

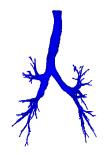
Dept. of Computer Science, University of Copenhagen

Statistical analysis of geometric trees

Aasa Feragen aasa@diku.dk

Summer School on Graphs in Computer Graphics, Image and Signal Analysis Rutsker, Bornholm, Denmark, August 15, 2011

A tree is a graph with no cycle



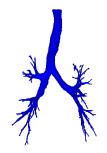
A tree is a graph with no cycle
In this talk, all trees have a root



A tree is a graph with no cycle
In this talk, all trees have a root
Algorithmic advantages over graphs



- A tree is a graph with no cycle
- In this talk, all trees have a root
- Algorithmic advantages over graphs
- Still difficult enough!



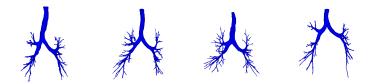
Outline

- Motivation through examples
- Modeling geometric trees
- Classical example: Tree edit distance
- > Approach 1: The object-oriented data analysis of Marron et al
- Approach 2: Phylogenetic trees and their like
- Approach 3: Statistical tree-shape analysis
- Conclusions and open problems

Motivation through examples

What does the average human airway tree look like? Nobody knows!

What does the average human airway tree look like? Nobody knows!



Properties of airway trees:

- Topology, branch shape, branch radius
- Somewhat variable topology (combinatorics) in anatomical tree
- Substantial amount of noise in segmented trees (missing or spurious branches), especially in COPD patients,
 - *i.e. inherently incomplete data*

The raw segmented data is a tree embedded in 3D

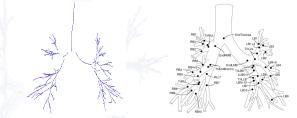


Figure: Right: Shamelessly borrowed from Tschirren, TMI 2005

- Computational problem: comparing unordered branches
- Can we attach anatomical labels to the branches?
- Related question: Can we order the branches?
- If yes, then the tree-structures are far less complex!

With statistical methods for tree-data, we could find out:

- how is the average airway tree, and how do the airway trees vary in different populations?
- are there different types of airway tree geometry, where some are more prone to illness than others?
- does the airway tree geometry change when you get ill?
- how do you distinguish a funny healthy structure from an ill structure? That is, how to analyze variation in tree data?

Example 2: Blood vessels

Figure: Left: Shamelessly borrowed from Wang and Marron, Ann. Statistics, 2007

Properties:

- Different vessel types, very different complexity
- Connectivity, branch length, branch shape
- Easier to segment than airways, hence more precise data.

Example 2: Blood vessels

With tree-statistical methods, we can:

 Find average vessel structure and variation in different populations

 Look for correlation between illness and tree geometry Difference from airways:

- In general, more variable structure from person to person
- Properties depend highly on vessel type

Example 3: Phylogenetic trees

Properties of phylogenetic trees:

- Combinatorial tree with leaf labels
- branch lengths (describing time before division into species)
- Fixed leaf labels

Example 3: Phylogenetic trees

Given a set of leafs

(i.e. { human, gorilla, orangutan, computer scientist }),

different methods for establishing their phylogenetic tree will give different result. An average tree would be a bid for "the correct" phylogenetic tree.

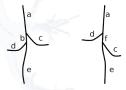
Modeling geometric trees

More general concept: Geometric trees

- A geometric tree can be described as a combination of
 - tree topology (connectivity / combinatorics)
 - geometric branch descriptors (branch shape, length, parametrization, weight, other attributes)

More general concept: Geometric trees

So why don't you just collect the edge information in a long vector and compute averages? Consider the *rather similar* trees:

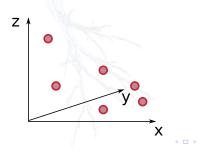


which are represented by the rather different vectors

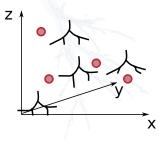
$$(a, b, c, d, e)$$
 and (a, d, f, e, c) .

We need methods which can handle topological differences.

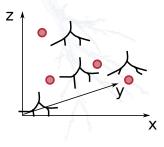
• Usually: statistics in Euclidean space of n dimensions \mathbb{R}^n



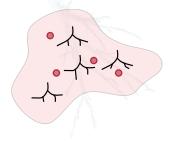
- Usually: statistics in Euclidean space of n dimensions \mathbb{R}^n
- Imagine a "space of geometric trees"



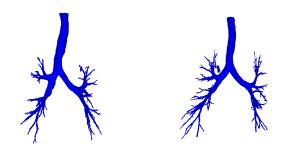
- Usually: statistics in Euclidean space of n dimensions \mathbb{R}^n
- Imagine a "space of geometric trees"
- Each point represents a tree



- Usually: statistics in Euclidean space of n dimensions \mathbb{R}^n
- Imagine a "space of geometric trees"
- Each point represents a tree
- (And it is not really $\mathbb{R}^{n!}$)



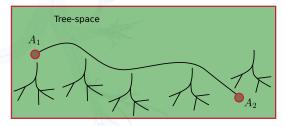
What if we were able to measure a "distance" (a metric) between two trees, which describes how similar (close) or different (far apart) they are?



