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Introduction

Geometric trees?

I A tree is a graph with no cycle

I In this talk, all trees have a root

I Algorithmic advantages over graphs

I Still di�cult enough!
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Introduction

Outline

I Motivation through examples

I Modeling geometric trees

I Classical example: Tree edit distance

I Approach 1: The object-oriented data analysis of Marron et al

I Approach 2: Phylogenetic trees and their like

I Approach 3: Statistical tree-shape analysis

I Conclusions and open problems
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Motivation through examples

Example 1: Human airway trees
What does the average human airway tree look like? Nobody
knows!

Properties of airway trees:
I Topology, branch shape, branch radius
I Somewhat variable topology (combinatorics) in anatomical

tree
I Substantial amount of noise in segmented trees (missing or

spurious branches), especially in COPD patients,
i.e. inherently incomplete data
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Motivation through examples

Example 1: Human airway trees
The raw segmented data is a tree embedded in 3D

Figure: Right: Shamelessly borrowed from Tschirren, TMI 2005

I Computational problem: comparing unordered branches
I Can we attach anatomical labels to the branches?
I Related question: Can we order the branches?
I If yes, then the tree-structures are far less complex!
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Motivation through examples

Example 1: Human airway trees

With statistical methods for tree-data, we could �nd out:

I how is the average airway tree, and how do the airway trees
vary in di�erent populations?

I are there di�erent types of airway tree geometry, where some
are more prone to illness than others?

I does the airway tree geometry change when you get ill?

I how do you distinguish a funny healthy structure from an ill
structure? That is, how to analyze variation in tree data?
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Motivation through examples

Example 2: Blood vessels

Figure: Left: Shamelessly borrowed from Wang and Marron,
Ann. Statistics, 2007

Properties:

I Di�erent vessel types, very di�erent complexity
I Connectivity, branch length, branch shape
I Easier to segment than airways, hence more precise data.
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Motivation through examples

Example 2: Blood vessels

With tree-statistical methods, we can:

I Find average vessel structure and variation in di�erent
populations

I Look for correlation between illness and tree geometry

Di�erence from airways:

I In general, more variable structure from person to person

I Properties depend highly on vessel type
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Motivation through examples

Example 3: Phylogenetic trees

Properties of phylogenetic trees:

I Combinatorial tree with leaf labels

I branch lengths (describing time before division into species)

I Fixed leaf labels
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Motivation through examples

Example 3: Phylogenetic trees

I Given a set of leafs

(i.e. { human, gorilla, orangutan, computer scientist }),

di�erent methods for establishing their phylogenetic tree will
give di�erent result. An average tree would be a bid for �the
correct� phylogenetic tree.
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Modeling geometric trees

Modeling geometric trees
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Modeling geometric trees

More general concept: Geometric trees

A geometric tree can be described as a combination of

I tree topology (connectivity / combinatorics)

I geometric branch descriptors (branch shape, length,
parametrization, weight, other attributes)
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Modeling geometric trees

More general concept: Geometric trees

So why don't you just collect the edge information in a long vector
and compute averages? Consider the rather similar trees:

which are represented by the rather di�erent vectors

(a, b, c , d , e) and (a, d , f , e, c).

We need methods which can handle topological di�erences.
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Modeling geometric trees

A thought:

10/50

I Usually: statistics in Euclidean space of n dimensions Rn

I Imagine a �space of geometric trees�

I Each point represents a tree

I (And it is not really Rn!)
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Modeling geometric trees

A thought:
What if we were able to measure a �distance� (a metric) between
two trees, which describes how similar (close) or di�erent (far
apart) they are?

Such distances would give us geometric tools to study the �space
of all trees!�
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Modeling geometric trees

Hold that thought and bring it further:

I Can we de�ne distances between airway trees that correspond
to traversed distances in the space of trees?

Tree-space

I We get distance and a canonical, shortest deformation (a
geodesic) from A1 to A2.

