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Abstract We prove explicit upper and lower bounds for the torsional rigidity of
extrinsic domains of submanifolds Pm with controlled radial mean curvature in ambi-
ent Riemannian manifolds N n with a pole p and with sectional curvatures bounded
from above and from below, respectively. These bounds are given in terms of the tor-
sional rigidities of corresponding Schwarz-symmetrization of the domains in warped
product model spaces. Our main results are obtained using methods from previously
established isoperimetric inequalities, as found in, e.g., Markvorsen and Palmer (Proc
Lond Math Soc 93:253–272, 2006; Extrinsic isoperimetric analysis on submanifolds
with curvatures bounded from below, p. 39, preprint, 2007). As in that paper we
also characterize the geometry of those situations in which the bounds for the tor-
sional rigidity are actually attained and study the behavior at infinity of the so-called
geometric average of the mean exit time for Brownian motion.
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512 A. Hurtado et al.

1 Introduction

Given a precompact domain D in a complete Riemannian manifold (Mn, g), the
torsional rigidity of D is defined as the integral

A1(D) =
∫

D

E(x) dσ, (1.1)

where E is the smooth solution of the Dirichlet–Poisson equation

�M E + 1 = 0 on D

E |∂D = 0.
(1.2)

Here�M denotes the Laplace–Beltrami operator on (Mn, g) . The function E(x) rep-
resents the mean time of first exit from D for a Brownian particle starting at the point
x in D, see [7].

The name torsional rigidity of D stems from the fact that if D ⊆ R
2, then A1(D)

represents the torque required per unit angle of twist and per unit length when twisting
an elastic beam of uniform cross section D, see [1,21]. As in Ref. [15] we con-
sider a Saint–Venant type problem, namely, how to optimize the torsional rigidity
among all the domains having the same given volume in a given space or in some
otherwise fixed geometrical setting. Here we restrict ourselves to a particular class of
subsets, namely the extrinsic balls DR of a submanifold P properly immersed with
controlled mean curvature into an ambient manifold with suitably bounded sectional
curvatures.

The proof of the Saint–Venant conjecture in the general context of Riemannian
geometry makes use of the concept of Schwarz-symmetrization and like the Rayleigh
conjecture concerning the fundamental tone it also hinges upon the proof of the Faber–
Krahn inequality, which in turn is based on isoperimetric inequalities satisfied by the
domains in question (see [17]).

Under extrinsic curvature restrictions on the submanifold and intrinsic curvature
restrictions on the ambient manifold we show in Theorem 3.2 that the extrinsic balls
satisfy strong isoperimetric inequalities, specifically lower and upper bounds for the
∞-isoperimetric quotient Vol(∂DR)/Vol(DR), where the bounds are given by corre-
sponding ∞-isoperimetric quotients of certain geodesic balls in tailor-made warped
product spaces.

As in Refs. [11,15,20], the comparison is obtained essentially by transplanting the
radial solution of a Poisson equation defined in the radially symmetric model space
from that model to the extrinsic R-balls DR in the submanifold P .

Once we have this isoperimetric information at hand, we then apply it to get bounds
for the torsional rigidity of the extrinsic balls. One key result on the way to upper and
lower bounds for the torsional rigidity is Theorem 4.4, which shows a fundamental
equality between the integral of the transplanted radial solution of the Poisson equa-
tion in DR and the corresponding integral of its Schwarz-symmetrization in the model
space.
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Torsional rigidity 513

As a consequence of the isoperimetric inequalities in Theorem 3.2 and the
Schwarz-symmetrization identity in Theorem 4.4, we obtain lower and upper bounds
for the torsional rigidity of the extrinsic balls in submanifolds with controlled mean
curvature in ambient manifolds with radial sectional curvatures bounded from below
(Theorem 5.1) or from above (Theorem 5.3), respectively. Upper bounds for the tor-
sional rigidity of such domains were found in Ref. [15] for the special cases where
the submanifold is minimal.

In the work [2] the existence of regions in R
m with finite torsional rigidity and yet

infinite volume were considered. To get to such regions, the authors assume Hardy
inequalities for these domains. The geometric effect of this assumption is to make the
volume of the boundary of the regions relatively large in comparison with the enclosed
volume. In consequence, the Brownian diffusion process finds sufficient outlet-vol-
ume to escape at the boundary, giving in consequence a small mean exit time and at the
same time a small incomplete integral of the mean exit time, i.e., a bounded torsional
rigidity.

Inspired by this result, it was initiated in Ref. [15] the study of the behaviour at
infinity of the geometric average of the mean exit time for Brownian motion. Specifi-
cally, given the quotient A1(DR)/Vol(DR), we may consider the limit of this quotient
for R → ∞ as a measure of the volume-relative swiftness (at infinity) of the Brownian
motion defined on the entire submanifold. In this paper, we establish a set of curva-
ture restrictions that guarantee the finiteness of the average mean exit time at infin-
ity, meaning that the Brownian diffusion process is moving relatively fast to infinity
(see Corollary 7.3), and a dual version of this result, i.e., a set of curvature restrictions
which guarantee in turn that the diffusion is moving relatively slow to infinity (see
Corollary 7.2).

Concerning these last results, we should remark that it was proved in Ref. [15] that
this quotient is unbounded for geodesic balls in all Euclidean spaces as R −→ ∞,
while it is bounded for geodesic balls in simply connected space-forms of constant neg-
ative curvature. Therefore, transience is not in itself sufficient to give finiteness of the
geometric average of the mean exit time, as is exemplified by R

n for all n ≥ 3. We refer
to [13,14,16] for results concerning general transience conditions for submanifolds.

Outline of the paper Section 2 is devoted to the precise definitions of extrinsic
balls, the warped product spaces that we use as models and to the description of the
general set-up of our comparison analysis: the comparison constellations. In Sects. 3
and 4 we formulate the isoperimetric inequalities and the integral equalities for the
Schwarz-symmetrization of the solution of the Poisson equation, respectively. The
main comparison results for the Torsional Rigidity are stated and proved in Sect. 5,
and finally, in Sects. 6 and 7 we present an intrinsic analysis of these results and
consider the behavior of the averaged mean exit time at infinity, respectively.

2 Preliminaries and comparison setting

We first consider a few conditions and concepts that will be instrumental for estab-
lishing our results.
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514 A. Hurtado et al.

2.1 The extrinsic balls and the curvature bounds

We consider a properly immersed m-dimensional submanifold Pm in a complete
Riemannian manifold N n . Let p denote a point in P and assume that p is a pole of
the ambient manifold N . We denote the distance function from p in N n by r(x) =
distN (p, x) for all x ∈ N . Since p is a pole there is—by definition—a unique geode-
sic from x to p which realizes the distance r(x). We also denote by r the restriction
r |P : P −→ R+ ∪ {0}. This restriction is then called the extrinsic distance function
from p in Pm . The corresponding extrinsic metric balls of (sufficiently large) radius
R and center p are denoted by DR(p) ⊆ P and defined as any connected component
which contains p of the set:

DR(p) = BR(p) ∩ P = {x ∈ P|r(x) < R},

where BR(p) denotes the geodesic R-ball around the pole p in N n . The extrinsic ball
DR(p) is a connected domain in Pm , with boundary ∂DR(p). Since Pm is assumed
to be unbounded in N we have for every sufficiently large R that BR(p) ∩ P �= P .

We now present the curvature restrictions which constitute the geometric frame-
work of our investigations.

Definition 2.1 Let p be a point in a Riemannian manifold M and let x ∈ M − {p}.
The sectional curvature KM (σx ) of the two-plane σx ∈ Tx M is then called a p-radial
sectional curvature of M at x if σx contains the tangent vector to a minimal geodesic
from p to x . We denote these curvatures by K p,M (σx ).

In order to control the mean curvatures HP (x) of Pm at distance r from p in N n

we introduce the following definition:

Definition 2.2 The p-radial mean curvature function for P in N is defined in terms of
the inner product of HP with the N -gradient of the distance function r(x) as follows:

C(x) = −〈∇N r(x), HP (x)〉 for all x ∈ P.

In the following definition, we are going to generalize the notion of radial mean
convexity condition introduced in Ref. [16].

