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Overview

The application perspective:
Data  and task

Which structure is needed on the models to subserve the 
task?
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Disclaimer

Slides have been stolen from Mumford, 
Dam, Chennai, and many more
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Osteoarthritis (OA)
OA is a degenerative joint 

disease in knees, hips, …

Effect: 
Pain, Reduced range of 

motion

Rule of thumb: 
Age in years gives % chance 
of OA

Treatment: 
Symptom control

Current golden standard: 
-Kellgren & Lawrence Index 
-Joint space width

www.chclibrary.orgwww.chclibrary.org
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Quantification Framework

Folkesson, Dam et al. 2007 
Trans Medical Imaging

Dam et al. 2008 
Medical Image Analysis 

Dam, Folkesson et al. 2007 
Osteoarthritis & Cartilage

Qazi, Dam, Karsdal et al. 2007 
Osteoarthritis & Cartilage

Volume Thickness Curvature

Smoothness, 
Homogeneity
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Risk of vertebral fractures

Current standard of fracture grading: 
Bone Mineral Density based on dual x-ray

Our approach:
Statistical shape analysis
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Visualization

Green: Likely to stay intact

Blue: Mean spine shape

Red: Likely to fracture
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Tasks

Classification
 

S —> [L1
 

,L2
 

,…Ln
 

]
Shape

 
regression

 
S(t): Rn-> S

Marker regression t(S): S -> R
Prior for segmentation

 
p(S): dist. on

 
S

In all cases, a metric
 

on
 

the space
 

S of 
shapes

 
S is essential

Finding
 

usefull
 

metrics
 

is non-trivial
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Shapes
Shape

 
= Geometry

 
\

 
Position

Shape
 

is a qouotient
 

manifold (mayby
 

embedded
 

in 
Geometry

 
space)

Metric
 

on
 

the geometry
 

space,  may
 

be
 

inherited
 

(projected) 
to the shape

 
space

Kendall
 

: Points in R2n

 
\

 
Similarity
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Start with a fixed curve 
parametrized by ( )
Define a local chart near :

( ) ( ) ( ). ( ),  
( )  unit normal to ,

image of 
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The set Σ
 

of all smooth plane curves 

forms a manifold!
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Think of Σ
 

geometrically

• A curve on Σ is a warping of one shape to another.

• On Σ, the set of ellipses forms a surface:

• The geometric heat equation:

is a vector field on Σ , 
t t

t
C C

C n
t

κ∂
=

∂
r
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Advantages of L2 metrics

Have simple notion of a gradient to form flows

Have a beautiful theory of locally unique geodesics, 
thus a warping of one shape to another.

Can define the Riemannian curvature tensor. If non-
 positive, have a good theory of means.

Can expect a theory of diffusion, of Brownian 
motion, hence Gaussian-type measures and their 
mixtures.
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A geodesic in the simple L2 metric
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The line on the bottom is moved to the line on the top by growing 
“teeth” upwards and then shrinking them again.

But distances collapse in this metric:
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Fixes of this
 

bug:

Michor
 

+ Mumford: L2
 

+ curvature
Yezzi: Sobolev

 
metric

Charpiat: Bounded
 

curvature
Sommer: Finite

 
bandwith

 
by resampling

Trouve, Younes: Diffeomorphic

Others
 

use
 

Hausdorff
 

metric
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Michor+Mumford

For small shapes, curvature is 
negative and the path nearly goes 
back to the circle (= the ‘origin’). 
Angle sum = 102 degrees.

For large shapes, curvature is 
positive, 2 protrusions grow while 
2 shrink. Angle sum = 207 
degrees.

Hence construction depends on 
scale

2 22(1 )a A a dsκ= +∫
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Charpiat, Faugeras, Keriven

The shape space S is limited to shapes S where 
the curvature (the extrinsic curvature of the curve 
in R2) is limited to k < k0

This is scale dependent and the ordinary L2 
geodesic depends on k0
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Yezzi:
Geometric

 
Sobolev-type norms; 

We define

|h|2
Sobolev

 

:= |h|2

 
+ λL2|Ds h|2

2

where h : S1

 

-> R2

 
is a perturbation of the curve c, 

L is the length of c, 
Ds is the arclength

 
derivative,

This

 
is a negatively

 
curved

 
space.

This

 
construction

 
is independent of scale
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Sommer et al

Later today



Hven, 210809 Mads NielsenManifold Learning

Trouve, Younes

Define a sobolev type metric on flows on the 
embedding plane.

This introduces also a flow on embedded curves

This was introduced here by Tom Fletcher

It is negatively curved
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Same metric: a reflection of its negative curvature 
for small shapes: to get from any shape to any other 
which is far away, go via ‘cigars’ (in neg. curved 
space, to get from one city to another, everyone 
takes the same highway)

Negatively curved spaces
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Hausdorff
 

approaches

The distance depends
 

on
 

the largest
 smallest distance to the other

 
curve

Geodesics
 

seems
 

not very
 

informative?

Implementations
 

via level
 

sets and 
distance transform

Funny
 

solutions
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Conclusion

At best, we
 

still have things
 

to understand:

Informative statistics
 

on
 

negatively
 

curved
 spaces?

Better
 

L2
 

-like metrics? 
Problem dependent?
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Questions?
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