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Geodesic sprays

General case

Definition (Geodesics in a Riemannian manifold (M, g))

With a given starting point p and a unit initial direction γ̇(0) in the
tangent space to M at p :

Dγ̇(t)

dt
= 0 .
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Geodesic sprays

Sphere case

Geodesic spray on the sphere
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Geodesic sprays

Ellipsoid case, positive curvature

Geodesic spray on an ellipsoid
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Geodesic sprays

Hyperboloid of one sheet, negative curvature

Geodesic spray on an elliptic hyperboloid of one sheet
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Geodesic sprays

Geodesic sprays converge when the curvature is positive

Geodesic spray in a curvature-colored map of the ellipsoid
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Geodesic sprays

Geodesic sprays diverge when the curvature is negative

Geodesic spray in a curvature-colored map of the hyperboloid
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Geodesic sprays

Special maps: Mercator map of the globe

The well known Mercator map from any atlas
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Geodesic sprays

Conformally flat Mercator map of the sphere

The Mercator map with conformal factor coloring
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Conformal curvature calculations

Conformal curvature example

Proposition

A conformally flat metric

g(u, v) = e−2ψ(u,v)g0(u, v)

has the Gaussian curvature

K (u, v) = e2ψ(u,v)∆ψ(u, v)
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Conformal curvature calculations

Conformal positive curvature example

Example (Constant curvature K = 1)

With conformal factor

e−2ψ(u,v) = cosh−2(v)

we have
ψ(u, v) = log(cosh(v))

∆ψ(u, v) = 1− tanh2(v)

so that

K (u, v) = e2ψ(u,v)∆ψ(u, v) = cosh2(v)
(
1− tanh2(v)

)
= 1 .
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Conformal curvature calculations

Geodesics in the conformal Mercator map projection of the
sphere

Two geodesics in conformally colored map of the sphere
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Conformal curvature calculations

Geodesics in the conformal Mercator map projection of the
sphere

Two geodesics seemingly diverging?
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Conformal curvature calculations

Geodesics in the conformal Mercator map projection of the
sphere

Geodesic spray in the Mercator map
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Large scale convergence

Gravitational lensing

Gravitational lens principle
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Large scale convergence

Gravitational lensing

A specific gravitational lens as seen by the Hubble telescope
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Large scale convergence

Black holes everywhere

A black hole resides at the center of every galaxy
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Large scales

Rotating black holes

The structure of a Kerr solution
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Large scales

Equations for gravity

Field equations (A. Einstein, 1915)

Ric−1

2
S g = 8πκT
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Large scale structural results

Lines and nonnegative curvature

Theorem (Cohn-Vossen, 1935)

Let F be a surface which satisfies the following conditions:

F is geodesically complete.

F has nonnegative Gauss curvature everywhere.

F contains a geodesic line.

Then F is a generalized CYLINDER.
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Large scale structural results

Flat standard cylinder S1 × R1
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Large scale structural results

Cosmologies

Theorem (Cheeger–Gromoll 1971, Yau 1982, —, Newman 1990)

Let M be a space time which satisfies the following conditions:

M is timelike geodesically complete.

M has nonnegative timelike Ricci curvature everywhere.

M contains a timelike line.

Then M is a generalized CYLINDER.
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Large scale structural results

Distance Geometric Analysis

Geodesic distance contact to 1D submanifold in a 2D ’ambient’ surface
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Large scale structural results

Distance Geometric Analysis

Geodesic distance contact to a 2D submanifold in 3D flat space
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Large scale structural results

Extrinsic disk of submanifold

Extrinsic disk of a surface
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Large scale structural results

Distance Geometric Analysis

Proposition (Laplacian comparison technique)

∆Pψ(r(x)) ≤
(
ψ′′(r(x))− ψ′(r(x))ηw (r(x))

)
‖∇P r‖2

+ mψ′(r(x)) (ηw (r(x))− h(r(x)))

≤ Lψ(r(x)) = −1 = ∆PE (x) ,

where

L f (r) = f ′′(r) g 2(r) + f ′(r)
(
(m − g 2(r)) ηw (r)−m h(r)

)
is a special tailor made rotationally symmetric Poisson solution in a
suitably chosen warped product comparison space.
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Large scale structural results

Solutions to Laplacian processes on manifolds

H(x , y , t) =
∞∑
i=0

e−λi t φi (x)φi (y)

G (x , y) =

∫ ∞
0

H(x , y , t) dt

E (x) =

∫
P

G (x , y) dy

A =

∫
P

E (x) dx
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Large scale structural results

Equations of Laplacian processes on manifolds

(
∆P

x −
∂

∂t

)
H(x , y , t) = 0

∆P
x G (x , y) = 0

∆P
x E (x) = −1
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Large scale structural results

Theorem (SM and V. Palmer, GAFA, 2003)

Let Pm be a complete minimally immersed submanifold of an
Hadamard–Cartan manifold Nn with sectional curvatures bounded from
above by b ≤ 0. Suppose that either (b < 0 and m ≥ 2) or
(b = 0 and m ≥ 3) .

