15.10.2009

TU

Grazm

The current State of Automated
Debugging

Outline

Motivation
Debugging techniques
— Slicing-based debugging

— Model-based debugging
— Spectrum-based debugging
— Mutation-based debugging

* Comparison

Conclusion

15.10.2009

MOTIVATION

Why debugging?

* Programs comprise bugs! Always! Yes, always!
* Testing & formal verifications might reduce
the number of post-release bugs but there are
limited resources in practice!
— Not enough testing!
— No complete formal verification!

Example: binary search

1: public static int binarySearch(int[] a, int key)
2: 1int low = 0;

3: int high = a.length - 1;

4.

5: while (low <= high) {

6: int mid = (low + high) / 2;

VE: int midval = a[mid];

8:

9: if (midval < key)

10: low = mid + 1;

11: else if (midval > key)

12¢ high = mid - 1;

13: else

14: return mid; // key found
15: }

16: return -(low + 1); // key not found.
17: }

Throws ArrayIndexOutOfBoundsException

Bug ID: 5045582
Votes 0
Synopsis (coll) binarySearch() fails for size larger than 1<<30
Category java:classes_util
Reported Against tiger-beta
Release Fixed mustang(b83)
State 10-Fix Delivered, Verified, bug
Priority: 2-High
Related Bugs 6412541, 6437371, 5050278 , 4306897
Submit Date 11-MAY-2004
Description
FULL PRODUCT VERSION :
java version "1.5.0-beta"

Java(T™) 2 Runtime Environment, Standard Edition (build 1.5.@-beta-b32c)
Java HotSpot(TM) Client W (build 1.5.0-beta-b32c, mixed mode)

ADDITIONAL OS VERSION INFORMATION :
Linux freeway 2.4.21-4-686 #1 Sat Aug 2 23:27:25 EST 2003 1686 GNU/Linux

A DESCRIPTION OF THE PROBLEM :
java.util.Arrays.binarySearch() will throw an ArrayIndexOutOfBoundsException if the array
is large. This is caused by overflow in the calculation:
int mid = (low + high) >> 1;
The correct calculation uses unsigned shift:
int mid = (low + high) >>> 1;
There are similar problems in Collections, and TreeMap also includes the faulty calculation

int mid = (lo + hi) / 2;

There may be others.

15.10.2009

Automated debugging — Why?

* It is a nice academic discipline!

* There are practical considerations!

— Novices start programming / Tutoring systems for
programming courses

— Software Maintenance

— Online during programming (like a grammar or
spell checker)

— Self-healing programs

But...

* Program size increasing
* Computational requirements

* One solution (bug candidate) might be not
identifiable

* Multiple test cases
* Multiple bugs

15.10.2009

What is required?

Program (source code)

1. public Data {

2. public int min;
3 public int max;

4 public int result;

5. public Data (int[] input) {
6. inti=1;

7 min = input[0];

8 max = input[0];

9. while (i < input.length) {
10. if (input[i] < min) {

11. min = input[i];}

12. if (input[i] > max) {
13. max = input[i]; }
14. i=i+1;}

15. result =min + max; } }

Test case(s)

TC Expected
output

A input=[1]

B input=[1,2]

C input=
[2,1,3,0]

D input=
[0,1,2,3]

E input=[2,1]

result=2
min=1
max=1
result=3
min=1
max=2
result=3
min=0
max=3
result=3
min=0
max=3
result=3
min=1
max=2

Fault detection first!

1. public Data {

2 public int min;

3 public int max;

4 public int result;

5. public Data (int[] input) {
6 inti=2;

7 min = input[0];

8 max = input[0];

9. while (i < input.length) {
10. if (input[i] < min) {

11. min = input[i];}

12. if (input[i] > max) {
13. max = input[i]; }
14. i=i+1;}

15. result =min + max; } }

TC Computed
output

A input=[1]

B input=[1,2]

C input=
[2,1,3,0]

D input=
[0,1,2,3]

E input=[2,1]

result=2
min=1
max=1
result=2
min=1
max=1
result=3
min=0
max=3
result=3
min=0
max=3
result=4
min=2
max=2

15.10.2009

Fault localization and repair
afterwards!

