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Motivation 

Goal: To give an overview of how manifolds and manifold 

learning are used in human motion analysis. 

Outline of this lecture: 

• 3D human motion analysis 101 

• Manifolds in human motion analysis 

• 2 - 3 concrete examples will be given 



3D Human motion analysis 

• Def.: Estimation of 3D pose and motion of an articulated 

model of the human body from visual data – a.k.a. 

motion capture. 

• Marker-based motion capture (MoCap):  

– Outcome: Tracking markers on joints in 3D giving joint positions. 

– Markers: Acoustic, inertial, LED, magnetic, reflective, etc. 

– Cameras or active sensors. 

• Marker-less motion capture (MoCap): 

– Outcome: 3D joint positions or triangulated surfaces and relation 

to video sequence. 

– Multi-view (several cameras / views) 

– Monocular (single camera / view) 

– Camera / view types: Optical camera, stereo pair, time-of-flight 

cameras, etc.  



3D Marker based motion capture 

[http://mocap.cs.cmu.edu/] 



3D Marker-less motion capture (Upper body) 

[Hauberg et al, 2009] 



Why do we want to do human motion analysis? 

• Human computer interaction: Non-invasive interface 

technology 

• Computer animation: Entertainment (movies and 
games), education, visualization 

• Surveillance: Suspicious behavior recognition, 

movement patterns 

• Physiotherapeutic analysis: Sports performance 

enhancement, patient treatment enhancement 

• Biomechanical modeling 



Human body model 

• The human body is commonly modeled as an articulated 

collection of rigid limbs connected with joints. 

• Common representation:  

– Vector                          of joint angles together  

with some representation of global position and 

orientation.  

– Geometric shapes for modeling limb extend  

(boxes, ellipsoids). 

• Other representations: 

– Joint positions 

– End-effector positions 

– Surface models 

– … 

[Hauberg et al, 2009] 

y = 1,…, D[ ]
T



Human body model constraints 

• Natural physical constraints: 

– Body limitations, e.g. joint angle limits, limb dimensions (volume, 

length, etc.), … 

– Non-penetrability of limbs 

– Angular velocity and acceleration limits 

• Constraints can be modeled as either hard or soft 

constraints. 



Manifolds in human motion analysis 

• The manifold representation is a natural choice because: 

– Human motion is sparsely distributed in pose space with low 

intrinsic dimensionality. This is especially true for activity specific 

motion, such as walking. 

– Human motion is generally continuous and smooth – joint angles 
does not change instantaneously in large jumps (governed by 

Newton laws). Hence we would like dimensionality reduction 

which respect this (locality preservation). 

– Constraints leads to boundaries and maybe to holes in 

manifolds. 

• Added benefits: Dimensionality reduction 

– Necessary to make robust estimates of model parameters from 

small data sets. 

– Will make most tracking algorithms more feasible. 



Manifolds in human motion analysis 



Manifolds in human motion analysis 



Motion in pose space 

• Motion is modeled as temporal curves in pose space 

yt = 1(t),…, D (t)[ ]
T

    ,      xt = x1(t),…,xd (t)[ ]
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Manifolds in human motion analysis 

Embedded space x E Embedding space y H Observation space o O

F : E H T :H O

Goal: Estimate poses and motion from observations. Unkowns: y, x 

In general we need to learn parameters of the mappings F and T. 

E



Tracking of human motion (Bayesian framework) 

Apply tracking algorithms to sequentially estimate the pose. 

• Key ingredients of a sequential Bayesian framework: 
– Observation model:  

– Prior on poses: 

– Prior on embedded space: 

– Dynamical model: 

• Estimation: 

– Sequential stochastic filtering are commonly used – e.g. Kalman 

and particle filtering. Sometimes deterministic optimization is 

also possible. 

– Example: 1st order Markov chain example of filtering on manifold:  

pO (ot | yt )
pH (yt )
pE (xt )
pH (yt | y1:t 1)  or  pE (xt | x1:t 1)

p(xt |o1:t ) p(ot |F(xt ))p(xt | xt 1)p(xt 1 |o1:t 1)dxt 1



Pose and motion prior models 

• Priors on pose: Which poses are probable? 

– Activity specific pose models: Walking, running, golfing, jumping, 

etc. Examples: [Urtasun et al, 2005b; Sminchisescu et al, 2004]. 

– Constraints: Joint angle limits, non-penetrability of limbs, etc. 

• Priors on motion: What types of motion are probable? 

– Activity specific motion models: Walking, running, golfing, 

jumping, etc. Examples: [Urtasun et al, 2005a, 2006]. 

– Markov chain models (e.g. 1st and 2nd order models, HMM, etc.) 

– General stochastic processes 

– Constraints: Angular velocity and acceleration limits. 

• Priors on plausible human poses and motion are 

especially important for monocular 3D tracking in order 

to handle occlusion, depth ambiguity, and noisy 
observations. 