Definition 2.3 (see [16]) We say that the submanifold P satisfies a radial mean con-
vexity condition from below (respectively, from above) from the point p ∈ P when
there exists a radial smooth function h(r), (that we call a bounding function), which
satisfies one of the following inequalities

C(x) ≥ h(r(x)) for all x ∈ P (h bounds from below)

C(x) ≤ h(r(x)) for all x ∈ P (h bounds from above)
(2.1)

The radial bounding function h(r) is related to the global extrinsic geometry of the
submanifold. For example, it is obvious that minimal submanifolds satisfy a radial
mean convexity condition from above and from below, with bounding function h = 0.
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Torsional rigidity 515

On the other hand, it can be proved, see the works [6,16,19,23], that when the sub-
manifold is a convex hypersurface, then the constant function h(r) = 0 is a radial
bounding function from below.

The final notion needed to describe our comparison setting is the idea of radial
tangency. If we denote by ∇N r and ∇ Pr the gradients of r in N and P respectively,
then we have the following basic relation:

∇N r = ∇ Pr + (∇N r)⊥, (2.2)

where (∇N r)⊥(q) is perpendicular to Tq P for all q ∈ P .
When the submanifold P is totally geodesic, then ∇N r = ∇ Pr in all points, and,

hence, ‖∇ Pr‖ = 1. On the other hand, and given the starting point p ∈ P , from which
we are measuring the distance r , we know that ∇N r(p) = ∇ Pr(p), so ‖∇ Pr(p)‖ = 1.
Therefore, the difference 1 − ‖∇ Pr‖ quantifies the radial detour of the submanifold
with respect the ambient manifold as seen from the pole p. To control this detour
locally, we apply the following

Definition 2.4 We say that the submanifold P satisfies a radial tangency condition at
p ∈ P when we have a smooth positive function

g : P �→ R+,

so that

T (x) = ‖∇ Pr(x)‖ ≥ g(r(x)) > 0 for all x ∈ P. (2.3)

Remark a Of course, we always have

T (x) = ‖∇ Pr(x)‖ ≤ 1 for all x ∈ P. (2.4)

2.2 Model spaces

As mentioned previously, the model spaces Mm
w serve foremost as comparison con-

trollers for the radial sectional curvatures of N n .

Definition 2.5 (See [8,9]) A w-model Mm
w is a smooth warped product with base

B1 = [0, R[⊂ R (where 0 < R ≤ ∞), fiber Fm−1 = Sm−1
1 (i.e., the unit (m − 1)-

sphere with standard metric), and warping function w : [0, R[→ R+ ∪ {0} with
w(0) = 0, w′(0) = 1, and w(r) > 0 for all r > 0. The point pw = π−1(0), where
π denotes the projection onto B1, is called the center point of the model space. If
R = ∞, then pw is a pole of Mm

w .

Remark b The simply connected space forms K
m(b) of constant curvature b can be

constructed as w−models with any given point as center point using the warping
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516 A. Hurtado et al.

functions

w(r) = Qb(r) =

⎧⎪⎪⎨
⎪⎪⎩

1√
b

sin
(√

br
)

if b > 0

r if b = 0
1√−b

sinh
(√−br

)
if b < 0.

(2.5)

Note that for b > 0 the function Qb(r) admits a smooth extension to r = π/
√

b. For
b ≤ 0 any center point is a pole.

In the papers [8,9,14,15,18], we have a complete description of these model spaces,
including the computation of their sectional curvatures K pw,Mw in the
radial directions from the center point. They are determined by the radial function
K pw,Mw(σx )= Kw(r) = −w′′(r)

w(r) . Moreover, the mean curvature of the distance sphere
of radius r from the center point is

ηw(r) = w′(r)
w(r)

= d

dr
ln(w(r)). (2.6)

In particular, in Ref. [15] we introduced, for any given warping function w(r), the
isoperimetric quotient function qw(r) for the corresponding w-model space Mm

w as
follows:

qw(r) = Vol(Bwr )

Vol(Swr )
=

∫ r
0 w

m−1(t)dt

wm−1(r)
. (2.7)

Then, we have the following result concerning the mean exit time function and the
torsional rigidity of a geodesic R-ball BwR ⊆ Mm

w in terms of qw, see [15]:

Proposition 2.6 Let EwR be the solution of the Poisson Problem (1.2), defined on the
geodesic R-ball BwR in the model space Mm

w .
Then

EwR (r) =
R∫

r

qw(t)dt, (2.8)

and

A1(B
w
R ) =

∫

BwR

EwR dσ̃ = V0

R∫

0

wm−1(r)

⎛
⎝

R∫

r

qw(t)dt

⎞
⎠ dr, (2.9)

where V0 is the volume of the unit sphere Sm−1
1 . Differentiating with respect to R gives

d

d R
A1(B

w
R ) = q2

w(R)Vol(SwR ), (2.10)
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Torsional rigidity 517

and an integration of the latter equality, gives us the following alternative expression
for the torsional rigidity:

A1(B
w
R ) =

∫

BwR

q2
wdσ̃ . (2.11)

Remark c Since qw(r) > 0, it follows from (2.8) that for fixed r , the mean exit time
function EwR (r) is an increasing function of R. Furthermore, if q ′

w(r) ≥ 0, then the
average mean exit time A1(Bwr )/Vol(Bwr ) is also a non-decreasing function of r .

2.3 The isoperimetric comparison space

Given the bounding functions g(r), h(r) and the ambient curvature controller function
w(r) described in Sects. 2.1 and 2.2, we construct a new model space Cm

w,g,h , which
eventually will serve as the precise comparison space for the isoperimetric quotients
of extrinsic balls in P .

Definition 2.7 Given a smooth positive function

g : P �→ R+,

satisfying g(0) = 1 and g(r(x)) ≤ 1for all x ∈ P , a ‘stretching’ function s is defined
as follows

s(r) =
r∫

0

1

g(t)
dt. (2.12)

It has a well-defined inverse r(s) for s ∈ [0, s(R)] with derivative r ′(s) = g(r(s)). In
particular r ′(0) = g(0) = 1.

Definition 2.8 ([16]) The isoperimetric comparison space Cm
w,g,h is the W−model

space with base interval B = [0, s(R)] and warping function W (s) defined by

W (s) = �
1

m−1 (r(s)), (2.13)

where the auxiliary function �(r) satisfies the following differential equation:

d

dr
{�(r)w(r)g(r)} = �(r)w(r)g(r)

(
m

g2(r)
(ηw(r)− h(r))

)

= m
�(r)

g(r)

(
w′(r)− h(r)w(r)

)
. (2.14)

and the following boundary condition:

d

dr |r=0

(
�

1
m−1 (r)

)
= 1. (2.15)
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We observe, that in spite of its relatively complicated construction, C m
w,g,h is indeed

a model space Mm
W with a well defined pole pW at s = 0: W (s) ≥ 0 for all s and W (s)

is only 0 at s = 0, where also, because of the explicit construction in Definition 2.8
and because of Eq. (2.15): W ′(0) = 1.

Note that, when g(r) = 1 for all r and h(r) = 0 for all r , then the stretching func-
tion s(r) = r and W (s(r)) = w(r) for all r , so Cm

w,g,h becomes a model space with
warping function w, Mm

w .
Concerning the associated volume growth properties we note the following expres-

sions for the isoperimetric quotient function:

Proposition 2.9 Let BW
s (pW ) denote the metric ball of radius s centered at pW in

Cm
w,g,h. Then the corresponding isoperimetric quotient function is

qW (s) = Vol(BW
s (pW ))

Vol(∂BW
s (pW ))

=
∫ s

0 W m−1(t) dt

W m−1(s)

=
∫ r(s)

0
�(u)
g(u) du

�(r(s))
. (2.16)

Remark d When g(r) = 1 for all r , the stretching function is s(r) = r for all r , and
hence

qW (s) = qW (r)

= Vol(BW
r (pW ))

Vol(∂BW
r (pW ))

=
∫ r

0 �(u) du

�(r)
. (2.17)

These are the spaces where the isoperimetric bounds and the bounds on the tor-
sional rigidity are attained. We shall refer to the W -model spaces Mm

W = Cm
w,g,h as

the isoperimetric comparison spaces.