* But how?

— Manually
— Automated

Characteristics of debugging
techniques
Granularity (expressions, statements,
methods,..)
Kind of failure (wrong values, exceptions)
Handling multiple faults or only single faults
Requires one test case or many of them

Fault localization only or with repair
capabilities

15.10.2009

DEBUGGING TECHNIQUES - SLICING

What is a slice?

* Asliceis a part of a program that behaves in the same

way like the original program for a given set of
variables at a certain location in the program. (Weiser,
1982)

Static slicing vs. dynamic slicing

Literature:

— Mark Weiser, Programmers Use Slices when Debugging,
Communication of the ACM, 25(7), 1982.

— Frank Tip, A Survey of Program Slicing Techniques, Journal
of Programming Languages, 3(3), 1995.
— Richard A. DeMillo and Hsin Pan and Eugene H. Spafford,

Critical Slicing for Software Fault Localization, International
Symposium on Software Testing and Analysis (ISSTA), 1996.

15.10.2009

15.10.2009

Dynamic slicing

* Based on the execution trace of a program
enriched with:

— Data dependences: A statement i depends on a
statement j if there is a variable x defined in j that
isusedini.

— Control dependences: A statement i is control

dependent on a test statement j (if, while,..) if the
execution of j causes the execution of i.

Example

* Test case B:

— input=[1,2], min=1,
max=2, result=3

6. inti=2;

7. min = input[0];

8. max = input[0];

9. while (i < input.length) {
15. result =min + max; } }

Example (cont.)

inti=2;

min = input[0];

: Data
max = input[0]; dependences

while(i<input.length)

result = min+max;

Algorithm

* Slicing criterion (x,n,tc)
— Variable x
— Location/line number n
— Test case tc

* “Classical” dynamic slicing algorithm:
— Select node where x is defined the last time before
executing line n. This node is part of the slice.

— Traverse the graph backwards using the directed
edges starting from that node. All nodes that are
reachable are part of the slice.

15.10.2009

15.10.2009

But there is a problem...

inti=2;

min = input[0]; _

Slice for
max = input[0]; b variable result
does not
while(i<input.length) comprise the
real fault!!

result = min+max; b

Solution

* Consider also slices for test statements where
the body comprise a statement defining a
relevant variable, which has not been
executed using the given test case.

10

Slicing with relevant variables

inti=2;

min = input[0]; b

Slice for
max = input[0]; b variable result
considering
while(i<input.length)b relevant
variables

result = min+max; b

Using slicing for debugging

e Algorithm:

1.

2.

For all failing test cases and all variables where
their stored computed value is contradicting the
expected value compute a dynamic slice.

Combine all dynamic slices.

* But what means “combine”?

— Intersection

— Union

15.10.2009

11

© o N o

15.

Example (cont)

Slice for result:

6,7,8,9,10
* Slice for max:
inti=2; 6,8,9
min = input[0];
max = input[0];)
while (i < input.length) { * Intersection:
6,8,9
* Union:
6,7,8,9,10

result =min + max; } }

Remarks on slicing

Intersection computes smaller results than
union.

The intersection of slices can be empty (in
cases of multiple faults)

Slices can be computed fast
Debugging restricted to statements
Uses failing test cases only

15.10.2009

12

DEBUGGING TECHNIQUES -
MODEL-BASED

Basic idea behind model-based
debugging

Oracle
Specification

l (Coanents) l

. Discrepancies
Execution P Expected

results \,/ behavior

Program .
g Find causes

(Test case(s))

15.10.2009

13

The model

* Represent a program using constraints or logic

» Use this representation for identifying the root

cause

* Most important:

— Introduce a predicate AB / = AB stating that a
statement or expression is faulty / correct
respectively.

