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Succinct Games

Describing a game in normal form entails listing all payoffs for all players and
strategy combinations. In a game with n players, each facing m pure strategies,
one need to store nm” numbers!

A succinct game (or a succinctly representable game) is a game which may be
represented in a size much smaller than its normal-form representation.

Examples.
Sparse games. Most of the payoffs are zero.

Graphical games. The payoffs of each player depends on the actions of very few
(at most d) other players. The number of payoffs needed to describe this game is
nmd-+1,

Symmetric games. All players are identical, so in evaluating the payoff of a
combination of strategies, all that matters is how many of the n players play each
of the s strategies.

Polymatrix Games

A polymatrix game (a.k.a. multimatrix game) is a non-cooperative game in
which the relative influence of the selection of a pure strategy by any one
player on the payoff to any other player is always the same, regardless of
what the rest of the players do.

Formally:
v There are n players each of whom can use m pure strategies
V" For each pair (i,j) of players there is an m x m payoff matrix A7
V" The payoff of player i for the strategy combination s,,...,s, is given by
u(sss,) = DAY
jmi
The number of payoff values required to represent such a game is O(n?m?).

The problem of finding a Nash equilibrium in a polymatrix game is PPAD-
complete.




Context helps ...

12-
AiBC
cat 'Pb’
circus ﬁ
Elllle 'f eSSt ival
red j Va P hic 5
read

... but can also deceive!

Edward H. Adelson




What do you see?

Figure 2. The strength of context. The visual system makes assumptions regarding
object identities according to their size and location in the scene. In this picture,

d ibe the scene as ining a car and ian in the street.
However, the pedestrian is in fact the same shape as the car, except for a 90
rotation. The atypicality of this orientation for a car within the context defined by
the street scene causes the car to be recognized as a pedestrian.

From: A. Oliva and A. Torralba, “The role of context in object recognition”, Trends in Cognitive Sciences, 2007.
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From: M. Bar, “Visual objects in context”, Nature Reviews Neuroscience, August 2004.




The (Consistent) Labeling Problem

A labeling problem involves:

v A set of n objects B = {b,,...,b,}

v Asetof mlabels A = {1,...,m}

The goal is to label each object of B with a label of A.
To this end, two sources of information are exploited:

v Local measurements which capture the salient features of each object
viewed in isolation

v" Contextual information, expressed in terms of a real-valued n? x m?
matrix of compatibility coefficients R = {r;,(1, 1)}.

The coefficient r;( A, it) measures the strenght of compatibility between the
two hypotheses: “b; is labeled A" and “b; is labeled u “.

Relaxation Labeling Processes

The initial local measurements are assumed to provide, for each object b;€B,
an m-dimensional (probability) vector:

T
P = (PO p"m)

with p@(A) >0 and Y ; p@A) = 1. Each p,9(A) represents the initial, non-
contextual degree of confidence in the hypothesis “b; is labeled A ”.

By concatenating vectors p;©,...,p, @ one obtains an (initial) weighted labeling
assignment pO R

The space of weighted labeling assignments is
IK=Ax...xA
m times

where each A is the standard simplex of R". Vertices of IK represent
unambiguous labeling assignments

A relaxation labeling process takes the initial labeling assignment p© as input
and iteratively updates it taking into account the compatibility model R.




Relaxation Labeling Processes

In a now classic 1976 paper, Rosenfeld, Hummel, and Zucker introduced
heuristically the following update rule (assuming a non-negative
compatibility matrix):
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where

4R = 3 X1 Aeop!” (1)

quantifies the support that context gives at time t to the hypothesis “b; is
labeled with label A”.

See (Pelillo, 1997) for a rigorous derivation of this rule in the context of a
formal theory of consistency.

Applications

Since their introduction in the mid-1970’s relaxation labeling algorithms
have found applications in virtually all problems in computer vision and
pattern recognition:

Edge and curve detection and enhancement
Region-based segmentation

Stereo matching

Shape and object recognition

Grouping and perceptual organization
Graph matching

Handwriting interpretation
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Further, intriguing similarities exist between relaxation labeling processes
and certain mechanisms in the early stages of biological visual systems (see
Zucker, Dobbins and Iverson, 1989, for physiological and anatomical
evidence).