2.4 Balance conditions

In the paper [15] we imposed two further purely intrinsic conditions on the general
model spaces Mm

w :

Definition 2.10 A givenw−model space Mm
w is balanced from below if the following

weighted isoperimetric condition is satisfied:

qw(r)ηw(r) ≥ 1/m for all r ≥ 0, (2.18)

and is balanced from above if we have the inequality

qw(r)ηw(r) ≤ 1/(m − 1) for all r ≥ 0. (2.19)
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Torsional rigidity 519

A model space is called totally balanced if it is balanced both from below and from
above.

The model space Mm
w is easily seen to be balanced from below iff

d

dr

(
qw(r)

w(r)

)
≤ 0 for all r ≥ 0, (2.20)

and balanced from above iff

d

dr
(qw(r)) ≥ 0 for all r ≥ 0. (2.21)

Observation 2.11 We note that every model space of constant non-positive sectional
curvature is totally balanced. In fact, for r > 0 we have strict inequalities in both of
the two balance conditions for every model space of constant negative sectional cur-
vature. This implies in particular, that every model space which is sufficiently close
to a model space of constant negative sectional curvature is itself totally balanced.

To play the comparison setting rôle in our present setting, the isoperimetric com-
parison spaces must satisfy similar types of balancing conditions:

Definition 2.12 The model space Mm
W = Cm

w,g,h is w−balanced from below (with
respect to the intermediary model space Mm

w ) if the following holds for all r ∈ [0, R],
respectively all s ∈ [0, s(R)]:

qW (s) (ηw(r(s))− h(r(s))) ≥ g(r(s))/m. (2.22)

Lemma 2.13 The model space Mm
W = Cm

w,g,h is w−balanced from below iff

d

dr

(
qW (s(r))

g(r)w(r)

)
≤ 0. (2.23)

Proof A direct differentiation using (2.16) but with respect to r amounts to:

d

dr

(
qW (s(r))

g(r)w(r)

)

= 1

�(r)g3(r)w2(r)

⎛
⎝�(r)w(r)g(r)−m

⎛
⎝

r∫

0

�(t)

g(t)
dt

⎞
⎠ (
w′(r)− h(r)w(r)

)
⎞
⎠ ,

which shows that inequality (2.23) is equivalent to inequality

�(r)w(r)g(r)− m

⎛
⎝

r∫

0

�(t)

g(t)
dt

⎞
⎠ (
w′(r)− h(r)w(r)

) ≤ 0, (2.24)

which is, in turn, using (2.16), equivalent to inequality (2.22). ��
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Remark e In particular thew-balance condition from below for Mm
W = Cm

w,g,h implies
that

ηw(r)− h(r) > 0. (2.25)

Remark f The above definition of w−balance condition from below for Mm
W is

clearly an extension of the balance condition from below as defined in Ref. [15,
Definition 2.12]. The condition in that paper is obtained precisely when g(r) = 1 and
h(r) = 0 for all r ∈ [ 0, R] so that r(s) = s, W (s) = w(r), and

qw(r)ηw(r) ≥ 1/m. (2.26)

We observe that the differential inequality (2.23) becomes (2.20) when g(r) = 1 and
h(r) = 0.

As defined previously a general w-model space is totally balanced if it balanced
from below and from above in the sense of Eqs. (2.20) and (2.21). In the same way,
for our present purpose, an isoperimetric comparison space Mm

W can be w-balanced
from below in the sense of Definition 2.12 and, moreover, considered itself as a model
space, it can be W−balanced from above. In fact, these two conditions are the bal-
ancing conditions which must be satisfied by the isoperimetric comparison spaces in
Theorems 5.1 and 5.3. If we differentiate Eq. (2.16) and infer the balance conditions
(2.22) and q ′

W (s) ≥ 0 we get:

Lemma 2.14 Suppose that

m(ηw(r(s))− h(r(s)))− g2(r(s))ηw(r(s))− g(r(s))g′(r(s)) > 0. (2.27)

Then the isoperimetric comparison space Mm
W = Cm

w,g,h is w-balanced from below
and W−balanced from above if and only if

g(r(s))

m(ηw(r(s))− h(r(s)))
≤ qW (s)

≤ g(r(s))

m(ηw(r(s))− h(r(s)))− g2(r(s))ηw(r(s))− g(r(s))g′(r(s))
. (2.28)

The set of comparison spaces Mm
W = Cm

w,g,h which satisfy both balance conditions
in (2.28) is clearly not empty. Indeed, as was pointed out in Observation 2.11, the
conditions for balance from below and balance from above (for standard w-model
spaces Mm

w ) are both open conditions on those warping functions which are suffi-
ciently close to have constant negative curvature. This means that for the special cases
where h(r) = 0 and g(r) = 1 there are warping functions w(r) = W (r), which
satisfy strict inequalities in (2.28). The continuity of qW (s) in terms of h(r), g(r) and
w(r) then guarantees that the space of functions satisfying these inequalities (2.28) is
also non-empty.
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2.5 Comparison constellations

We now present the precise settings where our main results take place, introducing the
notion of comparison constellations. For that purpose we shall bound the previously
introduced notions of radial curvature and tangency by the corresponding quantities
attained in some special model spaces, called isoperimetric comparison spaces to be
defined in the next subsection.

Definition 2.15 Let N n denote a complete Riemannian manifold with a pole p and
distance function r = r(x) = distN (p, x). Let Pm denote an unbounded complete
and closed submanifold in N n . Suppose p ∈ Pm and suppose that the following
conditions are satisfied for all x ∈ Pm with r(x) ∈ [0, R]:
(a) The p-radial sectional curvatures of N are bounded from below by the pw-radial

sectional curvatures of the w−model space Mm
w :

K(σx ) ≥ −w
′′(r(x))
w(r(x))

.

(b) The p-radial mean curvature of P is bounded from below by a smooth radial
function h(r), (h is a radial convexity function):

C(x) ≥ h(r(x)).

(c) The submanifold P satisfies a radial tangency condition at p ∈ P , with smooth
positive function g, i.e., we have a smooth positive function

g : P �→ R+,

such that

T (x) = ‖∇ Pr(x)‖ ≥ g(r(x)) > 0 for all x ∈ P. (2.29)

Let Cm
w,g,h denote the W -model with the specific warping function W : π(Cm

w,g,h) →
R+ constructed in Definition 2.8, (Sect. 2.3), viaw, g, and h. Then the triple {N n , Pm,

Cm
w,g,h} is called an isoperimetric comparison constellation bounded from below on

the interval [0, R].
Remark g This definition of isoperimetric comparison constellation bounded from
below was introduced in Ref. [16].

A “constellation bounded from above” is given by the following dual setting (with
respect to the definition above), considering the special W -model spaces Cm

w,g,h with
g = 1:

Definition 2.16 Let N n denote a Riemannian manifold with a pole p and distance
function r = r(x) = distN (p, x). Let Pm denote an unbounded complete and closed
submanifold in N n . Suppose the following conditions are satisfied for all x ∈ Pm with
r(x) ∈ [0, R]:
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(a) The p-radial sectional curvatures of N are bounded from above by the pw-radial
sectional curvatures of the w−model space Mm

w :

K(σx ) ≤ −w
′′(r(x))
w(r(x))

.

(b) The p-radial mean curvature of P is bounded from above by a smooth radial
function h(r):

C(x) ≤ h(r(x)).

Let Cm
w,1,h denote the W -model with the specific warping function W : π(Cm

w,1,h)→
R+ constructed, (in the same way as in Definition 2.15 above), in Definition 2.8 viaw,
g = 1, and h. Then the triple {N n, Pm,Cm

w,1,h} is called an isoperimetric comparison
constellation bounded from above on the interval [0, R].
Remark h The isoperimetric comparison constellations bounded from above consti-
tutes a generalization of the triples {N n, Pm,Mm

w } considered in the main theorem
of [15]. This generalization is given by the fact that we construct the isoperimetric
comparison space Cm

w,g,h with g = 1, (by definition), and, when P is minimal, then
we consider as the bounding funtion h = 0. It is straigthforward to see that, under
these restrictions, W = w and hence, Cm

w,1,0 = Mm
w .