Program Test case(s)
1.R=D/ 2; e D=2, A=n, C=2n
2.A=R*R*PI; ,

3.C =R * PI;

15.10.2009

14

Assume Line 1 to be faulty (AB(1))

{D=2}

l. R=—Db—-F2—
{R=2}

<1§<2. A =R * R * PI;
{A=4PI} but {A=PI}

3.C =R * PI;
{C=2PI}

INCONSISTENT!!

Assume Line 2 to be faulty (AB(2))

{D=2}
1. R=D/ 2;
{R=1}

2. A—=—R—* R DI
{A=PI1}

3.C =R * PI;
{C=PI} but {C=2PI}

INCONSISTENT!!

15.10.2009

15

15.10.2009

Assume Line 3 to be faulty (AB(3))

{D=2}
1. R=D/ 2;

2.A =R * R * PI; CONSISTENT
and {A=PI}

3. =R * pI.
{C=2PI}

Diagnosis / root causes

* A diagnosis is a set of assumptions that
statements / expressions fail that is
CONSISTENT with the given test case(s).

* Simple algorithm:

— Test all subset of the set of program statements
for consistency.

16

Model extraction

* Program = Loop-free representation = Static
single assignment form (SSA form) =
Constraint representation

* For statements add —AB predicates

* Example:
—6.0 1=2;
— —AB(6) = i_1=2

* For more details see the presentation of
Nica et al.

What happens in case of our running

example?
* Test case B:

6. inti_1=2; — input=[1,2], min=1,
7. min_1 = input[0]; max=2, result=3
8. max_1 = input[0];

cond = (i < input.length);
9. if (cond) { * Diagnoses:

----- } — Statement 8

min_n=¢(cond,min_i,min_1);

— Statement 15

— or Statement 6 and
assuming cond to
evaluate to true instead
of false.

max_n=¢(cond,max_j,max_1);

15. result_1 =min_n + max_n; } }

15.10.2009

17

Literature

Cristinel Mateis, Markus Stumptner, Dominik Wieland, and Franz Wotawa,
Model-Based Debugging of Java Programs, Proc. Intl. Workshop on
Automated and Algorithmic Debugging (AADEBUG), Munich, Germany,
2000.

Wolfgang Mayer, Markus Stumptner, Dominik Wieland, and Franz Wotawa,
Can Al help to improve debugging substantially? Debugging experiences
with value-based models, Proc. European Conference on Artificial
Intelligence (ECAI), Lyon, France, 2002.

Wolfgang Mayer. Static and Hybrid Analysis in Model-based Debugging.
PhD thesis, School of Computer and Information Science, University of
South Australia, Adelaide, Australia, July 2007.

Wolfgang Mayer and Markus Stumptner. Evaluating Models for Model-
Based Debugging. In 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), pages 128-137, L'Aquila,
Italy, September 2008. IEEE Computer Society Press.

Remarks on model-based debugging

Uses all information available for debugging
High computational requirements
Debugging not restricted to statements

Uses failing test cases (positive test cases can
be integrated under assumptions)

15.10.2009

18

DEBUGGING TECHNIQUES -
SPECTRUM-BASED

Basic idea

Consider program runs for fault localization

A statement is less likely to be a diagnosis
candidate if it is executed in passing test cases

(only)

A statement is very likely to be faulty if it is
executed in failing test cases (only)

“Tarantula”

— James A. Jones, Mary Jean Harrold, John Stasko,
Visualization of Test Information to Assist Fault
Localization, Proceedings of the 24th International
Conference on Software Engineering, 2002.

15.10.2009

19

Execution traces for each test case

a8 c D [E]
int i=2; 1 1
min = input[0];
max = input[0];
while(i<input.length) {

if (input[i]<min) {
min = input[i]; }
if (input[i]>max) {
max=input[i]; }
i=i+1;}
result = min + max;
ERROR VECTOR

O B O O O O O F P KL B
B ~ O O O O O R R R B
O Fr P P P P P PP
O P P P P O O R R R R
P~ O O O O O Fr Kk

Computing the rank
* Ochiai coefficient (R. Abreu et al. 2007):

So(j) all(J)

i \/(all(]) + am(])) (all(J) + alO(j))

a,(i) = Hi‘xty =phe= q}‘

* R. Abreu, P. Zoeteweij, and A.J. van Gemund, On the
accuracy of spectrum-based fault localization, Testing:
Academia and Industry Conference (TAIC PART), 2007.

