curr Oiin Neurobiol.




Main Types of EM Imaging Techniques

ssTEM SBFSEM
Differences Serial section transmission | Serial block face scanning
Anderson et al., 2009. Denk and Horstmann, 2004

cut away and discarded
after imaging
surface imaging.

L : “backscattered electrons
Image acquisition transparent’ samples detected by scanning

remaining block.

Cutting from tissue

blocks cut prior to imaging

Alignment -Alignment needed +No alignment
+in-section 1-5 nm, high | -in-section 20-30 nm per
Resolution SNR plx_el
Slice thickness ~50 nm Thickness 25 nm

*SSET/ EMT Similar resolution,low SNR
artifacts due to limited acquisition angles

Mischenko, J. Neuroscience Methods 2009



Main Types of EM Imaging Techniques

Fixation,
embedding,
en bloc staining
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Serial section electron tomography (SSET)

Reconstruction

Thick sectioning
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Current Opinion in Neurcbiology

A schematic diagram of the steps involved in the acquisition of tissue volumes using SSTEM, SBFSEM and SSET. The main differences between
these techniques are how sections are cut from embedded tissue blocks, the process of image acquisition and the subsequent alignment of
images. Sections are cut prior to imaging in SSTEM and SSET, but after imaging in SBFSEM. Transmission electron microscopy (TEM) and
high-voltage transmission electron microscopy (HVTEM) are imaging techniques that require ‘transparent’ samples; scanning electron microscopy

(SEM), however, is a surface imaging technique. Image stacks collected in the SBFSEM need no further alignment prior to reconstruction. See text
for a more detailed description of each technique.

K.L. Briggman and W. Denk, Curr. Opinion in Neurobiology 2006



 TEM which provides resolutions on the order of a
nanometer, is the primary tool for resolving the 3D
network structure and connectivity of neurons (e.qg.
required resolution is ~2 nm for synapses ).

* Mapping neural circuits can advance
understanding of brain structure and function.

* Insight into abnormal brain connectivity and
disorders such as autism and epilepsy.

TEM acquisition is progressing efficiently, the
computational tools are the bottleneck!




Challenges

« High resolution and large size of the images.

» Large amount of details for relevant features
— Tracing vulnerable structures across large volumes.
— Neuronal diversity is high.
« Deformation induced by both the acquisition process
and the intrinsic deformation of slices
— physically separate objects.
— distortions during handling.
— distortions by electron beam exposure.
— Artifact: folds, burns, tears.

Prevents using classical approaches developed

for conventional imaging modalities.




Artifacts
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Folds and Splits Film: holes, coming in,
excess support film
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Background: Registration Algorithms

 Can be classified into:

— Voxel intensities statistics: utilize an information
theoretic objective function and an optimizer that finds a
local optimum of the objective function.

— Feature-based: identify features to be aligned and an
optimal transformation that brings them into alignment.

 Algorithms for EM images:

— Ourselin, S. et al. (IVC 2000): block matching to estimate a
global rigid transformation.

— Anderson et al. (Plos Biology 2009): A complete
framework mosaicking, reconstruction and visualization
(Fourier shift property and landmark based approach).

— Dauguet, J., et al. (MICCAI 2007): finite support properties
of the cubic B-splines, where the initial estimate for the
affine registration was based Ourselin et al.



Schematic Outline of Alignment Process

1) Patch extraction from both images and projection
based on JL dimension reduction.

2) Search for correspondences:

features from both images are compared based on the
Euclidean distance criterion.

2a) Brute force search strategy

2b) Approximate NN

Input: TEM tiles or 2D Mosaic Images

Correspondence matrix

:>=

3) Estimate the alignment transform by EM-ICP-NC

Transform applied to
a) mosaic camera frames into a large 2D image, and
b) construct a 3D volume of neural ultrastructure

Mosaic Images

Volume reconstruction




Optimality of Template Matching

Template matching by correlation is the optimal
linear operation for detecting a deterministic
signal in the presence of additive white noise.

7

Brunelli, R and T. Poggio. 1997. Pattern Recognition.

: s(x)=¢(x-x,)+A(x
ConSIder a Slgnal . . template at x,, with .
filter response for signal detection: Tl Rl

z(x)= s(x)*h(x)= ¢ (x—x, )*h(x)+)t(x)*h(x)= Z, (x)+ z, (x)
2, (o)

E 2 (assumed to be wide-sense stationary with zero average)
25 Yo

SNR definition: filter response at x, to the variance of the noise

SNR=

Based on the Schwartz inequality the filter that
maximizes the SNR is H(w)=a®(w)e”

the optimal filter in the spatial domaig h(x)=ap(x, -~ x)

template rotated by 180° and
translated to x,

Correlation with the template leads to

iwx,

optimal detection as it maximizes the SNR.