3 Isoperimetric results

We find upper bounds for the isoperimetric quotient defined as the volume of the
extrinsic sphere divided by the volume of the extrinsic ball, in the setting given by the
comparison constellations. In order to do that, we need the following Laplacian com-
parison Theorem for manifolds with a pole (see [8,10,12,14–16] for more details).
We note here that all the extrinsic balls are precompact in our setting.

Theorem 3.1 Let N n be a manifold with a pole p, let Mm
w denote a w−model with

center pw. Then we have the following dual Laplacian inequalities for modified dis-
tance functions:
(i) Suppose that every p-radial sectional curvature at x ∈ N − {p} is bounded by

the pw-radial sectional curvatures in Mm
w as follows:

K(σ (x)) = K p,N (σx ) ≥ −w
′′(r)
w(r)

. (3.1)

Then we have for every smooth function f (r)with f ′(r) ≤ 0 for all r , (respectively
f ′(r) ≥ 0 for all r):

�P ( f ◦ r) ≥ (≤) ( f ′′(r)− f ′(r)ηw(r)
) ‖∇ Pr‖2 + m f ′(r)

(
ηw(r)+ 〈∇N r, HP 〉

)
,

(3.2)

where HP denotes the mean curvature vector of P in N.
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(ii) Suppose that every p-radial sectional curvature at x ∈ N − {p} is bounded by
the pw-radial sectional curvatures in Mm

w as follows:

K(σ (x)) = K p,N (σx ) ≤ −w
′′(r)
w(r)

. (3.3)

Then we have for every smooth function f (r)with f ′(r) ≤ 0 for all r , (respectively
f ′(r) ≥ 0 for all r):

�P ( f ◦ r) ≤ (≥) ( f ′′(r)− f ′(r)ηw(r)
) ‖∇ Pr‖2

+ m f ′(r)
(
ηw(r)+ 〈∇N r, HP 〉

)
, (3.4)

where HP denotes the mean curvature vector of P in N.

The isoperimetric inequality (3.5) below has been stated and proved previously in
Ref. [16, Theorem 7.1]. On the other hand, the isoperimetric inequality (3.6) has been
stated and proved in Ref. [15], but only under the assumption that P is minimal and
that the model space satisfies a more restrictive balance condition, see Remark f. For
completeness we therefore give a sketch of the proof of inequality (3.6) below.

Theorem 3.2 There are two dual settings to be considered:
(i) Consider an isoperimetric comparison constellation bounded from below

{N n, Pm,Cm
w,g,h}. Assume that the isoperimetric comparison space Cm

w,g,h is
w-balanced from below. Then

Vol(∂DR)

Vol(DR)
≤ Vol(∂BW

s(R))

Vol(BW
s(R))

≤ m

g(R)
(ηw(R)− h(R)) . (3.5)

where s(R) is the stretched radius given by Definition 2.7.
(ii) Consider an isoperimetric comparison constellation bounded from above

{N n, Pm,Cm
w,1,h}. Assume that the isoperimetric comparison space Cm

w,1,h is
w-balanced from below. Then

Vol(∂DR)

Vol(DR)
≥ Vol(∂BW

R )

Vol(BW
R )

. (3.6)

If equality holds in (3.6) for some fixed radius R > 0, then DR is a cone in the
ambient space N n.

Proof The proof starts from the same point for both inequalities. As in Ref. [16], we
define a second order differential operator L on functions f of one real variable as
follows:

L f (r) = f ′′(r) g2(r)+ f ′(r)
(
(m − g2(r))ηw(r)− m h(r)

)
, (3.7)
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and consider the smooth solution ψ(r) to the following Dirichlet–Poisson problem:

Lψ(r) = −1 on [0, R],
ψ(R) = 0.

(3.8)

The ODE is equivalent to the following:

ψ ′′(r)+ ψ ′(r)
(

−ηw(r)+ m

g2(r)
(ηw(r)− h(r))

)
= − 1

g2(r)
. (3.9)

The solution is constructed via the auxiliary function �(r) from Eq. (2.14) and it is
given, as it can be seen in Ref. [16], by:

ψ ′(r) = �(r) = −1

g(r)�(r)

r∫

0

�(t)

g(t)
dt

= − Vol(BW
s(r))

g(r)Vol(∂BW
s(r))

= −qW (s(r))

g(r)
, (3.10)

and then

ψ(r) =
R∫

r

1

g(u)�(u)

⎛
⎝

u∫

0

�(t)

g(t)
dt

⎞
⎠ du

=
R∫

r

qW (s(u))

g(u)
du =

s(R)∫

s(r)

qW (t)dt. (3.11)

We must recall, as it was pointed out in Remark d, that, when we consider a com-
parison constellation bounded from above, as in the statement (ii) of the Theorem,
then g(r) = 1 in (3.7) and (3.9), so s(r) = r , and

ψ ′(r) = −qW (r) = −Vol(BW
r )

Vol(SW
r )

.

Then—because of the balance condition (2.22) and Eq. (3.9)—the function ψ(r)
enjoys the following inequality:

ψ ′′(r)− ψ ′(r)ηw(r) ≥ 0. (3.12)

The second common step to prove isoperimetric inequalities (3.5) and (3.6), is to
transplant ψ(r) to DR defining

ψ : DR −→ R; ψ(x) := ψ(r(x)).
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Now, we are going to focus attention on the isoperimetric inequality (3.6). In this
case, we have that the sectional curvatures of the ambient manifold are bounded from
above, inequality (3.12), that the p-radial mean curvature of P is bounded from above
by h(r), and that ηw(r) − h(r) > 0 for all r > 0. Then, applying now the Laplace
inequality (3.4) in Theorem 3.1 for the transplanted function ψ(r) we have the fol-
lowing comparison,

�Pψ(r(x)) ≤ (
ψ ′′(r(x))− ψ ′(r(x))ηw(r(x))

) ‖∇ Pr‖2

+ mψ ′(r(x)) (ηw(r(x))− h(r(x)))

≤ Lψ(r(x)) = −1 = �P E(x). (3.13)

Applying the divergence theorem, using the unit normal ∇ Pr/ ‖∇ Pr‖ to ∂Dr , we
get, as in Ref. [19], but now for submanifolds with p-radial mean curvature bounded
from above by h(r):

Vol(DR) ≤
∫

DR

−�Pψ(r(x)) dσ

= −�(R)
∫

∂DR

‖∇ Pr‖ dσ

≤ −�(R)Vol(∂DR). (3.14)

which shows the isoperimetric inequality (3.6), because in this case, and in view of
remark d, we have that

�(r) = ψ ′(r) = −qW (r) = −Vol(BW
r )

Vol(SW
r )

.

To prove the equality assertion, we note that equality in (3.6) for some fixed R > 0
implies that the inequalities in (3.13) and (3.14) become equalities. Hence, ‖∇ Pr‖ =
1 = ‖∇N r‖ in DR , so ∇ Pr = ∇N r in DR . Then, all the geodesics in N starting at
p thus lie in P , so DR = expp(D̃R), with D̃R being the 0-centered R-ball in Tp P .
Therefore, DR is a cone in N .

Inequality (3.5) is proved in the same way, see [16], but using the Laplace inequality
(3.2) to the transplanted functionψ(r). In this case, we are assuming that the sectional
curvatures of the ambient manifold are bounded from below and the p-radial mean
curvature of the submanifold is bounded from below by the function h(r). Under these
conditions, we have

�Pψ(r(x)) ≥ Lψ(r(x)) = −1 = �P E(x). (3.15)

Then, we obtain the result applying the divergence theorem as before and taking
into account that in this case the derivative of ψ(r) is

123



526 A. Hurtado et al.

�(R) = ψ ′(R) = − Vol(BW
s(R))

g(R)Vol(∂BW
s(R))

.