Such distances would give us geometric tools to study the "space of all trees!"

Hold that thought and bring it further:

Can we define distances between airway trees that correspond to *traversed distances* in the space of trees?



- We get distance and a canonical, shortest deformation (a geodesic) from A₁ to A₂.
 - Play tree deformation movie

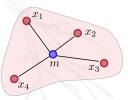
Hold that thought and bring it further:

Redefine statistics geometrically:

Definition

A mean of $\{x_1, \ldots, x_n\}$ is the point m which minimizes

$$f(m) = \sum_{i=1}^n d(x_i, m)^2.$$

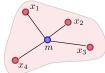


We seek situations where means are unique or locally unique.

What else can we do with a geometric framework?

With (locally) unique geodesic deformations, we can start to define:

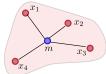
shape of average tree



What else can we do with a geometric framework?

With (locally) unique geodesic deformations, we can start to define:

- shape of average tree
- "manifold" learning, dimensionality reduction, analysis of data variance



What else can we do with a geometric framework?

With (locally) unique geodesic deformations, we can start to define:

- shape of average tree
- "manifold" learning, dimensionality reduction, analysis of data variance
- deformation-based registration and labeling

Figure: Tolerance of structural noise.

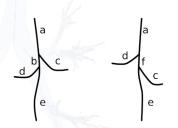
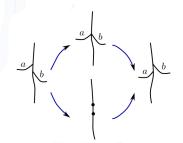


Figure: Tolerance of internal structural differences.

13/50



13/50

Figure: Top path: the a and b branches correspond to each other. Bottom path: They do not.

Figure: What about these situations?

13/50

Classical example: Tree edit distance

Classical example: Tree edit distance (TED)

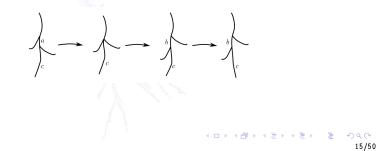
- TED is a classical, algorithmic distance
- dist(T₁, T₂) is the minimal total cost of changing T₁ into T₂ through three basic operations:
- Remove edge, add edge, deform edge.

Classical example: Tree edit distance (TED)

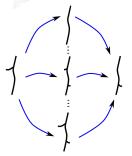
- TED is a classical, algorithmic distance
- dist(T₁, T₂) is the minimal total cost of changing T₁ into T₂ through three basic operations:
- Remove edge, add edge, deform edge.

Classical example: Tree edit distance (TED)

- TED is a classical, algorithmic distance
- dist(T₁, T₂) is the minimal total cost of changing T₁ into T₂ through three basic operations:
- Remove edge, add edge, deform edge.



 Almost all geodesics between pairs of trees are non-unique (infinitely many).



- Then what is the average of two trees? Many!
- TED is not suitable for statistics.

Most state-of-the-art approaches to distance measures and statistics on tree- and graph-structured data *are* based on TED!

- Wang and Marron: Object oriented data analysis: sets of trees. Annals of Statistics 35 (5), 2007.
- Ferrer, Valveny, Serratosa, Riesen, Bunke: Generalized median graph computation by means of graph embedding in vector spaces. Pattern Recognition 43 (4), 2010.
- Riesen and Bunke: Approximate Graph Edit Distance by means of Bipartite Graph Matching. Image and Vision Computing 27 (7), 2009.
- Trinh and Kimia, Learning Prototypical Shapes for Object Categories. CVPR workshops 2010.

(日)

- ► The problems can be "solved" by choosing specific geodesics.
- Geometric methods can no longer be used for proofs, and one risks choosing problematic paths.¹

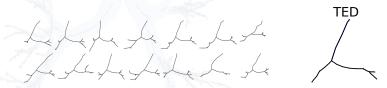


Figure: Right: Average upper airway trees computed using a method by Trinh and Kimia (CVPR workshops 2010) based on TED with the simplest possible choice of geodesics.

¹Feragen, Lo, de Bruijne, Nielsen, Lauze: Towards a theory of statistical tree-shape analysis, submitted.

- TED is successfully used for other applications, which only require a distance – e.g classification
- TED is computationally demanding (especially between unordered trees, where it is generally NP hard to compute)
- The problem of finding faster algorithms, either heuristic or approximations, is a whole research field in itself.
- For statistics, we need something else let's get to work!

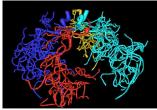
(日)

Approach 1: The object-oriented data analysis of Marron et al ¹

¹H. Wang and J. S. Marron. Object oriented data analysis: sets of trees. Annals of Statistics, 35(5):1849-1873, 2007.