Hummel and Zucker’s Consistency

In 1983, Bob Hummel and Steve Zucker developed an elegant theory of
consistency in labeling problem.

By analogy with the unambiguous case, which is easily understood, they
define a weighted labeling assignment p€IK consistent if:

> (Mg (A= v, (Mg(h)  i=1..n
A A

for all labeling assignments veIK.
If strict inequalities hold for all v # p, then p is said to be strictly consistent.
Geometrical interpretation.

The support vector g points away
from all tangent vectors at p (it has

null projection in IK). ]
e ’
Generalization of classical constraint A
satisfaction problems! .
Characterizations

Theorem (Hummel and Zucker, 1983). A labeling p€IK is consistent if and
only if, for all i = 1...n, the following conditions hold:

1. g{(A)=c; whenever p(1) >0
2. g{A)<c;wheneverp(1)=0

for some constants c;...c,,.

The “average local consistency” of a labeling peIK is defined as:

A(p) =X ¥ p(M)gi(R)
i A

Theorem (Hummel and Zucker, 1983). If the compatibility matrix R is
symmetric, i.e., r,j()t,u):r/,(u,)t), then any local maximizer peIK of A is
consistent.




Understanding the “1976-rule”

Using the Baum-Eagon inequality it is easy to prove the following result,
concerning the original Rosenfeld-Hummel-Zucker (RHZ) update rule.

Theorem (Pelillo, 1997). The RHZ relaxation operator is a “growth
transformation” for the average local consistency A, provided that
compatibility coefficients are symmetric. In other words, the algorithm
strictly increases the average local consistency on each iteration, i.e.,

Alpt1) > A(plt)

for t =0,1,... until a fixed point is reached.

Theorem (Elfving and Eklundh, 1982; Pelillo, 1997). Let p€IK be a strictly
consistent labeling. Then p is an asymptotically stable equilibrium point for
the RHZ relaxation scheme, whether or not the compatibility matrix is
symmetric.

Relaxation Labeling and
Polymatrix Games

As observed by Miller and Zucker (1991) the consistent labeling problem is
equivalent to a polymatrix game.

Indeed, in such formulation we have:

v Objects = players

v' Labels = pure strategies

v Weighted labeling assignments = mixed strategies
v Compatibility coefficients = payoffs

and:

V" Consistent labeling = Nash equilibrium
v Strictly consistent labeling = strict Nash equilibrium

Further, the RHZ update rule corresponds to discrete-time multi-population
“replicator dynamics” used in evolutionary game theory (see previous talk).




Semi-Supervised Learning

Unsupervised learning
- Learning with unlabeled data {x,...,x,}

Supervised learning
- Learning with labeled data {(X1,915 -+ Xn, Yn) }
- Finding a mapping from the feature space to the label space f: ¥ — y

Semi-supervised learning
- Learning with labeled and unlabeled data

- labeled data: {(x1,91), X0, ye) }
- unlabeled data: {Xe415-- > Xn}

Can we find a better classifier from both labeled and unlabeled data?
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Adapted from: O. Duchene, J.-Y. Audibert, R. Keriven, J. Ponce, and F. Ségonne. Segmentation by
transduction. CVPR 2008.




Graph Transduction

Given a set of data points grouped into:
v labeled data:  {(x1,¥1),...,X¢,Y¢)}
v unlabeled data:  {x11,...,%,} {<n

Express data as a graph G=(V,E)
v" V: nodes representing labeled and unlabeled points

V' E : pairwise edges between nodes weighted by the similarity between the
corresponding pairs of points

Goal: Propagate the information available at the labeled nodes to unlabeled ones
in a “consistent” way.

Cluster assumption:
v The data form distinct clusters
v Two points in the same cluster are expected to be in the same class

An Application:
Interactive Image Segmentation

Segmentation by transduction: “Given a set of user-supplied seeds representative
of each region to be segmented in an image, generate a segmentation of the entire
image that is consistent with the seeds.”

