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Motivation Non Linearity

Non Linear data

Many interesting /common objects behave non linearly.

Vector lines in R2

The projective line as a circle.

Right triangles with fixed
hypotenuse

Right rectangles as half-circle
(without endpoints).
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Motivation Statistics on Non Linear Data

Averaging

How to average points on a
circle?
Hm... The linear way does
not work!
A better way: use the
distance on the circle!

François Lauze (University of Copenhagen) Differential Geometry Ven 6 / 48



Motivation Statistics on Non Linear Data

Averaging

How to average points on a
circle?
Hm... The linear way does
not work!
A better way: use the
distance on the circle!

François Lauze (University of Copenhagen) Differential Geometry Ven 6 / 48



Motivation Statistics on Non Linear Data

Averaging

How to average points on a
circle?
Hm... The linear way does
not work!
A better way: use the
distance on the circle!

François Lauze (University of Copenhagen) Differential Geometry Ven 6 / 48



Recalls Geometry

Outline
1 Motivation

Non Linearity
Statistics on Non Linear Data

2 Recalls
Geometry
Topology
Calculus on Rn

3 Differentiable Manifolds
Definitions
Building Manifolds
Tangent Space

4 Riemannian Manifolds
Metric
Gradient Field
Length of curves
Geodesics
Covariant derivatives

François Lauze (University of Copenhagen) Differential Geometry Ven 7 / 48



Recalls Geometry

Inner Products

Inner Product: product 〈x,y〉 for column vectors x and y in Rn

linear in x and y,
symmetric: 〈x, y〉 = 〈y, x〉
positive and definite: 〈x, x〉 ≥ 0 with equality if x = 0.

Simplest example: usual dot-product x = (x1, . . . , xn)
t , y = (y1, . . . , yn)

t ,

x · y = 〈x,y〉 =
n∑

i=1

xiyi = xt Id y

Id is the n-order identity matrix.
Every inner product is of the form xtA y, A symmetric positive definite.
Alternate notation: 〈x,y〉A.
Without subscript 〈−,−〉 will denote standard Euclidean dot-product (i.e.
A = Id).
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Recalls Geometry

Orthogonality – Norm – Distance

A-orthogonality: x⊥Ay⇔ 〈x,y〉A = 0.
A-norm of x : ‖x‖A =

√
〈x,x〉A.

A-distance on Rn: dA(x,y) = ‖x− y‖A.

Standard orthogonal transform on Rn: n× n matrix R satisfying RtR = Id .
They form the orthogonal group O(n). Matrices R with det = 1 form the
special orthogonal group SO(n).
for general inner product 〈−,−〉A: R is A-orthogonal if RtAR = A.
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Recalls Geometry

Duality

Linear form h : Rn → R: h(x) =
∑n

i=1 hixi .
Given an inner product 〈−,−〉A on Rn, h represented by a unique vector
hA s.t

h(x) = 〈hA,x〉A
hA is the dual of h (w.r.t 〈−,−〉A).
for standard dot product:

h =

h1
...

hn

 !

for general inner product 〈−,−〉A

hA = A−1h.
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Recalls Topology

Open sets, Continuity...

Topology on Rn. A open set of Rn is a union (not necessarily finite) of
open balls. RN and the empty set ∅ are open.

A map f : X → Y between topological spaces is continuous if

V ⊂ Y open⇒ f−1(V ) ⊂ X open.

A map h : X → Y between topological spaces is a homeomorphism is it
is continuous, one-to-one and h−1 is continuous.
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Recalls Calculus on Rn

Differentiable and smooth functions

f : U open ⊂ Rn → Rq continuous: write

(y1, . . . , y1) = f (x1, . . . , xn)

f is of class Cr if f has continuous partial derivatives

∂r1+···+rn yk

∂x r1
1 . . . ∂x rn

n

k = 1 . . . q, r1 + . . . rn ≤ r .
When r =∞, I say that f is smooth. This is the main situation of interest.
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Recalls Calculus on Rn

Differential, Jacobian Matrix

Differential of f in x: unique linear map (if exists) dx f : Rn → Rq s.t.

f (x + h) = f (x) + dx f (h) + o(h).

Jacobian matrix of f : matrix q × n of partial derivatives of f :

Jxf =


∂y1
∂x1

(x) . . . ∂y1
∂xn

(x)

...
...