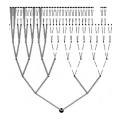
Tree representation

Framework built to study brain blood vessels



Tree representation

- Framework built to study brain blood vessels
- "Trees" are rooted, ordered combinatorial trees (vertices connected by branches) with vertex attributes



Tree representation

- Framework built to study brain blood vessels
- "Trees" are rooted, ordered combinatorial trees (vertices connected by branches) with vertex attributes
- Vertices in the representative tree correspond to branches in the vessel tree

Tree representation

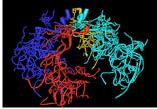
- Framework built to study brain blood vessels
- "Trees" are rooted, ordered combinatorial trees (vertices connected by branches) with vertex attributes
- Vertices in the representative tree correspond to branches in the vessel tree
- Vertex attributes are geometric branch properties, such as branch start- and endpoint, length, radius etc



Figure: Figures from Aydin et al.²2009 State S

Tree representation

- Framework built to study brain blood vessels
- "Trees" are rooted, ordered combinatorial trees (vertices connected by branches) with vertex attributes
- Vertices in the representative tree correspond to branches in the vessel tree
- Vertex attributes are geometric branch properties, such as branch start- and endpoint, length, radius etc
- Trees are represented via an ordered, maximal binary tree (a "union" of all the trees in the dataset) T with vertices V

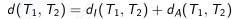


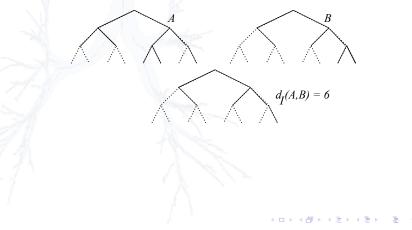
Tree representation

- Framework built to study brain blood vessels
- "Trees" are rooted, ordered combinatorial trees (vertices connected by branches) with vertex attributes
- Vertices in the representative tree correspond to branches in the vessel tree
- Vertex attributes are geometric branch properties, such as branch start- and endpoint, length, radius etc
- Trees are represented via an ordered, maximal binary tree (a "union" of all the trees in the dataset) T with vertices V
- ► Vertex attributes form an ordered set of vectors {A_v}_{v∈V}, one for each vertex.

Tree metric

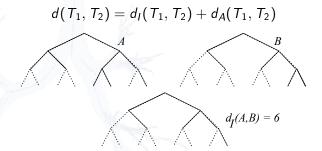
Define a metric on the space of trees with vector attributes:





Tree metric

Define a metric on the space of trees with vector attributes:

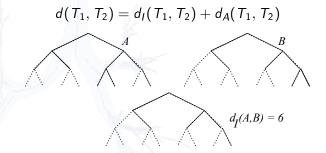


 d₁ counts the number of TED leaf deletions/additions needed to turn T₁ into T₂,

• • • • • • • • • •

Tree metric

Define a metric on the space of trees with vector attributes:



- d₁ counts the number of TED leaf deletions/additions needed to turn T₁ into T₂,
- d_A is a weighted Euclidean metric on the attributes:

$$d_{A}(T_{1}, T_{2}) = \sqrt{\sum_{v \in V} c_{v} \|A_{1}(v) - A_{2}(v)\|^{2}},$$

"Object Oriented Data Analysis"

Metric used for analyzing clinical data (brain blood vessels).

²Aydin, Pataki, Wang, Bullitt, Marron: A principal component analysis for trees, 2009

"Object Oriented Data Analysis"

Metric used for analyzing clinical data (brain blood vessels).

 Primary statistic: median-mean tree (combinatorial median, mean attributes)

²Aydin, Pataki, Wang, Bullitt, Marron: A principal component analysis for trees, 2009

"Object Oriented Data Analysis"

Metric used for analyzing clinical data (brain blood vessels).

- Primary statistic: median-mean tree (combinatorial median, mean attributes)
- Secondary statistic: form of "PCA" where the principal components are "treelines"; describing directions in the tree where most of the variation is found.

²Aydin, Pataki, Wang, Bullitt, Marron: A principal component analysis for trees, 2009

"Object Oriented Data Analysis"

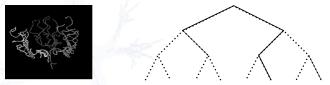
Metric used for analyzing clinical data (brain blood vessels).

- Primary statistic: median-mean tree (combinatorial median, mean attributes)
- Secondary statistic: form of "PCA" where the principal components are "treelines"; describing directions in the tree where most of the variation is found.

²Aydin, Pataki, Wang, Bullitt, Marron: A principal component analysis for trees, 2009

"Object Oriented Data Analysis"

Metric used for analyzing clinical data (brain blood vessels).



- Primary statistic: median-mean tree (combinatorial median, mean attributes)
- Secondary statistic: form of "PCA" where the principal components are "treelines"; describing directions in the tree where most of the variation is found.

²Aydin, Pataki, Wang, Bullitt, Marron: A principal component analysis for trees, 2009

Modeling issues

 The tree representation assumes a common, ordered underlying tree-structure

- The tree representation assumes a common, ordered underlying tree-structure
- The metric has discontinuities

Figure: The sequence T_n with edge length attributes, does not converge. The length of e is 3 and all the c_e are 1/3, $\lim d(T_n, T')$ is the same as $\lim d(T_n, T'') = 1$.

- The tree representation assumes a common, ordered underlying tree-structure
- The metric has discontinuities

$$\begin{array}{c} & & \\ & &$$

Figure: The sequence T_n with edge length attributes, does not converge. The length of e is 3 and all the c_e are 1/3, $\lim d(T_n, T')$ is the same as $\lim d(T_n, T'') = 1$.