��
A corollary of the proof of Theorem 3.2 is the following

Proposition 3.3 Let us consider the isoperimetric model space Mm
W = Cm

w,g,h. Then

ψ(r) = EW
s(R)(s(r)) for all r ∈ [0, R],

where s is the stretching function defined in Eq. (2.12) and

EW
s(R) : BW

s(R) −→ R,

is the solution of the Poisson problem

�
Cm
w,g,h E(s) = −1 on BW

s(R),

E = 0 on ∂BW
s(R). (3.16)

Proof This follows directly from Proposition 2.6 by applying (3.11). ��
The proof of the next Corollary 3.4 (where we assume that the submanifold P has

bounded p-radial mean curvature from above or from below), follows the same formal
steps as the corresponding results for minimal submanifolds, which can be founded
in Refs. [15,16,20]. As in these proofs, the co-area formula, see [4], plays here a
fundamental rôle.

Corollary 3.4 Again we consider the two dual settings:
(i) Let {N n, Pm,Cm

w,g,h} be a comparison constellation bounded from below on the
interval [0, R], as in statement (i) of Theorem 3.2.
Then

Vol(Dr ) ≤ Vol(BW
s(r)) for every r ∈ [0, R]. (3.17)

(ii) Let {N n, Pm,Cm
w,1,h} be a comparison constellation bounded from above on the

interval [0, R], as in statement (ii) of Theorem 3.2.
Then

Vol(Dr ) ≥ Vol(BW
r ) for every r ∈ [0, R]. (3.18)

Equality in (3.18), for all r ∈ [0, R] and some fixed radius R > 0 implies that DR

is a cone in N n, using the same arguments as in the proof of Theorem 3.2.
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4 Symmetrization into model spaces

As in Ref. [15] we use the concept of Schwarz-symmetrization as considered in, e.g.,
[1,22], or, more recently, in Refs. [5,17]. We review some facts about this instrumental
tool.

Definition 4.1 Suppose D is a precompact open connected domain in Pm . Then the
w-model space symmetrization of D is denoted by D∗ and is defined to be the unique
pw-centered ball D∗ = Bw(D) in Mm

w satisfying Vol(D) = Vol(Bw(D)). In the par-
ticular case where D is actually an extrinsic metric ball DR in P of radius R we may
write

D∗
R = Bw(D) = BwT (R),

where T (R) is some increasing function of R which depends on the geometry of P ,
according to the defining property:

Vol(DR) = Vol(BwT (R)).

We also introduce the notion of a symmetrized function on the symmetrization D∗
of D as follows.

Definition 4.2 Let f denote a nonnegative function on D

f : D ⊆ P → R
+ ∪ {0}.

For t > 0 we let

D(t) = {x ∈ D| f (x) ≥ t}.

Then the symmetrization of f is the function f ∗ : D∗ → R ∪ {0} defined by

f ∗(x∗) = sup{t |x∗ ∈ D(t)∗}.

Proposition 4.3 The symmetrized objects f ∗ and D∗ satisfy the following properties:
(1) The function f ∗ depends only on the geodesic distance to the center pw of the

ball D∗ in Mm
w and is non-increasing.

(2) The functions f and f ∗ are equimeasurable in the sense that

VolP ({x ∈ D| f (x) ≥ t}) = VolMm
w
({x∗ ∈ D∗| f ∗(x∗) ≥ t}) (4.1)

for all t ≥ 0. In particular, for all t > 0, we have

∫

D(t)

f dσ ≤
∫

D(t)∗
f ∗dσ̃ . (4.2)
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Remark i The proof of these properties follows the proof of the classical Schwarz-
symmetrization using the ’slicing’ technique for symmetrized volume integrations and
comparison—see, e.g., [5].

In the proof of both Theorems 5.1 and 5.3 in Sect. 5, we shall consider a symmetric
model space rearrangement of the extrinsic ball DR as it has been described in Defi-
nitions 4.1 and 4.2, namely, a symmetrization of DR which is a geodesic T (R)-ball in
the model space Mm

W such that vol(DR) = vol(BW
T (R)), together the symmetrization of

the transplanted radial function ψ : DR −→ R of the solution of the Poisson problem
(3.8) in [0, R]. We know (see Proposition 3.3) that ψ(r) = EW

s(R)(s(r)), where EW
s(R)

is the solution of the Poisson problem (3.16).
This symmetrization is a function ψ∗ : BW

T (R) −→ R which satisfies the property
that inequality (4.2) becomes an equality. This property becomes a crucial fact in the
proof of Theorems 5.1 and 5.3.

Theorem 4.4 Letψ∗ : BW
T (R) −→ R be the symmetrization of the transplanted radial

function ψ : DR −→ R of the solution of the Poisson problem (3.8) in [0, R]. Then

∫

DR

ψdσ =
∫

BW
T (R)

ψ∗dσ̃ . (4.3)

Proof First of all, we are going to define ψ∗. To do that, let us consider T =
max[0,R] ψ . On the other hand, and given t ∈ [0, T ], let us define the sets

D(t) = {x ∈ DR |ψ(r(x)) ≥ t},

and

�(t) = {x ∈ DR |ψ(r(x)) = t}.

As ψ(r(x)) = EW
s(R)(s(r(x))) for all x ∈ DR , then ψ is radial and non-increasing,

its maximum T will be attained at r = 0, D(t) is the extrinsic ball in P with radius
a(t) := ψ−1(t), (we denote it as Da(t)), and �(t) is its boundary, the extrinsic sphere
with radius a(t), ∂Da(t). We have too that D(0) = DR and D(T ) = {p}, the center
of the extrinsic ball DR .

We consider the symmetrizations of the sets D(t) ⊆ P , namely, the geodesic balls
D(t)∗ = BW

r̃(t) in Mm
W such that

Vol(D(t)) = Vol(Da(t)) = Vol(BW
r̃(t)).

Hence, we have defined a non-increasing function

r̃ : [0, T ] −→ [0, T (R)]; r̃ = r̃(t),

defined as the radius r̃(t) from the center p̃ of the model space Cm
w,g,h such that

Vol(BW
r̃(t)) = Vol(D(t)) = Vol(Da(t)), (and hence, r̃(0) = T (R) and r̃(T ) = 0), with
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inverse

φ : [0, T (R)] −→ [0, T ]; φ = φ(r̃),

such that φ′(r̃(t)) = 1
r̃ ′(t) for all t ∈ [0, T ].

Thus, given x̃ ∈ BW
T (R), and taking into account that

BW
T (R) = ∪t∈[0,T ]∂D(t)∗ = ∪t∈[0,T ]SW

r̃(t),

there exists some biggest value t0 such that r p̃(x̃) = r̃(t0), (and hence, x̃ ∈ D(t0)∗).
Therefore, in accordance with Definition 4.2, the symmetrization of ψ : DR −→ R

is a function ψ∗ : BW
T (R) −→ R defined as

ψ∗(x̃) = EW∗
s(R)(s(r p̃(x̃)) = t0 = φ(r̃(t0)). (4.4)

Remark j We pause to make two observations:

(i) Note that ψ∗ is a radial function, ψ∗(x̃) = ψ∗(r̃(x̃)) = ψ∗(r̃). Therefore, for
all r̃ ∈ [0, T (R)] and t ∈ [0, T ], we have

ψ∗′(r̃) = φ′(r̃(t)) = 1

r̃ ′(t)
. (4.5)

(ii) Let T (R) be the radius such that Vol(BW
T (R)) = Vol(DR), and let s(R) be the

“stretched” radius s(R) = ∫ R
0

1
g(t)dt .