∂yq
∂x1

(x) . . .
∂yq
∂xn

(x)


if n ≥ q and rank(Jxf ) = q, f is a submersion at x.
if n ≤ q and rank(Jxf ) = n, f is an immersion at x.
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Recalls Calculus on Rn

Diffeomorphism

when n = q: if f is 1-1 Cr and its inverse is also Cr , f is a
Cr -diffeomorphism. A smooth diffeomorphism is simply referred to as a
diffeomorphism.
If f is a diffeomorphism, det(Jxf ) 6= 0. Conversely, if det(Jxf ) 6= 0, by the
Inverse Function Theorem, f is a local diffeomorphism in a neighborhood
of x.
f may be a local diffeomorphism everywhere but fail to be a global
diffeomorphism. Example:

f : R2\0→ R2, (x , y)→ (ex cos(y),ex sin(y)).

if f is 1-1 and a local diffeomorphism everywhere, it is a global
diffeomorphism.

François Lauze (University of Copenhagen) Differential Geometry Ven 16 / 48
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Recalls Calculus on Rn

Gradient of a function

f : U ⊂ Rn → R, dxf it differential at x ∈ U.
dxf is represented by a unique vector, the gradient of f for the standard
inner product:

dxf (h) = ∇fx · h

If one changes the inner product, the gradient changes too, but not the
differential.
The gradient indicates the direction of largest change (by
Cauchy-Schwarz).
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Differentiable Manifolds Definitions

Differentiable Manifold

Differential manifold M of dim n:

smoothly glued open pieces of
Euclidean space Rn via M = ∪iVi ,
homeomorphisms ϕi :Vi → Wi⊂Rn,

ϕi(P) = (x1(P), . . . , xn(P))
Charts or local coordinates

Smoothness in gluing: the changes of
coordinates

ϕj ◦ ϕ−1
i : ϕi(Vi ∩ Vj)→ ϕj(Vi ∩ Vj)

are smooth.

Set

ϕj(P) = (y1(P), . . . , yn(P)),

then

ϕj ◦ ϕ−1
i (x1, . . . , xn) = (y1, . . . , yn)

and the n × n Jacobian matrices“
∂yk

∂xh

”
k,h

are invertible.

Maps ϕ−1
i : Wi → Vi are local

parametrization of M.
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Differentiable Manifolds Definitions

Differentiable maps

f : M → N is differentiable if its expression in any coordinates for M and
N is.
ϕ local coordinates at P ∈ M, ψ local coordinates at f (P) ∈ N

ϕ−1 ◦ f ◦ ψ differentiable.
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Differentiable Manifolds Definitions

First Examples

The Euclidean space Rn is a manifold: take ϕ = Id as global coordinate
system!
The sphere S2 = {(x , y , z), x2 + y2 + z2 = 1}

For instance the projection from North Pole, given, for a point
P = (x , y , z) 6= N of the sphere, by

ϕN(P) =

(
x

1− z
,

y
1− z

)
is a (large) local coordinate system (around the south pole).
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Differentiable Manifolds Definitions

Examples

The Moebius strip

u ∈ [0,2π], v ∈ [
1
2
,

1
2

]

cos(u)
(
1 + 1

2 v cos( u
2 )
)

sin(u)
(
1 + 1

2 v cos( u
2 )
)

1
2 v sin( u

2 )



The 2D-torus

(u, v) ∈ [0,2π]2,R � r > 0cos(u) (R + r cos(v))
sin(u) (R + r cos(v))

r sin(v)


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Differentiable Manifolds Building Manifolds

Outline
1 Motivation

Non Linearity
Statistics on Non Linear Data

2 Recalls
Geometry
Topology
Calculus on Rn

3 Differentiable Manifolds
Definitions
Building Manifolds
Tangent Space

4 Riemannian Manifolds
Metric
Gradient Field
Length of curves
Geodesics
Covariant derivatives
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Differentiable Manifolds Building Manifolds

Submanifolds of Rn

Take f : U ∈ Rn → Rq , q ≤ n smooth.
Set M = f−1(0).
If for all x ∈ M, f is a submersion at x, M is a manifold of dimension n− q.
Example:

f (x1, . . . , xn) = 1−
n∑

i=1

x2
i :

f−1(0) is the (n − 1)-dimensional unit sphere Sn−1.
Many common examples of manifolds in practice are of that type.
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Differentiable Manifolds Building Manifolds

Product Manifolds

M and N manifolds, so is M × N.
Just consider the products of charts of M and N!
Example: M = S1, N = R: cylinder.
Example: M = N = S1: the torus!