The median-means defined are not unique

• □ > < 同 > < 三 >

- The tree representation assumes a common, ordered underlying tree-structure
- The metric has discontinuities

Figure: The sequence T_n with edge length attributes, does not converge. The length of e is 3 and all the c_e are 1/3, $\lim d(T_n, T')$ is the same as $\lim d(T_n, T'') = 1$.

- The median-means defined are not unique
- The treeline PCA is mostly combinatorial

- The tree representation assumes a common, ordered underlying tree-structure
- The metric has discontinuities

Figure: The sequence T_n with edge length attributes, does not converge. The length of e is 3 and all the c_e are 1/3, $\lim d(T_n, T')$ is the same as $\lim d(T_n, T'') = 1$.

- The median-means defined are not unique
- The treeline PCA is mostly combinatorial
- Application-specific metric.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Summary

Pros:

- Easy to pass from the data tree to its representation
- Distances and statistical properties are easy and fast to compute
- First formulation of PCA for trees (or graphs?)

Summary

Pros:

- Easy to pass from the data tree to its representation
- Distances and statistical properties are easy and fast to compute
- First formulation of PCA for trees (or graphs?)

Cons:

- Modeling issues: Will not work for continuous, deformable trees, different topological structures
- Noise insensitivity, discontinuities
- No room for topological differences between trees except at leaves
- Statistical properties not well defined for instance, a given set can have more than one median-mean

Approach 2: Phylogenetic trees and their like

Approach 2: Phylogenetic trees and their like

<日 > < 注 > < 注 > ↓ 注 > ↓ 注 ∽ Q () 22/50

 Billera et al. study the metric geometry of spaces of phylogenetic trees³, which describe genetic development of species.

Figure: Figure borrowed from 3

³Billera, Holmes, Vogtmann: *Geometry of the space of Phylogenetic trees*, Adv. in Appl. Math, 2001.

- Billera et al. study the metric geometry of spaces of phylogenetic trees³, which describe genetic development of species.
- Rooted trees with labeled leaves (so ordered trees) and length attributes on all edges.

Figure: Figure borrowed from 3

³Billera, Holmes, Vogtmann: *Geometry of the space of Phylogenetic trees*, Adv. in Appl. Math, 2001.

- Billera et al. study the metric geometry of spaces of phylogenetic trees³, which describe genetic development of species.
- Rooted trees with labeled leaves (so ordered trees) and length attributes on all edges.
- Metric geometry ~> existence and uniqueness of geodesics and dataset centroids, computation of centroids of a set of phylogenetic trees.

Figure: Figure borrowed from 3

³Billera, Holmes, Vogtmann: *Geometry of the space of Phylogenetic trees*, Adv. in Appl. Math, 2001.

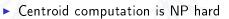
- Billera et al. study the metric geometry of spaces of phylogenetic trees³, which describe genetic development of species.
- Rooted trees with labeled leaves (so ordered trees) and length attributes on all edges.
- Metric geometry ~> existence and uniqueness of geodesics and dataset centroids, computation of centroids of a set of phylogenetic trees.

Figure: Figure borrowed from 3

Centroid computation is NP hard

³Billera, Holmes, Vogtmann: *Geometry of the space of Phylogenetic trees*, Adv. in Appl. Math, 2001.

- Billera et al. study the metric geometry of spaces of phylogenetic trees³, which describe genetic development of species.
- Rooted trees with labeled leaves (so ordered trees) and length attributes on all edges.
- Metric geometry ~> existence and uniqueness of geodesics and dataset centroids, computation of centroids of a set of phylogenetic trees.



 Model applies directly to leaf-labeled trees with constant labels sets and edge length attributes

³Billera, Holmes, Vogtmann: *Geometry of the space of Phylogenetic trees*, Adv. in Appl. Math, 2001.

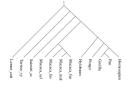


Figure: Figure borrowed from 3

23/50

Fix a set of n leaf labels, e.g. {human, gorilla, orangutan, computer scientist}, or {1,2,3,4}.

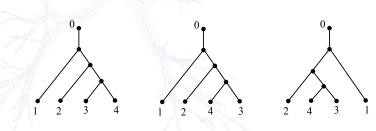


FIG. 6. Three pictures of the same tree.

Figure: Figure borrowed from Billera et al 12 12 24/50

- ► Fix a set of *n* leaf labels, e.g. {human, gorilla, orangutan, computer scientist}, or {1,2,3,4}.
- Build the binary tree with the corresponding leaves

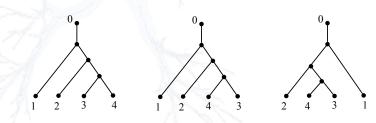


FIG. 6. Three pictures of the same tree.