Template matching by Correlation

* Normalized Correlation (NC) similarity measure is
extensively used. NC(p g )P )

- Jvar(p, )var(p,)

* NC is invariant to linear intensity transformation
and for small corresponding image patches in two
successive slices, the intensities are locally
related by some linear intensity transformation.

NC is equivalent to a squared Euclidean distance
meets the requirements of the JL Lemma.




Equivalence of NC and Euclidean distance

when the patches are set to be zero mean and unit length.

rately, one can try to detect it with an operator called a templare. This template is, in
effect, a subimage that looks just like the image of the object. A similarity measure
is computed which reflects how well the image data match the template for each
possible template location. The point of maximal match can be selected as the loca-
tion of the feature. Figure 3.3 shows an industrial image and a relevant template.

Correlation

One standard similarity measure between a function f(x) and a template 7(x) is
the Euclidean distance 4 (v) squared, given by

d(y)? =Y [f(x) = t(x = y)]? (3.1)

M N
By Y wemean », 3, ,forsome M, Nwhich define the size of the template ex-
X X==M y=-N
tent. If the image at point y is an exact match, then d(y) = 0; otherwise, d(y) > 0.

Expanding the expression for d?, we can see that

d*(y) =X 2R x)e(x — y)HA(x = y)|] (3.2)

Notice that 3, r*(x — y) is a constant term and can be neglected. When ¥ f2(x) is

X X
approximately constant it too can be discounted, leaving what is called the cross
correlation between fand ¢

Ry(y) =Y f(x)e(x—y) (3.3)

X

This is maximized when the portion of the image **under’ ¢ is identical to «.

Ballard D.H. and Brown C.M., (1982)



Contribution

1. A novel efficient search strategy that enabled us to
dramatically accelerate feature based registration.

2. A novel algorithm (EM-ICP-NC) for robust
estimation of alignment transformation once the
exact/probabilistic correspondence is determined.

3. Evaluation of randomized projection for
dimensionality reduction in the registration.

4. Results demonstrating alignment of TEM images
of neural ultrastructure with increased accuracy
and efficiency.



* Il Methods
— Dimensionality Reduction



Johnson-Lindenstrauss (JL) Lemma

Any set of n points in d-dimensional
Euclidean space can be embedded into
dimension k-o(oz?/. ] is logarithmic in n
and independent of d, while maintaining
pairwise distances with a distortion of at
most e.

Johnson, W.B. Lindenstrauss, J. (1984) "Extensions of Lipschitz mappings
into a Hilbert space”, Contemp Math,26: 189-206.



Notations for Dimensionality reduction

* n - the size of the data set

 d - the dimension of Euclidean space
* k - the reduced dimension

» £ - the distortion rate

* R - random matrix projecting the points
from RY to RX.



Achlioptas (2003)

Let P be a set of n point in R?, represented as an nx d matrix 4.
4+2p

Then given €, >0 let k, = logn

e’ )2-€*/2
For integer k = k,, let R be a d xk random matrix with R (i, Jj ) =75

Where the independent random variable r; are from either one of the followingtwo distributions:

with probability 1/6

1 with probability 1/2

—1 with probability 1/2

—1 with probability 1/6

1 : :
Let E=—= AR and let / : R” — R" map the i" row of 4 to thei™ row of E

Jk

Then with probability of at least 1-»™" , forall u,vEP:




Some Intuition/ lllustrative Example

[FIG1] Two examples showing projections of two close (circles) and two distant (squares)
points onto the printed page.

Two points that are close together on the sphere are also
close together when the sphere is projected onto the 2D

page. This is true no matter how we rotate the sphere.

From: Slaney and Casey 2008



Random Projections in Practice

RY :n points Rk : n points

in in

d dimensions k dimensions

 Naive JL solution: dense random matrix
—k <d,
— O(dk) per data feature

* Open Questions:
— How to selection the dimension k?

— Faster projection schemes O(d) using sparse
matrices E. Liberty 2009



* |l Methods

— Nearest Neighbor Search



Search For Correspondences

Moving Scene (n) Fixed Model (n)

Similarity
Matrix

n

26




Nearest Neighbor (NN) Search

Given a set P of data points in R9, and query point q:
NN: returns a point p in P minimizing ||p-q]|.

Brute force Search: Calculate the distance from g to every p
and choose the point with minimal distance.

27



Curse of dimensionality

* Current solutions for solving the NN problem
require either space or query time exponential
in dimensionality d.

