Motion Synthesis By Example A Tutorial in 3 and 3/2 parts

Michael Gleicher Dept of Computer Sciences University of Wisconsin - Madison

Motion Synthesis By Example Blending

Michael Gleicher Dept of Computer Sciences University of Wisconsin - Madison

Motions Between examples

Blending is useful for: Transitions

• Blend to avoid bad artifacts

$q(t) = \alpha q_1 + (1 - \alpha)q_2$

Blending is useful for: Adjustments / Edits

Motion Warp Motion Displacement Map

Blending is useful for: Parametric Families

- Motions in-between examples
- Control by blend weights \downarrow $q(t) = \sum w_i q_i(t)$

Need Similar Poses

Need Similar Poses

Need Similar Poses

No semantics – just numbers

Blending requires similar motions

• Must be similar over entire clip

Align similar frames

- Find matching frames
- Create timewarp
- Make motions similar

Dynamic Timewarping

Blending requires similar motions

Different Timing

Different Constraints

Different Curvature

Why It Is Hard to Find Motions

<u>Motions can be different lengths.</u>

reach middle reach high

- **Complicated distance metrics** $D(F, F') = \min_{\theta, x_0, z_0} \sum_{i} \|p_i - T(\theta, x_0, z_0)p'_i\|^2$
- Logically similar \neq numerically similar.

Similar?

Search Strategy

Find "close" matches and use as new queries.

One search may involve many queries. Precompute potential matches for interactivity.

Computing Distance Between Motions

Distance between corresponding frames (in the best time warp)

- Factors out timing differences
- Allows arbitrary distance metrics for frames

What amounts to blend?

- Continuous control by blend weights
- Not what we want to control
- Irregular or Large Sample Sets
- Non-linear functions

Natural Parameterizations

Blend weights offer poor controls

We need more natural parameters.

From Parameters to Blend Weights

It is easy to map blend weights to parameters.

$$f(\mathbf{w}) = g(\underbrace{w_1 \mathbf{M}_1 \oplus \ldots \oplus w_n \mathbf{M}_n}_{\text{blend weights}}) = \mathbf{p}$$

But we want $w=f^{-1}(p)$!

This has no closed form solution!

Building Parameterizations

Given samples (p,w), we can approximate f⁻¹with knearest neighbor interpolation.

Accuracy: create new blends to get additional

Require "reasonable":

$$\sum\nolimits_i w_i = 1$$

 $-\varepsilon \leq w_i \leq 1 + \varepsilon$

What amounts to blend?

- Automatically map controls to blend weights
- Sampling + Scattered Data Interpolation