Figure: Figure borrowed from Billera et al State State

- Fix a set of n leaf labels, e.g. {human, gorilla, orangutan, computer scientist}, or {1,2,3,4}.
- Build the binary tree with the corresponding leaves
- Attach lenghts ∈ ℝ₊ = [0,∞[to all branches, representing evolutionary length

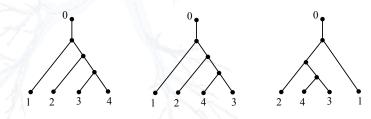
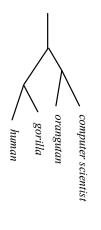


FIG. 6. Three pictures of the same tree.

Figure: Figure borrowed from Billera et al State and Sta

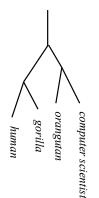
This gives a space of phylogenetic trees:



Modeling phylogenetic trees

This gives a space of phylogenetic trees:

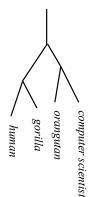
- - leaves)
- Now for a point x ∈ ℝ^N₊ the coordinate x_i ≥ 0 is the length of the ith branch



Modeling phylogenetic trees

This gives a space of phylogenetic trees:

- Now for a point x ∈ ℝ^N₊ the coordinate x_i ≥ 0 is the length of the ith branch
- Glue the quadrants together along the natural branch collapses



The space of phylogenetic trees

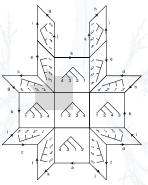


FIG. 4. Cubical tiling of Mos, where the arrows indicate oriented identifications.

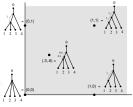


FIG. 8. The 2-dimensional quadrant corresponding to a metric 4-tree.

Figure: Figures shamelessly copied from Billera, Holmes, Vogtmann: Geometry of the space of Phylogenetic Trees

The really cool thing about the space of phylogenetic trees!

Theorem (Billera, Holmes, Vogtmann) The space of phylogenetic trees is a CAT(0) space The really cool thing about the space of phylogenetic trees!

Theorem (Billera, Holmes, Vogtmann) The space of phylogenetic trees is a CAT(0) space

What does that mean?

LTimeout: CAT(0)-spaces, our new favorite statistical playground?

Timeout: CAT(0)-spaces, our new favorite statistical playground?

< (1) b

Statistics in metric spaces?

Recall that a metric space is a space X of points with a distance measure d such that

$$\blacktriangleright d(x,y) = d(y,x)$$

•
$$d(x, y) = 0$$
 if and only if $x = y$

• $d(x,y) + d(y,z) \ge d(x,z)$ (triangle inequality)

Statistics in metric spaces?

Recall that a metric space is a space X of points with a distance measure d such that

$$\blacktriangleright d(x,y) = d(y,x)$$

•
$$d(x, y) = 0$$
 if and only if $x = y$

• $d(x, y) + d(y, z) \ge d(x, z)$ (triangle inequality)

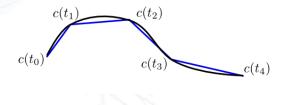
In order to formulate statistics, we want to have geodesics. What does the word "geodesic" even mean in a metric space?

LTimeout: CAT(0)-spaces, our new favorite statistical playground?

Geodesics in metric spaces

• Let (X, d) be a metric space. The length of a curve $c : [a, b] \rightarrow X$ is

$$l(c) = \sup_{a=t_0 \le t_1 \le \dots \le t_n = b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).$$



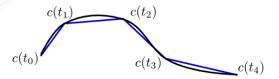
< 日 > < 同 >

Timeout: CAT(0)-spaces, our new favorite statistical playground?

Geodesics in metric spaces

Let (X, d) be a metric space. The length of a curve c: [a, b] → X is

$$l(c) = \sup_{a=t_0 \le t_1 \le \dots \le t_n = b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).$$



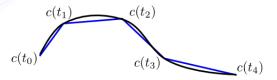
• A geodesic from x to y in X is a path $c: [a, b] \to X$ such that c(a) = x, c(b) = y and l(c) = d(x, y).

Limeout: CAT(0)-spaces, our new favorite statistical playground?

Geodesics in metric spaces

Let (X, d) be a metric space. The length of a curve c: [a, b] → X is

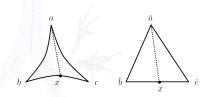
$$l(c) = \sup_{a=t_0 \le t_1 \le \dots \le t_n = b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).$$



- A geodesic from x to y in X is a path $c: [a, b] \to X$ such that c(a) = x, c(b) = y and l(c) = d(x, y).
- ► (X, d) is a geodesic space if all pairs x, y can be joined by a geodesic.

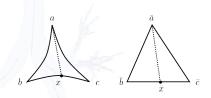
L Timeout: CAT(0)-spaces, our new favorite statistical playground?

Curvature in metric spaces



A CAT(0) space is a metric space in which geodesic triangles are "thinner" than for their comparison triangles in the plane; that is, d(x, a) ≤ d(x̄, ā). Timeout: CAT(0)-spaces, our new favorite statistical playground?

Curvature in metric spaces



- A CAT(0) space is a metric space in which geodesic triangles are "thinner" than for their comparison triangles in the plane; that is, d(x, a) ≤ d(x̄, ā).
- ► A space has non-positive curvature if it is locally CAT(0).