15.10.2009

20

Execution traces with coefficients

int i=2; 1 1 1 0.632
min = input[0]; 1 1 1 1 1 0.632
max = input[0]; 1 1 1 1 1 0.632
while(i<input.length) { 1 1 1 1 1 0.632
if (input[i]l<min) { 0 0 1 0 00
min = inputli]; } 0 0 1 0 00
if (input[i]>max) { 0 0 1 1 00
max=input[i]; } 0 0 1 1 00
izi+1;} 0 0 1 1 00
result = min + max; 1 1 1 1 1 0.632
ERROR VECTOR 0 1 0 O 1

Remarks on spectrum-based
debugging

Computation fast and easy

Provides good results in case of well
structured programs

Not always better than slicing
— E.g. initialization procedures,...

Diagnosis at the statement level

Uses positive and negative test cases

15.10.2009

21

15.10.2009

DEBUGGING TECHNIQUES -
MUTATION-BASED

Basic idea

» Use principles of genetics / genetic
programming for debugging

* Operators
— Mutation operators (swap, delete, insert, change)
— Re-combination / cross over

* Fitness function
— Number of passing / failing test cases

22

Mutations — Change op.

6. inti=2: 6. inti= 1;
7. min = input[0]; ;- min = I.nputt[[(())]];
8. max = input[0]; : max = input{®l;
9. while (i < input.length) { 3 Wh"le {' < mprut.ler.\gth) {
10. i (inputli] < min) { o F(inputli] < ”;'[f‘])}{
11. min = input[i];}) min = inputiif;
12. if (input[i] > max) { 12. if (|nput[|]. g ma.x) {
13. max = input[i]; } 13. max =}|nput[|], }
P 14. i=i+1;
14. i=i+1;} ;
15. result =min + max; } } 15. result =min + max; } }
6. inti=1;
7. min = input[0];
8. max = input[0]; crossover
9. while (i < input.length) {
10. if (input[i] < min) {
11. min = input[i];}
12. if (input[i] > max) {
13. max = input[0]; } 6 intiz1:
14. P=itl) 7. min = input[0];
15. result =min + max; } } 3 max = input[0];
9. while (i < input.length) {
6 inti=2; 10. if (input[i] < min) {
7 min = input[0]; 11. min = inputl[i];}
3. max = input[0]; 12. if (input[i] > max) {
9. while (i < input.length) { 13. max = input(i]; }
10. i (input[i] < min) { 14. =i+l
11. min = input[il;} 15. result =min + max; } }
12. if (input[i] > max) {
13. max = input[i]; }
14. i=i+1;}
15. result =min + max; } }

15.10.2009

23

Fithess function

* Guide search for mutant that passes all test
cases

* Select only mutants that are better than the
one computes so far wrt. the fitness function

* Possible fitness functions
— Number of passing test cases for a mutant
fitness(P) = Ht‘t € NegTC U PosTC A pass(P ,t)}‘

— Weighted sum, e.g.
fitness(P)= w,, * {t‘t € PosTC A pass(P,t)H + W, " Hl‘t € NegTC A pass(P,t)}

Algorithm (sketch)

1. LetMbe{P,;}
2. Minimize the set M wrt. the fitness function.
3. Let M’ be the empty set.

4. Forall Pin M do:
a) if Pisasolution (or optimal wrt. the fitness function),
return P as result.
b) Otherwise, add all MUTATIONS(P) do M’ if the fitness
function provides a better value than for P.
c) Select some P’ from M and add CROSSOVER(P,P’) to
M.
5. Let M be M’ and go to 2.