* When dealing with a large dimensions, in practice
the solutions often provide little improvement over
the naive algorithm.

* The failure of these search algorithms which are
efficient in low-dimensional spaces to succeed in
high-dimensions has been called the curse of
dimensionality : Exponential dependence of
the algorithm on the dimension of the input.

Andoni and Indyk 2006



Approximate Nearest Neighbor (ANN)

* ¢c-ANN.: given a ¢>0, returns a point peP s.t ||p-q]|
Is at most ¢=(1 + €) factor larger from the distance
of the nearest point p € P from q.

Query time: Fast! O(dn °©))
space O(dn™r))where p(c) = 1/c2 + O(1).

° (1+¢)r
* Recently several probabilistic algorithms have been

proposed for ANN search. The algorithms yield sublinear
complexity in the size of the data.

« This approach results in efficient algorithms which are
based on data structures such as locality sensitive

hashing (LSH) and tree based search.
Indyk, P. Motwani, R. (1998)

29



* |l Methods

— Transformation Estimation (EM-ICP-NC)



EM-ICP-NC Notation

* S.. points of the scene patch set ser’

* m;: points of the model patch set mer’
° Ng, N,. # of points respectively

* T: transformation (scene—model)

* A:ER™™ correspondence matrix (for each
scene point indication the matching point).

P.J. Besl and N.D. McKay, IEEE PAMI, 14(2):239-256, 1992.
S. Granger and X. Pennec, Miccai 2001 eccv 2002



Probability Distribution of Correspondences

* The probability of s, to correspond to m, can
be modeled by a Gaussian distribution.

* In the case of homogeneous isotropic
Gaussian noise, where o represents the
noise in the measurement s..

[rsonf

20"
\ /

p(si m ,T) = X




EM-ICP-NC

* The idea is to maximize the log-likelihood
of the data distribution

log p(S,A |M,T)

* The correspondences are unknown hidden
random variables

A E Rns xXn,,



EM-ICP framework

start Iniitzlizaiion (T)
EESIEP RN NICTETICENAY

Compute the probability for A, given
the current estimate of T parameters.

iterate

M-Stz Maoziremgiari2a (1)
Estimate T using the probability of A

[Dempster et al. 1977]



EM-ICP

* Represent the correspondence estimation as an
indicator variable A, =11iff s, matches m

A, =0 otherwise.

* The joint probability of s, and A, is the product
p(s;sA; =1IM,T) = 7 p(s; Im,,T)

* The joint likelihood of all the S,A

p(S,AIM,T) = Hij(nijp(si Im, ,T))Azj



* The prior is based on the NC patch measure defined,
which encodes knowledge on the structure of the objects.

T, = NC(ppr)
" Y NC(p,.py)

. Tis fixed and the probability of the matches A are
estimated.

p(A 1S,M,T) = p(S,AIM,T) _ 1—[ Jt,.jp(si Im, ,T)

pSIM,T) &, Eﬂikp(si Im,,T)
k
2
[T, —m|
. nij eXp - 2
« Compute the expectation: 20
E(Aii) - 2
Eﬂ. exp —HT.Si -my|
2 20




* The expected value of the complete data
log-likelihood is maximized to find the new

estimate of T:
T = argmax, (E[log p(S,AIM,T)| S,M,T<r-1>])
* We optimize:

E -lOg(l_Lj (J'L'ljp(Si I mj ,T))Aij ) | S,M,T(f—l)_

= EZE (Al.j)log(nij p(si Im, ,T))




» Updated transform T is given by:

T =argmaXT22Aij : HT'Si —ij2
i

20"



 |Il Experiments and Results



Volume Reconstruction

Our aim is to find the transformation T
aligning the moving scene |g with the fixed
model image |,

e 7~ O

000

By composing pairwise 2D alignments of

consecutive slices while taking as reference
the middle of the stack.



Schematic Outline of Alignment Process

1) Patch extraction from both images and projection
based on JL dimension reduction.

2) Search for correspondences:

features from both images are compared based on the
Euclidean distance criterion.

2a) Brute force search strategy

2b) Approximate NN

Input: TEM tiles or 2D Mosaic Images

Correspondence matrix

:>=

3) Estimate the alignment transform by EM-ICP-NC

Transform applied to
a) mosaic camera frames into a large 2D image, and
b) construct a 3D volume of neural ultrastructure

Mosaic Images

Volume reconstruction




TEMCA 1.0: Series of 160 TEM images of the lateral
geniculate nucleus of a ferret.

— Each image is about 10, 000 x 10, 000 pixels
— Pixel resolution of 3nm x 3nm x 60nm.