L Timeout: CAT(0)-spaces, our new favorite statistical playground?

Curvature in metric spaces

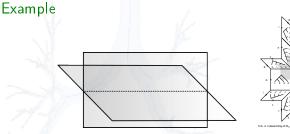


Figure: CAT(0) spaces.

Image: A marked black

Timeout: CAT(0)-spaces, our new favorite statistical playground?

Curvature in metric spaces

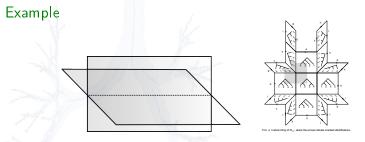


Figure: CAT(0) spaces.

30/50

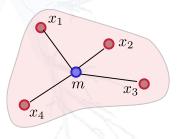
Theorem (see e.g. Bridson-Haefliger) Let (X, d) be a CAT(0) space; then all pairs of points have a unique geodesic joining them. L Timeout: CAT(0)-spaces, our new favorite statistical playground?

Curvature in metric spaces

```
Subsets \{x_1, \ldots, x_n\} in CAT(0)-spaces
```

Theorem

⁴ ...have unique means, defined as $\operatorname{argmin} \sum d(x, x_i)^2$.



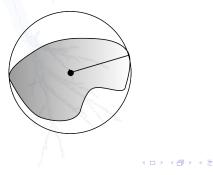
⁴Feragen, Hauberg, Nielsen, Lauze, *Means in spaces of treelike shapes*, ICCV 2011

Curvature in metric spaces

Subsets $\{x_1, \ldots, x_n\}$ in CAT(0)-spaces

Theorem (Bridson, Haefliger)

...have unique circumcenters, defined as the center of the smallest sphere containing all the $\{x_i\}_{i=1}^{s}$.



Curvature in metric spaces

Subsets $\{x_1, \ldots, x_n\}$ in CAT(0)-spaces

Theorem (Billera, Vogtmann, Holmes)

...have unique centroids, defined by induction on |S| = n:

- If |S| = 2, then c(S) is the midpoint of the geodesic between the two elements of S.
- If |S| = n > 2 and we have defined c(S') for all S' with |S'| < n, then denote by $c^1(S)$ the set $\{c(S')|S' \subset S, |S'| = n 1\}$ and denote by $c^k(S) = c^1(c^{k-1}(S))$ when k > 1.
- ▶ If $c^k(S) \to p$ for some $p \in \overline{X}$ as $k \to \infty$, then c(S) = p is the centroid of S.

L Timeout over: Back to the phylogenetic trees

Timeout over: Back to the phylogenetic trees

Image: A marked black

What does this mean for the phylogenetic trees?

- We can compute average phylogenetic trees!
- Possible problem: Based on Billera, Holmes, Vogtmann, centroid phylogenetic trees have exponential computation time
- Moreover, geodesics between phylogenetic trees do not have obvious polynomial computation algorithms, either.

-Timeout over: Back to the phylogenetic trees

Computability?

Using the CAT(0) properties, it is possible to prove:

Theorem

⁴ There is a polynomial time algorithm for computing the geodesic between two phylogenetic trees.

⁴Owen, Provan: A Fast Algorithm for Computing Geodesic Distances in Tree Space, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011 -Timeout over: Back to the phylogenetic trees

Summary

Pros:

- A nice mathematical theory
- Computability
- Excellent modeling properties for phylogenetic trees
- CAT(0) property gives potential for more statistical measurements

Timeout over: Back to the phylogenetic trees

Summary

Pros:

- A nice mathematical theory
- Computability
- Excellent modeling properties for phylogenetic trees
- CAT(0) property gives potential for more statistical measurements

Cons:

 Does not carry directly over to trees with more geometric branch descriptors

• • • • •

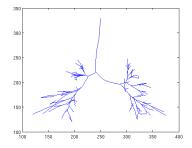
- Fixed branch label set
- ► Ordered trees (⇔ leaf labels)
- No noise tolerance

Approach 3: Statistical tree-shape analysis

Approach 3: Statistical tree-shape analysis

A (1) > 4

Motivating application: Airway shape analysis



- Unlabeled (unordered) tree in 3D
- Different nr of branches
- Structural noise (missing/extra branches)

Tree representation

How to represent tree-like shapes mathematically? Tree-like (pre-)shape = pair (\mathcal{T}, x)

✓ 𝒴 = (V, E, r, <) rooted, ordered/planar binary tree, describing the tree topology (combinatorics)

 $= \sqrt[3]{4} \sqrt[4]{4} \sqrt[5]{6} + (), \sqrt[5]{4}, \sqrt[5]{6}, \sqrt[5]{$

Tree representation

How to represent tree-like shapes mathematically? Tree-like (pre-)shape = pair (\mathcal{T}, x)

- ✓ 𝒴 = (V, E, r, <) rooted, ordered/planar binary tree, describing the tree topology (combinatorics)
- $x \in \prod_{e \in E} A$ a product of points in attribute space A describing edge shape

$$\underbrace{} = \frac{1}{3\sqrt{4}} \underbrace{}_{5\sqrt{6}}^{2} + (1, \underbrace{)}_{6}, \underbrace{)}_{7}, \underbrace{)}_{7}, \underbrace{)}_{7}$$

Tree representation

We are allowing collapsed edges, which means that

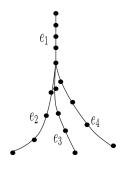
- we can represent higher order vertices
- we can represent trees of different sizes using the same combinatorial tree *T*

(dotted line = collapsed edge = zero/constant attribute)

Approach 3: Statistical tree-shape analysis

Tree representation

Edge representation through landmark points: Edge shape space is $(\mathbb{R}^d)^n$, d = 2, 3.