15.10.2009

24

Results

* Weimer et al. 2009 presented empirical results
at ICSE using genetic programming (using a
more sophisticated algorithm)

— Programs varied from 22 to 21,553 LOC
— Diagnosis time from 149 to 533 seconds
— Success rate from 5 to 100 %

Remarks — Mutation-based debugging

* Fault localization and repair!

* Uses positive and negative test cases

* Granularity: Statement and Expressions
* High computational requirements

* Focusing using most probable statements (using
spectrum-based methods,..)

e Literature:

— W. Weimer, TV. Nguyen, C. Le Goues, S. Forrest,
Automatically finding Patches Using Genetic
Programming, Intl. Conference on Software
Engineering (ICSE), 2009.

15.10.2009

25

COMPARISON

Summary of methods

Model-based Spectrum- Mutation-
based based

Granularity Stmnts Stmnts/Expr Stmnts/Module Stmnts/Expr
Single/Multiple Both Both Both Both

Faults

Computational Low High Low High

costs

Type of fault

#test cases >=1 >=1 >>1 >>1
Localization/ Localization Localization / Localization Repair
Repair (Repair)

15.10.2009

26

15.10.2009

Some results

* Taken from W. Mayer and M. Stumptner,
Evaluating Models for Model-Based Debugging,
Automated Software Engineering (ASE), 2008

* Only average values from results obtained using 9
different programs

* Model-based debugging (VBM, AIM) requires
from 3 to 377 seconds (avg. 28 for VBM and 185

for AIM)
|LoC | Tests | sSlice | DSlice | Exec | VBM | AIM__

5544 17.78 0412 0576 0.532 0.686 0.866

Comparison

* Every method has advantages and
disadvantages

* Methods with high higher computational
requirements deliver better diagnosis results

* Integration of methods to improve the overall
capabilities while retaining a low
computational profile required

27

Slicing — Model-based

Previous work proved that slicing can be
integrated into model-based reasoning

Slices = Conflicts (a slice comprise those
statements that lead to an inconsistency)

Better results than using slicing alone (when

considering the union of slices). The results are
similar when using the intersection operator.

Literature:

— Franz Wotawa, On the Relationship between Model-
based Debugging and Program Slicing, Artificial
Intelligence, 135(1-2), 2002.

Spectrum-based — Model-based

Consider execution traces as conflicts and use
the coefficients of spectrum-based debugging
for computing a likelihood value for the
computed diagnosis.

See:

Rui Abreu, Peter Zoeteweij and Arjan J.C. van
Gemund, Localizing Software Faults Simultane
ously, 9th International Conference on Quality
Software (QSIC), Jeju, Korea, 2009

15.10.2009

28

Spectrum-based — Mutation-based

e Use information that some statements are
more likely (spectrum-based)

* Only these statements are considered for
mutation

* To some extend introduced in W. Weimer, T.V.
Nguyen, C. Le Goues, S. Forrest, Automatically
finding Patches Using Genetic Programming,
Intl. Conference on Software Engineering
(ICSE), 2009

CONCLUSION

15.10.2009

29

Conclusion

Focus on debugging for experienced
programmers (during implementation or
maintenance)

There is no best / most accurate / optimal
debugging method

Results are encouraging but improvements are
still necessary

Integration into IDEs is still missing

Remarks

* There are other methods for debugging
— Tutoring systems
— Checking (of syntactical rules)
— Delta Debugging

* More knowledge lead to better results (formal
specifications,...)

15.10.2009

30

15.10.2009

Open research questions

e Comparison of methods still missing

* Integration of methods (model-based and
mutation-based debugging)

* Handling of object-oriented languages

* Quality of obtained results should be
improved (e.g. less candidates)

* How to obtain lower computational
requirements (while not increasing the
number of diagnosis candidates)

Open research questions (cont.)

* Combining testing, i.e., test case generation,
and debugging

— How to obtain a test case that distinguishes
candidates?

* Abstraction and debugging (partially solved,
i.e., initial work available)

* Integration of verification, testing and
debugging

31

15.10.2009

32