Motion and pose prior: PCA [Urtasun et al, 2005a] 

• Prior model for golf swings:  

Learn a joint model on motion and poses from motion 

capture data using PCA. Use the prior to track golf 
swings in 3D. 

• Training set:  

– 10 motion capture golf swing samples (from CMU data set). 

– Time warp samples to meet 4 key postures and sample with 

N=200 time steps. Use normalized time in [0,1]. 

[Urtasun et al, 2005a] 



Motion and pose prior: PCA [Urtasun et al, 2005a] 

• Model: 

– D=72 angles (+ global 3D position and 3D orientation). 

– Angular motion vector, N*D=14400 dim.: 
    row vector of joint angles at normalized time 

– Motion model:  

d=4 principle components        of the training set. 

      denotes the mean of the training set. 

Embedded coordinates  
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Motion and pose prior: PCA [Urtasun et al, 2005a] 

• Estimation of motion:  

– Sequential least squares minimization of PCA coefficients, global 

position and orientation, and normalized times over a sliding 

window of n frames. 

– Objective function include observation model and global motion 
smoothing terms. 

– Linear global motion model. 



Motion and pose prior: PCA Results 

Full swing 

[Urtasun et al, 2005a] 



Motion and pose prior: PCA Results 

Short swing 

[Urtasun et al, 2005a] 



Priors on poses: Laplacian eigenmaps [Sminchisescu et al, 2004] 

• Priors for poses using Laplacian eigenmaps: 

– Activity specific, but combinations of activities are possible as we 

shall see. 

• Outline: 

– Embedded manifold E is learnt from MoCap training data (CMU 

database) using Laplacian eigenmaps. 

– Intrinsic dimensionality can be estimated by the Hausdorff 

dimension. 

– Use a first order Markov chain dynamical model in embedded 
space E. 

– Tracking is performed by standard sequential Bayesian 

estimation using Covariance scaled sampling. 



Mapping to manifold 

– Learn global smooth mapping      from embedded space E to 

embedding space H (angle representation) by kernel regression 

using the training set.  
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Priors on poses: Laplacian eigenmaps 

• Priors in embedded space and embedding space: 

– Physical constraints (joint limits, angular velocity limits, non-

penetrability of limbs, etc.) naturally defined in the original 

representation (embedding space) H. 

– Prior in embedded space E given by learning a mixture of 
Gaussian from training data: 

– Solution - Embedded flattened prior: 

• Prior in original space H (physical constraints) is used to 

produce flattened prior in embedded space E: 

p(x) pE (x) pH (F (x)) JF (x)
T JF (x)

1 2

  

pE (x) = k

k=1

K

N (x,μk, k )



Priors on poses: Walking prior pE (x)

[Sminchisescu et al, 2004] 

2D embedding 3D embedding 



Priors on poses: Interaction [Sminchisescu et al, 2004] 

• TODO: Add description of 



Priors on poses: Effect of embedding prior 

[Sminchisescu et al, 2004] 



Priors on poses: GP’s and latent variables 

• Priors for pose derived from a small training set using a 

scaled Gaussian processes (GP) latent variable model 

[Urtasun et al, 2005b]: 

– Activity specific model learnt from motion capture training data. 

– Can learn and generalize from a single training motion example. 

– Learn the mapping                from E to H and optimize the latent 

variable positions at the same time. 

– Learn a joint distribution p(x,y) on embedded E and embedding 

spaces H. Assign high probability to new x near training data. 

y = F(x)



Priors on poses: GP’s and latent variables 

• Training: 

– Mean zero training data: 

– Unknown model parameters:  

– GP require that: 

– Model parameters are learned by finding the MAP solution, using 

a simple prior on hyperparameters and an isotropic i.i.d. 

Gaussian prior for latent positions x. 
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Priors on poses: GP’s and latent variables 

• Pose prior: 

– Joint probability on new latent positions x and poses y: 

– Learned mean mapping: 

– Learned variance: 

• Tracking:  

– Sequential MAP estimation of x,y based on model and 
observations with 2nd order Markov dynamics. 

– Solved by deterministic optimization. 
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Priors on Poses: GP’s and Latent variables 

[Urtasun et al, 2005b] 



Priors on Poses: GP’s and Latent variables 

[Urtasun et al, 2005b] 



Summary 

• We have seen how pose and motion manifolds appear in 

human motion analysis: 

– Human motion have low intrinsic dimensionality, especially 
activity specific motion 

– Human motion is smooth 

– Physical limitations – joint limitations, non-penetration, etc. 

• Strong prior models are especially needed in monocular 

3D tracking. 

• I have given a couple of concrete examples: 

– PCA prior model of pose and motion 

– Laplacian eigenmaps for learning pose prior 

– Gaussian processes latent variable model for pose prior 
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