From: O. Duchene, J.-Y. Audibert, R. Keriven, J. Ponce, and F. Ségonne.
Segmentation by transduction. CVPR 2008.
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A Special Case:
Unweighted Undirected Graphs

A simple case of graph transduction in which the graph C is an unweighted
undirected graph:

V" An edge denotes perfect similarity between points

v" The adjacency matrix of G is a 0/1 matrix

The cluster assumption: Each node in a connected component of the graph
should have the same class label.

A Special Case:
Unweighted Undirected Graphs

This toy problem can be formulated as a (binary) constraint satisfaction problem
(CSP) as follows:
V' The set of variables: V = {v,, ..., v,}
v Domains: D, = {y;} foralll=i=<!
' Y foralll+l=isn

v' Binary constraints: Vij: ifa; =1, then v, = v,
e.g. for a 2-class problem R, =

10
0 1

Each assignment of values to the variables satisfying all the constraints is a
solution of the CSP, thereby providing a consistent labeling for the unlabeled
points.

Goal: Generalize to real-valued (soft) constraints
Idea: Use consistency criterion of relaxation labeling (= Nash equilibrium)
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The Graph Transduction Game

Assume:
v the players participating in the game correspond to the vertices of the
graph
v the set of strategies available to each player denote the possible
hypotheses about its class membership

- labeled players Lo ={Zy1s- - Ty}
- unlabeled players Ty

Labeled players choose their strategies at the outset:
v each player ¢ € Z);, always play its kth pure strategy.

The transduction game is in fact played among the unlabeled players to choose
their memberships.

By assuming that only pairwise interactions are allowed, we obtain a polymatrix
game that can be solved used standard relaxation labeling / replicator algorithms.

Defining the Payoffs

If the fixed choices of labeled players are considered, the payoff function is:

wi(e) =Y al A+ Yl (A

J€Tu k=1j€Ip|x

But how to specify partial payoff matrices?

If A = (A;) represent partial payoff matrices in block form, we define

A=1I.0W
e.g., for a 3-class problem:
Wy 5 0 0
A” = 0 Wi 0
0 0wy

We end up with a generalization of the binary CSP
for the toy transduction problem!
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Example Results:
Symmetric Symilarities

Data set used: USPS, YaleB, Scene, 20-news

USPS YaleB Scene 20-news

# objects 3874 1755 2688 3970
# dimensions 256 1200 512 8014
# classes 4 3 8 4

Methods compared:
v’ Gaussian fields and harmonic functions (GFHF) (Zhu et al., 2003)
v' Spectral Graph Transducer (SGT) (Joachims, 2003)
v' Local and global consistency (LGC) (Zhou et al., 2004)
v laplacian Regularized Least Squares (LapRLS) (Belkin et al., 2006)

Example Results:
Symmetric Symilarities
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In short...

Graph transduction can be formulated as a (polymatrix) non-cooperative game
(i.e., a consistent labeling problem).

The proposed game-theoretic framework can cope with symmetric, negative
and asymmetric similarities (none of the existing techniques is able to deal with
all three types of similarities).

Experimental results on standard datasets show that our approach is not only
more general but also competitive with standard approaches.

A. Erdem and M. Pelillo. Graph transduction as a non-cooperative game.
Neural Computation (in press) (preliminary version in GbR 2011).

Extensions

The approach described here can be naturally extended along several
directions:

v' Using more powerful algorithms than “plain” replicator dynamics (e.g.,
Porter et al., 2008; Rota Buld and Bomze, 2010)

v Dealing with high-order interactions (i.e., hypergraphs) (e.g., Agarwal et al.,
2006; Rota Bulo and Pelillo, 2009)

v From the “homophily” to the “Hume” similarity principle?

v"Introducing uncertainty in “labeled” players

14
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SEVENTH FRAMEWORK

PROGRAMME

SIMBAD 2011
http://www.dsi.unive.it/~simbad

1st International Worl

28-30 September 2011
Venice, Italy

The aim of this workshop is to consolidate research efforts in the area of
similarity-based pattern recognition and machine learning and to provide an informal
discussion forum for researchers and practitioners interested in this important yet
diverse subject.

We aim at covering a wide range of problems and perspectives, from supervised to
unsupervised learning, from generative to discriminative models, and from theoretical
issues to real-world practical applications

The workshop will mark the end of the E SIMBAD and is a follow-up
of the ICML 2010 Workshop on L J n no c
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