As the comparison constellation is bounded from below, and by virtue of inequal-
ity (3.17) in Corollary 3.4, we have, for all t ∈ [0, T ], Vol(BW

r̃(t)) = Vol(Da(t)) ≤
Vol(BW

s(a(t))), so r̃(t) ≤ s(a(t)) for all t ∈ [0, T ] and then

T (R) = b(0) ≤ s(a(0)) = s(R). (4.6)

By definition of ψ∗, we have ψ∗ = φ ◦ r̃ on BW
T (R), see (4.4). Then, using the

formula for integration in a disc in a model space ([4, p. 47]) we get

∫

BW
T (R)

ψ∗dσ̃ =
∫

BW
T (R)

φ ◦ r̃dσ̃

=
∫

S0,m−1
1

d A(ξ){
T (R)∫

0

φ(r̃)W m−1(r̃)dr̃}
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=
T (R)∫

0

φ(r̃)Vol(S0,m−1
1 )W m−1(r̃)dr̃

=
T (R)∫

0

φ(r̃)Vol(SW
r̃ )dr̃ . (4.7)

Now, we change the variable using the bijective (monotone decreasing), function
r̃ : [0, T ] −→ [0, T (R)]; r̃(0) = T (R), r̃(T ) = 0, so

T (R)∫

0

φ(r̃)Vol(SW
r̃ )dr̃ =

0∫

T

φ(r̃(t))Vol(SW
r̃(t))r̃

′(t)dt. (4.8)

But we know that φ(r̃(t)) = t for all t ∈ [0, T ], and, on the other hand, denoting
as V (t) = Vol(BW

r̃(t)) = Vol(D(t)) for all t ∈ [0, T ], we have

V ′(t) = Vol(SW
r̃(t))r̃

′(t) for all t ∈ [0, T ], (4.9)

and hence

0∫

T

φ(r̃(t))Vol(SW
r̃(t))r̃

′(t)dt = −
T∫

0

tV ′(t)dt. (4.10)

Now, we apply co-area formula to the following setting: we have the transplanted
function ψ : DR −→ R, and the sets D(t), with their boundaries �(t). We have, by
definition, that V (t) = Vol(D(t)), so

V ′(t) = −
∫

�(t)

‖∇ Pψ‖−1dσt . (4.11)

Hence, putting together all the equalities before, taking into account that ψ |�(t)= t
for all t ∈ [0, T ], and using the co-area formula again ([4, equation (4) in Theorem
1, p. 86]), we conclude

∫

BW
T (R)

ψ∗dσ̃ = −
T∫

0

tV ′(t)dt =
∫

DR

ψdσ. (4.12)

��
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5 Main results

By definition, the torsional rigidity A1(DR) is the DR-integral of the mean exit time
function ER(x) from x in DR . We note that for most minimally immersed submani-
folds Pm in the flat Euclidean spaces R

n with the obvious choice of comparison model
space, Mm

W = R
m , W (r) = r , we have (see [11,20]):

ER(x) = EW
R (r(x)) for all x ∈ DR,

but also Vol(DR) > Vol(BW
R ),

so that A1(DR) > A1(B
W
R ).

In this sense Theorem 5.1 is a generalization of this fact, when we assume that
the ambient space has sectional curvatures bounded from below, and that the mean
curvature of the submanifold is controlled along the radial directions from the pole.
These assumptions includes minimality and convexity of the submanifold. This result
is based on previous geometrical and analytical considerations from [16].

Theorem 5.1 Let {N n, Pm,Cm
w,g,h} denote a comparison constellation bounded from

below in the sense of Definition 2.15. Assume that Mm
W = Cm

w,g,h is w-balanced from
below, and W−balanced from above. Let DR be a precompact extrinsic R-ball in Pm,
with center at a point p ∈ P which also serves as a pole in N. Then

A1(DR) ≥ A1

(
BW

T (R)

)
, (5.1)

where BW
T (R) is the Schwarz-symmetrization of DR in the W -model space Cm

w,g,h, i.e.,

it is the geodesic ball in Cm
w,g,h such that Vol(DR) = Vol(BW

T (R)).

Proof of Theorem 5.1 Given the solution ER to the Dirichlet–Poisson equation on DR ,
we compare it with the transplanted function ψ(r(x)), defined on DR as the radial
solution of equation (3.8) in the proof of Theorem 3.2. In fact, by inequality (3.15) we
have that ψ − ER is a subharmonic function with ER(R) = ψ(R) = 0, so, applying
Maximum Principle,

ER ≥ ψ on DR .

Using this inequality and Proposition 4.4, we have

A1(DR) =
∫

DR

ERdσ ≥
∫

DR

ψdσ =
∫

BW
T (R)

ψ∗dσ̃ . (5.2)

The symmetrized function ψ∗ : BW
T (R) −→ R is a radial function, but it does not

necessarily satisfy the Poisson equation on BW
T (R). Then, we are going to compare ψ∗
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with the radial solution EW
T (R) : BW

T (R) −→ R of the Dirichlet-Poisson problem

�
Cm
w,g,h E = −1 on BW

T (R)

E = 0 on ∂BW
T (R).

(5.3)

To do that, we shall prove the following (the proof is given below after finishing
the proof of Theorem 5.1)

Proposition 5.2

ψ∗′(r̃) ≤ EW ′
T (R)(r̃) for all r̃ ∈ [0, T (R)]. (5.4)

Assuming (5.4) for a moment, integrating from r̃ to T (R) both sides of inequality
(5.4), and taking into account that

ψ∗(T (R)) = φ(T (R)) = 0 = EW
T (R)(T (R)),

we obtain, for all r̃ ∈ [0, T (R)],

− ψ∗(r̃) =
T (R)∫

r̃

ψ∗′(l)dl ≤
T (R)∫

r̃

EW ′
T (R)(l)dl = −EW

T (R)(r̃), (5.5)

and hence,

ψ∗(r̃) ≥ EW
T (R)(r̃) for all r̃ ∈ [0, T (R)].

Therefore,

A1(DR) =
∫

DR

ERdσ ≥
∫

DR

ψdσ =
∫

BW
T (R)

ψ∗dσ̃

≥
∫

BW
T (R)

EW
T (R)dσ̃ = A1(B

W
T (R)), (5.6)

and the Theorem is proved. ��
Proof of Proposition 5.2 Using Eqs. (4.5), (4.9) and (4.11), we have that

ψ∗′(r̃) = 1

r̃ ′(t)
= − Vol(SW

r̃(t))∫
�(t) ‖∇ Pψ‖−1dσt

. (5.7)

As ψ(r) is radial, we have

‖∇ Pψ(r)‖ = |ψ ′(r)|‖∇ Pr‖ ≥ |ψ ′(r)|g(r), (5.8)
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so, as �(t) = ∂Da(t) for all t ∈ [0, T ], we have that

∫

�(t)

‖∇ Pψ‖−1dσt = 1

|ψ ′(a(t))|
∫

∂Da(t)

‖∇ Pr‖−1

≤ 1

|ψ ′(a(t))|g(a(t))Vol(∂Da(t)), (5.9)

and hence, by equation (3.10)

ψ∗′(r̃(t)) ≤ −|ψ ′(a(t))|g(a(t)) Vol(SW
r̃(t))

Vol(∂Da(t))

= −Vol(BW
s(a(t)))

Vol(SW
s(a(t)))

Vol(SW
r̃(t))

Vol(∂Da(t))
. (5.10)

But we have that (see Remark j in the proof of Theorem 4.4 and inequality (3.17)
in Corollary 3.4)

r̃(t) ≤ s(a(t)) for all t,

so, since q ′
W (r) ≥ 0, we get:

Vol(BW
r̃(t))

Vol(SW
r̃(t))

≤ Vol(BW
s(a(t)))

Vol(SW
s(a(t)))

. (5.11)

Therefore, as Vol(BW
r̃(t)) = Vol(Da(t)),

ψ∗′(r̃(t)) ≤ − Vol(Da(t))

Vol(∂Da(t))
. (5.12)

Now, we apply again the isoperimetric inequality of Theorem 3.2 (i), the fact that
r̃(t) ≤ s(a(t)) and that q ′

W (r) ≥ 0 to obtain finally

ψ∗′(r̃(t)) ≤ − Vol(Da(t))

Vol(∂Da(t))
≤ −Vol(BW

s(a(t)))

Vol(SW
s(a(t)))

≤ −Vol(BW
r̃(t))

Vol(SW
r̃(t))

= EW ′
T (R)(r̃(t)). (5.13)

��
Theorem 5.3 below is a generalization of the result [15, Theorem 2.1]. In that

paper, we obtained an upper bound for the torsional rigidity of the extrinsic domains
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of a minimal submanifold. We assume now that the radial mean curvature of the sub-
manifold is bounded from above, and, as in Ref. [15], that the ambient manifold has
sectional curvatures bounded from above. Hence, we have the following generalization
to submanifolds which are not necessarily minimal:

Theorem 5.3 Let {N n, Pm,Cm
w,1,h} denote a comparison constellation bounded from

above. Assume that Mm
W = Cm

w,1,h isw-balanced from below, W -balanced from above,
and that it has infinite volume. Let DR be a precompact extrinsic R-ball in Pm, with
center at a point p ∈ P which also serves as a pole in N. Then

A1(DR) ≤ A1(B
W
T (R)), (5.14)

where BW
T (R) is the Schwarz-symmetrization of DR in the W -model space Mm

W , i.e., it

is the geodesic ball in Mm
W such that Vol(DR) = Vol(BW

T (R)). Equality in (5.14) for
some fixed radius R implies that DR is a cone in N.