— Blendmont was used to reconstruct the large field of
view image from the 5 x 5 mosaics of smaller images

coming from the camera.

TEMCA 1.5 images of mouse visual cortex from
experiment “ms8 6L". The data consists of 5x5 arrays of
tiles from 40 serial sections.

— The pixel size is 3.75nm x 3.75nm and sections are
~45nm thick, 29x53 array spans out to about a
450x850 micron field of view.

— Each image is presented as separate tiles of
5200x5200 pixels;
Blendmont Utility http://bio3d.colorado.edu/imod/




1.Effectiveness of Template Matching

Patch Successive Or'iginal

 Correlation maps for patches in original and
successive slice were superimposed on images

* The features are a sharp local maxima of the NC.



2. Impact of projection to dimension k

06 T A S T PR A N (N O A | B 5 10 15 20 25 30 40 50 60 70 80 100 200 300 500

5 10 15 20 25 30 40 50 60 70 80 90 100 200 300 400 500 k Dimension
k value
(a) Distance Distortion ver. k. (b) Accuracy of Transformation

estimation error vers. k,
Decrease in distortion as the
projected dimension k increases. Decreases as k increases.



3. Transformation Estimation

Dimension Scale of Scale of
1000x1000 | 5000x5000
K=30 with JL 3.61+2.34 3.1+1.65
d=10000 3.52+2.66 3.02+1.30
without JL

Comparing the automatic and manual transformations.
High accuracy is obtained with and without projection.



Alignment Visualization

(a) Fixed (b) Moving before (c) After Alignment (d) checkerboard
composite.

46
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4. Projection by PCA

Finds the direction u s.t. projecting n points
iIn d onto u gives the largest variance.

Formally: n patches of dimension d. {X,- };

Normalized in advance to have zero mean
and unit variance.

. , : 1
Covariance matrix |5=7 2% )= 2
u is the eigenvector of Su=\u.

The low dimension space is based on the
first k eigenvectors ( maximal eigenvalues)




Projection

Schemes

Randomized
[JL 1984, Achlioptas, Liberty,Ailon, Singer 2008]

PCA

[Turk Pentland 1991, Kirby Sirovich 1990]

Projection s.t the Euclidean distance

between features in the low
dimensionality projection ~ Euclidean

distance between the original features.

Projection on an Eigen-subspace. The
Eigen-values correspond to variance
and have no guarantees regarding local
properties of the resulting projection.

Data oblivious

Data aware

Multiply by the same pre-
computed random matrix.

The need to have the same basis
function reduces the overall efficiency.
An adaptive basis function adds
communication cost due to the need
to communicate the basis functions.



Comparison to Projection by PCA

D

| ."m‘l
(a)IIIusTr'a'rlon of Elgenvecfor' images
=1-5 (upper) 6-9, 20 (lower) fr‘om left to right.

I, Tl

(b) Transformation error vs. k
when projecting by PCA.

imension



5. Computational complexity

 T~100 : #images in the volume.

« n=MxM=10"": Size of the images in pixels.

« d = NxN =10*: typical patch/feature dimension .
Brute force Search d: O(Tn*nd)

Brute force Search k: O(Tn*nlogn)

Approximate NN : O(Tn*dn?2°)

Search time per query in the Accelerated New approach
by LSH O(dn'c"2) where for c=2 becomes O(dn'4)

—>Saving O(n34) ~O(107-9)
Potentially more than a million times faster !!!



Computational Complexity

[ Search per n queries Naive Naive + JL Naive + JL + kd-trees | ANN-LSH
Theoretical O(n?d) O(n2k) O(nkn!~— %) O(ndnl/1)
Practical n = 42336 283400sec = 3.3days 3614sec = 60min 420sec = Tmin —
Practical n = 160000 4.4 x 10%sec = 51days! | 53506sec = 802min | 6300sec = 105min —

[ ——

80/110

700

=

8.5

Odyssey cluster, FAS Research

Computing Group.




* IV Summary



IV Summary

* A novel efficient search strategy that dramatically
accelerates feature based registration.

— speedup (~1000-fold) allows to carry out an exhaustive search
for correspondences, in contrast with truncated local searches.

* A novel algorithm for robust estimation of an alignment
transformation.

* Results are shown of TEM images of neural
ultrastructure with increased accuracy and efficiency.

 Algorithm extensions and evaluation of randomized
projection for dimensionality reduction.

— Comparison of dimension reduction techniques, evaluation of
dimensionality reduction that can be sustained while maintaining
accuracy, an evaluation of the impact on distance distortion.
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