Then Pm is transient.

Manifold Learning (On the island of Hven) DTU Mathematics August 17-21, 2009 30 / 47



Large scale structural results

Minimality

Extrinsic disks of minimal surfaces in R3
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Large scale structural results

Minimality

Scherk’s doubly periodic minimal surface in R3 and a corresponding minimal web
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Micro local sensitivity analysis

Intrinsic mean exit time expansion

Theorem (A. Gray and M. Pinsky, 1983)

Let Bm
r (p) denote an intrinsic geodesic ball of small radius r and center p

in a Riemannian manifold (Mm, g) which has scalar curvature τ(p) at the
center point p.

Then the mean exit time from Br (p) for Brownian particles starting at p is

Er (p) =
r 2

2m
+

τ(p) r 4

12m2(m + 2)
+ r 5 ε(r) ,

where ε(r)→ 0 when r → 0 .
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Micro local sensitivity analysis

Extrinsic mean exit time expansion

Theorem (A. Gray, L. Karp, and M. Pinsky, 1986)

Let P2 be a 2D surface in R3. For a point p in P we let Dr (p) denote the
extrinsic geodesic disk of small radius r and center p.

Then the mean exit time from Dr (p) for Brownian particles starting at p is

Er (p) =
r 2

4
+

r 4

6
(H2 − K ) + r 5ε(r) ,

where ε(r)→ 0 when r → 0 .
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Triangle comparison from lower curvature bound

Slim, normal, and fat triangles

Theorem (Alexandrov, Toponogov, 60)

The (sectional) curvatures of a Riemannian manifold Mn satisfy
curv(M) ≥ 1 if and only if every geodesic triangle ∆ in Mn and
comparison triangle ∆∗ (with same edge lengths as ∆) in the unit sphere
S2

1 satisfy the fatness condition:

αi ≥ α∗i , i = 1, 2, 3 .
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Triangle comparison from lower curvature bound

Sign of Gaussian Curvature

Negative, zero, and positive curvature
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Length spaces

Objects admitting geodesic distances

Length spaces
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Length spaces

Objects admitting geodesic distances

Graphene landscape
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Length spaces

Other measures of size and shape

Definition

Let X denote a compact metric space.

For any q-tuple {x1, ..., xq} of points in X
we let xtq denote the average total distance

xtq(x1, ..., xq) =

(
q

2

)−1 n∑
i < j

dist(xi , xj) .

Consider the maximum, the q- extent of X :

xtq(X ) = max
x1,...,xq

xtq(x1, ..., xq) .
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Length spaces

Other measures of size

Theorem (O. Gross, 1964)

Let X be a compact connected metric space.

Then there is a unique positive real number rv(X ) – the rendez vous
value of X – with the following property:

For each finite collection of points x1, ..., xq in X
there exists a point y in X such that

(1/q)

q∑
i=1

dist(xi , y) = rv(X ) .
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Alexandrov spaces

Large scale results for extents and rendez vous values

Theorem (K. Grove and SM, 1997)

Let X n be an Alexandrov space with

curv(X ) ≥ 1 .

Then

xt∞(X ) ≤ π/2 and

rv(X ) ≤ π/2 .

One (and thence both) equality occurs if and only if X n is a spherical

suspension over an ”equatorial” Alexandrov space Θn−1 with
curv(Θ) ≥ 1 .
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Alexandrov spaces

Large scale recognition stability

Theorem (G. Perelman and T. Yamaguchi, 1991)

Let X n be a compact Alexandrov space with curv(X ) ≥ k .

Then there exists a positive real number ε = ε(X ) such that every other
compact Alexandrov space Y n with curv(Y ) ≥ k and Gromov–Hausdorff
distance dGH(X ,Y ) ≤ ε is homeomorphic to the given space X n.

Reference: F. Memoli, Gromov–Hausdorff distances in Euclidean spaces.
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Conformally flat triangulations

B. Springborn, P. Schröder, and U. Pinkall

ACM Transactions on Graphics, Vol. 27, Article 77, No. 3, August 2008:

Definition

Two discrete metrics L and L̄ on M are (discretely) conformally equivalent
if, for some assignment of numbers ψi to the vertices vi , the metrics are
related by

Lij = e−(ψ(i)+ψ(j))L̄ij

Compare with the smooth definition of conformal maps

g(u, v) = e−2ψ(u,v)g0(u, v)
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Conformally flat triangulations

B. Springborn, P. Schröder, and U. Pinkall

ACM Transactions on Graphics, Vol. 27, Article 77, No. 3, August 2008

Conformal representation
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Conformally flat triangulations

B. Springborn, P. Schröder, and U. Pinkall

ACM Transactions on Graphics, Vol. 27, Article 77, No. 3, August 2008

Conformal representation
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Conformally flat triangulations

Relaxing curvature along the image boundary

Conformal representation with cone singularities
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Conclusion

Conclusion

Curvature matters on all scales:

1 Globally, locally, and micro-locally

2 In smooth and in discrete geometry

Thank you for your attention!
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