François Lauze (University of Copenhagen) Differential Geometry Ven 25 / 48



Differentiable Manifolds Building Manifolds

Product Manifolds

M and N manifolds, so is M × N.
Just consider the products of charts of M and N!
Example: M = S1, N = R: cylinder.
Example: M = N = S1: the torus!

François Lauze (University of Copenhagen) Differential Geometry Ven 25 / 48



Differentiable Manifolds Building Manifolds

Product Manifolds

M and N manifolds, so is M × N.
Just consider the products of charts of M and N!
Example: M = S1, N = R: cylinder.
Example: M = N = S1: the torus!

François Lauze (University of Copenhagen) Differential Geometry Ven 25 / 48



Differentiable Manifolds Building Manifolds

Product Manifolds

M and N manifolds, so is M × N.
Just consider the products of charts of M and N!
Example: M = S1, N = R: cylinder.
Example: M = N = S1: the torus!

François Lauze (University of Copenhagen) Differential Geometry Ven 25 / 48



Differentiable Manifolds Building Manifolds

Product Manifolds

M and N manifolds, so is M × N.
Just consider the products of charts of M and N!
Example: M = S1, N = R: cylinder.
Example: M = N = S1: the torus!

François Lauze (University of Copenhagen) Differential Geometry Ven 25 / 48



Differentiable Manifolds Tangent Space
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Differentiable Manifolds Tangent Space

Tangent vectors informally

.

Informally: a tangent vector at P ∈ M: draw a curve c : (−ε, ε)→ M,
c(0) = P, then ċ(0) is a tangent vector.
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Differentiable Manifolds Tangent Space

A bit more formally

.

c : c : (−ε, ε)→ M, c(0) = P. In chart ϕ, the map t 7→ ϕ ◦ c(t) is a curve
in Euclidean space, and so is t 7→ ψ ◦ c(t).
set v = d

dt (ϕ ◦ c)|0, w = d
dt (ψ ◦ c)|0 then

w = J0
(
ϕ−1 ◦ ψ

)
v .

Use this relation to identify vectors in different coordinate systems!
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Differentiable Manifolds Tangent Space

Tangent space

The set of tangent vectors to the n-dimensional manifold M at point P is
the tangent space of M at P denoted TPM.
It is a vector space of dimension n: let θ a local parametrization of M,
θ(x1, . . . , xn) ∈ M with θ(0) = P. Define curves

xi : t 7→ θ(0, . . . ,0, t ,0,0)

.
They go through P when t = 0 and follow the axes. Their derivative at 0
are denoted ∂xi . They form a basis of TPM.
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Differentiable Manifolds Tangent Space

Vector fields

A vector field is a smooth map that send P ∈ M to a vector v(P) ∈ TPM.
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Differentiable Manifolds Tangent Space

Differential of a differentiable map

f : M → N differentiable, P ∈ M, f (P) ∈ N
dP f : TPM → Tf (P)N linear map corresponding to the Jacobian matrix of f
in local coordinates.
When N = R, dP f is a linear form TPM → R.
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Riemannian Manifolds Metric

Riemannian Metric

A Riemannian metric on a n−dimensional manifold is a smooth family gP
of inner products on the tangent spaces TPM of M,
u, v ∈ TPM 7→ gp(u, v) := 〈u, v〉P ∈ R. With it, one can compute length of
vectors in tangent spaces, check orthogonality of them...

With a local parametrization θ(x) = (x1, . . . , xn)→ M, it corresponds to a
smooth family of positive definite matrices:

gx =

gx11 . . . gx1n
...

...
gxn1 . . . gxnn


u =

∑n
i=1 ui∂xi , v =

∑n
i=1 vi∂xi 〈u, v〉x = (u1, . . . ,un)gx(v1, . . . , vn)

t
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Riemannian Manifolds Metric

Riemannian Manifold

A differential manifold with a Riemannian metric is a Riemannian manifold.
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Riemannian Manifolds Gradient Field

Gradient, Gradient vector field.