The space of tree-like preshapes

Fix a maximal combinatorial \mathcal{T} . We use a finite tree; could reformulate for infinite trees.

Definition

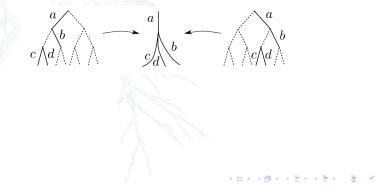
Define the space of tree-like pre-shapes as the product space

$$X = \prod_{e \in E} (\mathbb{R}^d)^n$$

where $(\mathbb{R}^d)^n$ is the edge shape space. This is just a space of *pre-shapes*.

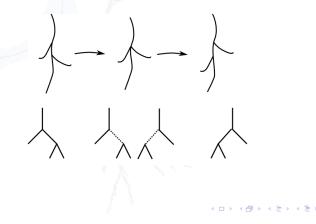
From pre-shapes to shapes

Many shapes have more than one representation



From pre-shapes to shapes

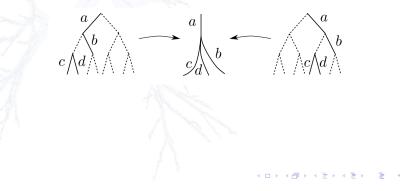
Not all shape deformations can be recovered as natural paths in the pre-shape space:



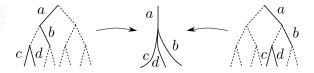
• Start with the pre-shape space $X = \prod_{e \in E} (\mathbb{R}^d)^n$.

> < @ > < ≥ > < ≥ > ≥ つへで 40/50

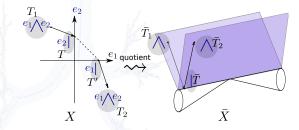
- Start with the pre-shape space $X = \prod_{e \in E} (\mathbb{R}^d)^n$.
- Glue together all points in X that represent the same tree-shape.



- Start with the pre-shape space $X = \prod_{e \in E} (\mathbb{R}^d)^n$.
- Glue together all points in X that represent the same tree-shape.

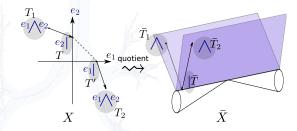


▶ This corresponds to identifying, or gluing together, subspaces $\{x \in X | x_e = 0 \text{ if } e \notin E_1\}$ and $\{x \in X | x_e = 0 \text{ if } e \notin E_2\}$ in X.



For the landmark point shape space this is just a folded Euclidean space; we call it X.

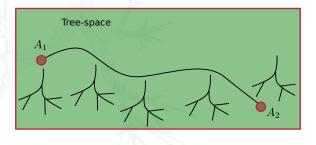
Shape space definition



- For the landmark point shape space this is just a folded Euclidean space; we call it X.
- The Euclidean norm on X induces a metric on X, called QED (Quotient Euclidean Distance) metric.

QED properties

It defines a geodesic metric space ⁵



⁵Feragen, Lo, de Bruijne, Nielsen, Lauze: Geometries in spaces of treelike shapes, ACCV 2010

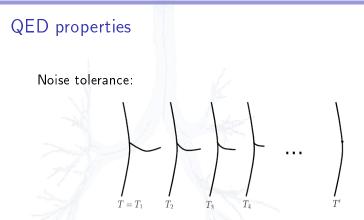
QED properties

Example of a QED geodesic deformation:

Play movie

41/50

Note the tolerance of topological differences and natural deformation.



Sequences of trees with disappearing branches will converge towards trees without the same branch.

Curvature of shape space

Theorem

5

- Consider (\bar{X}, \bar{d}_2) , shape space with the QED metric.
- At generic points, this space has non-positive curvature, i.e. it is locally CAT(0).
- Its geodesics are locally unique at generic points.
- At non-generic points, the curvature is unbounded.
- Sufficiently clustered datasets in X
 will have unique means, centroids and circumcenters.

⁵Feragen, Lo, de Bruijne, Nielsen, Lauze: Geometries in spaces of treelike shapes, ACCV 2010

3D trees⁶

So far we talked about ordered tree-like shapes; what about unordered (spatial) tree-like shapes?

⁶Feragen, Lo, de Bruijne, Nielsen, Lauze: Towards a theory of statistical tree-shape analysis, submitted

3D trees⁶

- Unordered trees: Give a random order
- Denote by G the group of reorderings of the edges that do not alter the connectivity of the tree.
- The space of unordered trees is the space $\bar{X} = \bar{X}/G$
- ► There is a (pseudo)metric on \bar{X} induced from the Euclidean metric on X.
- $\overline{d}(\overline{x}, \overline{y})$ corresponds to considering all possible orders on \overline{y} and choosing the order that minimizes $\overline{\overline{d}}(\overline{x}, \overline{y})$.