Proof of Theorem 5.3 The proof of this Theorem follows the lines of the Theorem 5.1,
and the same scheme as the proof of Theorem 2.1 in Ref. [15]. In this proof, however,
the sign of some crucial inequalities is reversed with respect the proof of Theorem 5.1.
In fact, the new geometric setting given by the comparison constellation bounded
from above give us inequality (3.13) so when we compare the solution of the problem
(3.8) with the solution ER to the Dirichlet–Poisson equation on DR , we conclude,
applying too the maximum principle, that ER ≤ ψ on DR , and hence, using too
Proposition 4.4,

A1(DR) =
∫

DR

ERdσ ≤
∫

DR

ψdσ =
∫

BW
T (R)

ψ∗dσ̃ , (5.15)

where BW
T (R) is the symmetrization of DR in Cm

w,h .
We must remark that as the comparison constellation is bounded from above, we

have, by virtue of Corollary 3.4, that

Vol(BW
r̃(t)) = Vol(Da(t)) ≥ Vol(BW

a(t)),

so r̃(t) ≥ a(t) for all t and

r̃(0) = T (R) ≥ a(0) = R. (5.16)

Now, following the lines of the proof of Theorem 5.1 we have the following, which
will be proved below:

Proposition 5.4

ψ∗′(r̃) ≥ EW ′
T (R)(r̃) for all r̃ ∈ [0, T (R)]. (5.17)
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Since

ψ∗(T (R)) = φ(T (R)) = 0 = EW
T (R)(T (R)),

we obtain, integrating (5.17) from r̃ to T (R), that

EW∗
R (r̃) ≤ EW

T (R)(r̃) for all r̃ ∈ [0, T (R)].

Therefore,

A1(DR) =
∫

DR

ERdσ ≤
∫

DR

ψdσ =
∫

BW
T (R)

ψ∗dσ̃

≤
∫

BW
T (R)

EW
T (R)dσ̃ = A1(B

W
T (R)), (5.18)

and the Theorem is proved. ��
Proof of Proposition 5.4 This proof follows the same steps as the proof of Proposi-
tion 5.2, taking into account that in this case the comparison constellation is bounded
from above, and hence, we shall use the isoperimetric inequality (3.6) in Theorem 3.2,
and inequality (3.18) in Corollary 3.4, inverting all inequalities. ��
Remark k The volume of the W -model may be finite and we need to guarantee that
there is enough room for the symmetrization construction, because of inequality (5.16).
For this reason, we assume that the volume of the model space is infinite. Alternatively
we could assume that W ′(r) > 0, because then the volume Vol(BW

r ) increases to ∞
with r . This condition, however, is more restrictive. In the setting of Theorem 5.1,
Vol(Dr ) = Vol(BW

T (r)) ≤ Vol(BW
s(r)) for all r , so we have inequality (4.6), and the

existence of T (R) is guaranteed without any additional hypothesis on the volume of
the model space.

6 Intrinsic versions

In this section we consider the intrinsic versions of Theorems 5.1 and 5.3 assuming
that Pm = N n . In this case, the extrinsic distance to the pole p becomes the intrinsic
distance in N , so, for all r the extrinsic domains Dr become the geodesic balls B N

r of
the ambient manifold N . Then, for all x ∈ P

∇ Pr(x) = ∇N r(x),

HP (x) = 0.

As a consequence, ‖∇ Pr‖ = 1, so g(r(x)) = 1 and C(x) = h(r(x)) = 0, the stretch-
ing function becomes the identity s(r) = r , W (s(r)) = w(r), and the isoperimetric
comparison space Cm

w,g,h is reduced to the auxiliary model space Mm
w .
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For this intrinsic viewpoint, we have the following isoperimetric and volume com-
parison inequalities.

Proposition 6.1 ([16]) Let N n denote a complete Riemannian manifold with a pole p.
Suppose that the p-radial sectional curvatures of N n are bounded from below by the
pw-radial sectional curvatures of a w-model space Mn

w. Then, for all R > 0

Vol(∂B N
R )

Vol(B N
R )

≤ Vol(∂BwR )

Vol(BwR )
.

Furthermore,

Vol(B N
R ) ≤ Vol(BwR ). (6.1)

Theorem 6.2 Let B N
R be a geodesic ball of a complete Riemannian manifold N n with

a pole p and suppose that the p-radial sectional curvatures of N n are bounded from
below by the pw-radial sectional curvatures of a w-model space Mn

w. Assume that
Mn
w is balanced from above. Then

A1(B
N
R ) ≥ A1(B

w
T (R)), (6.2)

where BwT (R) is the Schwarz-symmetrization of B N
R in the w-space Mn

w, i.e., it is the

geodesic ball in Mn
w such that Vol(B N

R ) = Vol(BwT (R)).

Equality in (6.2) for some fixed radius R implies that T (R) = R and that B N
R and

BwR are isometric.

Proof The proof follows the ideas of Theorem 5.1. In this case, since, g(r) = 1
and h(r) = 0, the second order differential operator L agrees with the Laplacian on
functions of one variable defined on the model spaces Mn

w,

L f (r) = f ′′(r)+ (n − 1)ηw(r) f ′(r).

Solving the corresponding problem (3.8) on [0, R] under this conditions, transplant-
ing the solution ψ(r) to the geodesic ball B N

R , and applying Laplacian comparison
analysis, (namely, using inequality (3.2) in Theorem 3.1 when ψ ′ ≤ 0), we obtain the
inequality

�Nψ(r(x)) ≥ −1 = �N ER(x). (6.3)

Since ‖∇ Pr‖ = 1, the sign of ψ ′′(r)− ψ ′(r)ηw(r) is obsolete in this setting and we
do not need to assume that Mn

w is w-balanced from below.
Therefore, since ψ(R) = ER(R) = 0, the Maximum Principle, gives

ER(x) ≥ ψ(r(x)) for all x ∈ B N
R , (6.4)

123



Torsional rigidity 537

and we have

A1(B
N
R ) =

∫

B N
R

ERdσ ≥
∫

B N
R

ψdσ =
∫

BwT (R)

ψ∗dσ̃ ,

where BwT (R) is the Schwarz-symmetrization of the geodesic ball B N
R in the w-model

space Mn
w, that is, the geodesic ball satisfying that Vol(B N

R ) = Vol(BwT (R)). From
(6.1), we know that T (R) ≤ R.

Now, we consider the radial solution EwT (R)(r) of the problem

�Mn
w E = −1 on BwT (R),

E |∂BwT (R)
= 0.

With an argument analogous to that of Theorem 5.1, we conclude that

ψ∗(t) ≥ EwT (R)(t) for all t ∈ [0, T (R)],

and then

A1(B
N
R ) ≥

∫

BwT (R)

ψ∗dσ̃ ≥
∫

BwT (R)

EwT (R)dσ̃ = A1(B
w
T (R)).

To prove the equality assertion, we must take into account that equality in (6.2)
for some fixed radius R > 0 implies equality in (6.4) for all x ∈ B N

R . Then, the
exponential map from the pole p generates an isometry from B N

R onto BwR in the way
described in Ref. [15]. ��

The following intrinsic version of Theorem 5.3 was stated and proved in Ref. [15].

Theorem 6.3 Let B N
R be a geodesic ball of a complete Riemannian manifold N n with

a pole p and suppose that the p-radial sectional curvatures of N n are bounded from
above by the pw-radial sectional curvatures of a w-model space Mn

w. Assume that
Mn
w is totally balanced. Then

A1(B
N
R ) ≤ A1(B

w
T (R)), (6.5)

where BwT (R) is the Schwarz-symmetrization of B N
R in the w-space Mn

w, i.e., it is the

geodesic ball in Mn
w such that Vol(B N

R ) = Vol(BwT (R)).