M Riemannian, f : M → R differentiable. Then

dP f (h) = 〈v ,h〉P , for a unique v .

v := ∇fP is the gradient of f at P.
P 7→ ∇fP is the gradient vector field of f.
One can thus make gradient descent/ascent... Not possible without
Riemannian structure.
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Riemannian Manifolds Length of curves
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Riemannian Manifolds Length of curves

Curve c : [a,b]→ M, M Riemannian. For all t , c′(t) ∈ Tc(t)M is the
velocity of c at time t .
It has length ‖ċ(t)‖ =

√
〈c′(t), c′(t)〉c(t)

Define the length of c as

`(c) =

∫ b

a
‖ċ(t)‖dt

as in the Euclidean case, by now with variable inner products.
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√
〈c′(t), c′(t)〉c(t)

Define the length of c as

`(c) =

∫ b

a
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Riemannian Manifolds Geodesics
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Riemannian Manifolds Geodesics

Geodesics

Restricted definition: Riemannian Geodesics are curves of (locally)
minimal length among curves with fixed endpoints say P and Q.
They are also minimizers of the curve energy:

E(c) =

∫ b

a
‖ċ(t)‖2 dt

.
The shortest length of a curve joining P and Q is the geodesic distance
d(P,Q).

François Lauze (University of Copenhagen) Differential Geometry Ven 40 / 48



Riemannian Manifolds Geodesics

Geodesics

Restricted definition: Riemannian Geodesics are curves of (locally)
minimal length among curves with fixed endpoints say P and Q.
They are also minimizers of the curve energy:

E(c) =

∫ b

a
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Riemannian Manifolds Geodesics

How to characterize geodesics?

In Rn, The calculus of variations for curve energy gives : c̈ = 0.
In a general manifold: problem to define c̈:

c̈(0) = lim
t→0

ċ(t)− ċ(0)

t

ċ(t) ∈ Tc(t)M and ċ(0) ∈ Tc(0)M: these tangent spaces are distinct!

Need for a “device” that “connects” tangent spaces of close enough
points. Such a device is called an affine connection.
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Riemannian Manifolds Covariant derivatives

Covariant Derivative

Allows to differentiate a vector field along a curve: given a curve
γ(t) ∈ M, X a vector field,

D
dt

X (t) = Ẋ (t) ∈ Tγ(t)

We ask that D
dt depends only on the value γ̇(t) and not on the behaviour

of γ around γ(t). The computation D
dt X (t) depends on values of X around

γ(t).
Many choices are possible, but exactly one is compatible with the
Riemannian structure in the sense that

d
dt
〈X ,Y 〉 = 〈DX

dt
,Y 〉 + 〈X , DY

dt
〉

plus another property. Levi-Cività connexion.
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Riemannian Manifolds Covariant derivatives

Concrete construction

Assume M ⊂ Rn. A vector field X on M can be seen as a vector field on
Rn and a curve γ on M can be seen as a curve in Rn. Then

1 Compute the usual derivative

˜X (t) =
d
dt

X (γ(t))

its a vector field on Rn but not a tangent vector field on M in general.
2 Project ˜X (t) orthogonally on Tγ(t)M ⊂ R3. The result is DX/dt !
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Riemannian Manifolds Covariant derivatives

Characterization of Geodesics

A curve γ is geodesic if its covariant is acceleration 0.

γ̈(t) =
Dγ̇(t)

dt
= 0!

This is in fact a second order ODE: given initial position γ(0) and velocity γ̇(0)
there is a unique solution.

François Lauze (University of Copenhagen) Differential Geometry Ven 45 / 48



Riemannian Manifolds Covariant derivatives

Exponential map

The uniqueness above leads to the following definition: given P ∈ M,
v ∈ TPM, the exponential map ExpP(v) is the solution at time 1 of the
previous ODE. For small enough v : diffeomorphism.

The curve t → ExpP(tv), t ∈ [0,1] is geodesic, its length is ‖v‖.
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Riemannian Manifolds Covariant derivatives

Log map

The inverse map of the exponential map is called the Log map! For
Q ∈ M “not too far from P”, LogP(Q) is the vector v of TPM s.t.
ExpP(v) = Q.
The exponential map is relatively easy to compute. The Log map is
generally much more complicated, but badly needed in many optimization
problems!
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