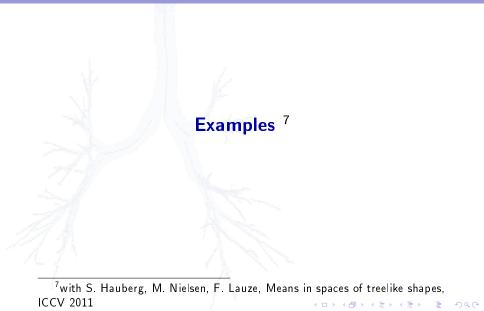
⁶Feragen, Lo, de Bruijne, Nielsen, Lauze: Towards a theory of statistical tree-shape analysis, submitted

3D trees⁶

Theorem

- For the quotient pseudometric \overline{d} induced by either \overline{d}_1 or \overline{d}_2 , the function $\overline{\overline{d}}$ is a metric and $(\overline{\overline{X}}, \overline{\overline{d}})$ is a geodesic space.
- At generic points, $(\bar{\bar{X}}, \bar{\bar{d}}_2)$ has non-positive curvature, i.e. it is locally CAT(0).
- At generic points, geodesics are locally unique-
- At generic points, sufficiently clustered data has unique means, circumcenters, centroids.
- ...so everything we proved for ordered trees, still holds.

⁶Feragen, Lo, de Bruijne, Nielsen, Lauze: Towards a theory of statistical tree-shape analysis, submitted



Averages in the QED metric

Synthetic data:

TXTXTXTX

Figure: A small set of synthetic planar tree-shapes.

Figure: Left: Mean shape. Right: Centroid shape. These choices of "average" give rather similar results.

Averages in the QED metric Leaf vasculature data:

Figure: A set of vascular trees from ivy leaves form a set of planar tree-shapes.

Figure: a): The vascular trees are extracted from photos of ivy leaves. b) The mean vascular tree.

Averages in the QED metric

Airway tree data:

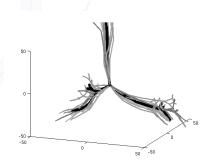


Figure: A set of upper airway tree-shapes along with their mean tree-shape.

Averages in the QED metric

Figure: A set of upper airway tree-shapes (projected).⁸

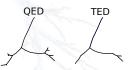


Figure: The QED and TED (algorithm by Trinh and Kimia) means.

⁸with P. Lo, M. de Bruijne, M. Nielsen, F. Lauze, submitted 🚛 🛛 🚛 🔊 🤉 🕫

45/50

Summary

Pros:

- Strong modeling properties
- Does not require labels, ordered, or same number of branches
- Continuous topological transitions in geodesics
- ► Local CAT(0) property ⇒ promising for statistical computations
- Good noise-handling properties

Summary

Pros:

- Strong modeling properties
- Does not require labels, ordered, or same number of branches

< (1) × (1)</td>

46/50

- Continuous topological transitions in geodesics
- ► Local CAT(0) property ⇒ promising for statistical computations
- Good noise-handling properties

Cons:

- Algorithmic properties
- Computational complexity

└─ Approach 3: Statistical tree-shape analysis └─ Conclusions and open problems

Conclusions and open problems

47/50

─Approach 3: Statistical tree-shape analysis
└─Conclusions and open problems

Conclusions

- The interplay between structure/topology/combinatorics and features (geometry) poses a challenging modeling problem
- There is often a tradeoff between modeling properties and computational complexity
- Analysis of tree-structured data can be attacked as a geometric, algorithmic, modeling, statistical, machine learning, -problem

Statistical properties: How to analyze data variation? PCA analogues and so on?

- Statistical properties: How to analyze data variation? PCA analogues and so on?
- How does the choice of branch attribute change the tree-space geometry in the different models?

- Statistical properties: How to analyze data variation? PCA analogues and so on?
- How does the choice of branch attribute change the tree-space geometry in the different models?
- Can the models be generalized to graphs?

- Statistical properties: How to analyze data variation? PCA analogues and so on?
- How does the choice of branch attribute change the tree-space geometry in the different models?
- Can the models be generalized to graphs?
- Can we find efficient algorithms for computing distances and statistical measurements?

- Statistical properties: How to analyze data variation? PCA analogues and so on?
- How does the choice of branch attribute change the tree-space geometry in the different models?
- Can the models be generalized to graphs?
- Can we find efficient algorithms for computing distances and statistical measurements?
- Our main goal: Large-scale statistical studies on medical data
 - Geometry-based biomarkers for disease (COPD)?
 - Anatomical modeling?

─ Approach 3: Statistical tree-shape analysis └─ Conclusions and open problems

One more thing!

Means in the Space of Phylogenetic Trees

Talk by Megan Owen on computational geometry and statistics for Phylogenetic trees 30. august 2011 kl. 14 - 15 @DIKU