Equality in (6.5) for some fixed radius R implies that T (R) = R and that B N
R and

BwR are isometric.

Proof We solve (3.8) under the same conditions as in the proof of Theorem 6.2, and
transplant the solution to the geodesic ball B N

R . In this case, the p-radial sectional

123



538 A. Hurtado et al.

curvatures of N are bounded from above by the pw-radial sectional curvatures in Mn
w,

and ψ ′(r) ≤ 0 so we have the inequality

�Nψ(r(x)) ≤ −1 = �N ER(x). (6.6)

Hence, ER ≤ ψ on B N
R and we have inequality (5.1) using the same arguments as in

the proof of Theorem 6.2.
The equality assertion follows from same considerations than in Theorem 6.2. ��

Remark l Although we do not need the condition that thew-model space be balanced
from below to conclude that ER ≤ ψ on B N

R , we need to guarantee that there is enough
room for the symmetrization construction. In this setting, Vol(B N

R ) ≥ Vol(BwR ) for
each R, and the volume of the w-model may be finite. However, if the w-model space
is w-balanced from below, w′(r) > 0 and the volume Vol(Bwr ) increases to ∞. For
this reason, we assume that Mn

w is totally balanced in Theorem 6.3.

7 Average mean exit time function

The geometric average mean exit time from the extrinsic balls DR , defined by the
quotient A1(DR)/Vol(DR), was introduced in Ref. [15], with the purpose to give
some idea about the volume-relative swiftness of the Brownian motion defined on
the submanifold P at infinity, in connection with the more classical properties like
transience and recurrence.

As alluded to in the Introduction, we have been inspired partially by the works [2,3],
where the authors find upper bounds for the torsional rigidity of domains in Euclidean
spaces which satisfy Hardy inequalities. These inequalities guarantee that the bound-
aries of the domains are not too thin so that the Brownian diffusion is guaranteed
sufficient room for escape.

In our present setting, the thickness of the boundary is replaced by the isoperimetric
inequalities (3.5) and (3.6), satisfied by our extrinsic domains in different curvature
contexts, which controls whether the Brownian diffusion process is slow or fast at
infinity.

For example, although Brownian diffusion is known to be transient in Euclidean
spaces of dimensions larger than 2, it is not sufficiently swift, however, to give even a
finite average of the mean exit time at infinity for geodesic balls, (see [15, Corollary
5.2]). Concerning this observation, we gave in Ref. [15] a set of curvature restrictions
which give finiteness of the average mean exit time at infinity for minimal submani-
folds. We shall present in Corollary 7.3, a generalization of this result for submanifolds
with controlled radial mean curvature. On the other hand, in Corollary 7.2 a dual ver-
sion of this result is presented in the sense that we find a set of curvature bounds which
guarantee that the average of the mean exit time at infinity is infinite, (thus obtaining
a set of curvature restrictions under which the Brownian diffusion process defined on
the submanifold is slow).

In the following results, we shall denote as R̄ the extended real line so that R̄+ =
R+ ∪ {∞}.
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Proposition 7.1 Let Mm
w be a w-model space with infinite volume. Let us suppose

that the following limit exists:

lim
R→∞ qW (R) = qW (∞) ∈ R̄+.

Then the average mean exit time from the R-balls in these model spaces satisfies:

lim
R→∞

A1(BwR )

Vol(BwR )
= q2

W (∞) ∈ R̄+. (7.1)

Proof We apply L’Hospital’s Rule to the differentiable functions in ]0,∞[, f (R) =
A1(BwR ) and g(R) = Vol(BwR ). Using the fact that, in the model spaces, the derivative
of the volume of the geodesic balls is equal to the volume of the geodesic spheres, see
(2.7), and Eq. (2.10) we have

lim
R→∞

A1(BwR )

Vol(BwR )
= lim

R→∞ q2
W (R) =

(
lim

R→∞ qW (R)

)2

. (7.2)

��
Remark m If q2

W (∞) > 0, then, since the volume of the space is infinite, limR→∞
Vol(BwR ) = ∞ and from inequality (7.2), limR→∞ A1(BwR ) = ∞.

As corollaries of Proposition 7.1 and Theorems 5.1 and 5.3, we have the following
results:

Corollary 7.2 Let {N n, Pm,Cm
w,g,h}denote a comparison constellation bounded from

below. Assume that Mm
W = Cm

w,g,h is w-balanced from below, that it is W -balanced
from above, and that it has infinite volume. Let DR be an extrinsic R-ball in Pm,
with center at a point p ∈ P which also serves as a pole in N. If the volume of the
submanifold P is infinite, and limR→∞ qW (R) = qW (∞) = ∞ then

lim
R→∞

A1(DR)

Vol(DR)
≥ q2

W (∞) = ∞. (7.3)

Proof Applying Theorem 5.1,

lim
R→∞

A1(DR)

Vol(DR)
≥ lim

R→∞
A1(BW

T (R))

Vol(BW
T (R))

, (7.4)

where BW
T (R) is the Schwarz-symmetrization of DR in the model space Mm

W .
Now, suppose that limR→∞ T (R) = T∞ < ∞. Then,

Vol(P) = lim
R→∞ Vol(DR) = lim

R→∞ Vol(BW
T (R)) = Vol(BW

T∞) < ∞, (7.5)
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which leads to a contradiction. As a consequence, T (R) goes to ∞ and we can replace
T (R) by R in the limit construction in the model space, that is

lim
R→∞

A1(DR)

Vol(DR)
≥ lim

R→∞
A1(BW

R )

Vol(BW
R )
. (7.6)

The result follows now applying Proposition 7.1. To do that, we must check that

lim
R→∞ Vol(BW

R ) = ∞, (7.7)

but this follows from Vol(Mm
W ) = ∞. On the other hand, we assume that

limR→∞ qW (R) = ∞ ∈ R̄. ��
Corollary 7.3 (see [15, Corollary 2.3]) Let {N n, Pm,Cm

w,1,h} denote a comparison
constellation bounded from above. Assume that Mm

W = Cm
w,1,h is w-balanced from

below, is W−balanced from above, and has infinite volume. Let DR be an extrinsic
R-ball in Pm, with center at a point p ∈ P which also serves as a pole in N. Suppose
that the model space geodesic spheres do not have 0 as a limit for their mean curvatures
ηW (R) as R → ∞ and that these mean curvatures satisfy ηW (r) > 0 for all r > 0.

Then limR→∞ qW (R) = qW (∞) < ∞ and

lim
R→∞

A1(DR)

Vol(DR)
≤ q2

W (∞) < ∞. (7.8)

Proof Proceeding as in Corollary 7.2, and applying Theorem 5.3, we have firstly

lim
R→∞

A1(DR)

Vol(DR)
≤ lim

R→∞
A1(BW

T (R))

Vol(BW
T (R))

, (7.9)

where BW
T (R) is the Schwarz-symmetrization of DR in the model space Mm

W .
As in the proof of Corollary 7.2, we can replace T (R) by R in the limit construction

in the model space, that is

lim
R→∞

A1(DR)

Vol(DR)
≤ lim

R→∞
A1(BW

R )

Vol(BW
R )

= lim
R→∞ qW (R), (7.10)

and we apply Proposition 7.1, because by hypothesis, Vol(Mm
W ) = ∞, and, on the

other hand, the limit

lim
R→∞ qW (R) < ∞. (7.11)

To see inequality (7.11) we use the fact that limR→∞ ηW (R) �= 0. Then, as
q ′

W (R) ≥ 0, we have that qW (R)ηW (R) ≤ 1
m−1 , see [15, Observation 3.8], so, as
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ηW (R) ≥ 0 for all R, we get

qW (R) ≤ 1

(m − 1)ηW (R)
. (7.12)

��
Remark n When P is minimal, we may use h = 0 as a bound for the p-radial mean
curvature, and hence, since by hypothesis g = 1, we have: W = w. In this case and
by virtue of the balance conditions, the model space Mm

w is totally balanced and then
we have ηw(R) > 0 for all R > 0. Therefore, Corollary 7.3 clearly generalizes [15,
Corollary 2.3].
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