I Play tree deformation movie
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Modeling geometric trees

Hold that thought and bring it further:

Rede�ne statistics geometrically:

De�nition
A mean of {x1, . . . , xn} is the point m which minimizes

f (m) =
n∑

i=1

d(xi ,m)2.

We seek situations where means are unique or locally unique.
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Modeling geometric trees

What else can we do with a geometric framework?

With (locally) unique geodesic deformations, we can start to
de�ne:

I shape of average tree

I �manifold� learning, dimensionality reduction, analysis of data
variance

I deformation-based registration and labeling
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Modeling geometric trees

The model we are looking for: qualitative properties

Figure: Tolerance of structural noise.
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Modeling geometric trees

The model we are looking for: qualitative properties

Figure: Tolerance of internal structural di�erences.
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Modeling geometric trees

The model we are looking for: qualitative properties

Figure: Top path: the a and b branches correspond to each other.
Bottom path: They do not.
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Modeling geometric trees

The model we are looking for: qualitative properties

Figure: What about these situations?
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Classical example: Tree edit distance

Classical example: Tree edit distance
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Classical example: Tree edit distance

Classical example: Tree edit distance (TED)

I TED is a classical, algorithmic distance

I dist(T1, T2) is the minimal total cost of changing T1 into T2

through three basic operations:

I Remove edge, add edge, deform edge.
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Classical example: Tree edit distance

Classical example: Tree edit distance (TED)

I Almost all geodesics between pairs of trees are non-unique
(in�nitely many).

I Then what is the average of two trees? Many!

I TED is not suitable for statistics.
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Classical example: Tree edit distance

Classical example: Tree edit distance (TED)

Most state-of-the-art approaches to distance measures and
statistics on tree- and graph-structured data are based on TED!

I Wang and Marron: Object oriented data analysis: sets of trees. Annals of
Statistics 35 (5), 2007.

I Ferrer, Valveny, Serratosa, Riesen, Bunke: Generalized median graph
computation by means of graph embedding in vector spaces. Pattern
Recognition 43 (4), 2010.

I Riesen and Bunke: Approximate Graph Edit Distance by means of Bipartite
Graph Matching. Image and Vision Computing 27 (7), 2009.

I Trinh and Kimia, Learning Prototypical Shapes for Object Categories. CVPR
workshops 2010.
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Classical example: Tree edit distance

Classical example: Tree edit distance (TED)

I The problems can be �solved� by choosing speci�c geodesics.

I Geometric methods can no longer be used for proofs, and one
risks choosing problematic paths.1

TED

Figure: Right: Average upper airway trees computed using a method by
Trinh and Kimia (CVPR workshops 2010) based on TED with the
simplest possible choice of geodesics.

1Feragen, Lo, de Bruijne, Nielsen, Lauze: Towards a theory of statistical
tree-shape analysis, submitted.

15/50



Classical example: Tree edit distance

Classical example: Tree edit distance (TED)

I TED is successfully used for other applications, which only
require a distance � e.g classi�cation

I TED is computationally demanding (especially between
unordered trees, where it is generally NP hard to compute)

I The problem of �nding faster algorithms, either heuristic or
approximations, is a whole research �eld in itself.

I For statistics, we need something else � let's get to work!
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Approach 1: The object-oriented data analysis of Marron et al

Approach 1: The object-oriented data analysis

of Marron et al 1

1H. Wang and J. S. Marron. Object oriented data analysis: sets of trees.
Annals of Statistics, 35(5):1849-1873, 2007.
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Approach 1: The object-oriented data analysis of Marron et al

Tree representation

17/50

I Framework built to study brain blood vessels

I �Trees� are rooted, ordered combinatorial
trees (vertices connected by branches) with
vertex attributes

I Vertices in the representative tree
correspond to branches in the vessel tree

I Vertex attributes are geometric branch
properties, such as branch start- and
endpoint, length, radius etc

I Trees are represented via an ordered,
maximal binary tree (a �union� of all the
trees in the dataset) T with vertices V

I Vertex attributes form an ordered set of
vectors {Av}v∈V , one for each vertex.

B. AYDIN ET AL.

TREE-LINE ANALYSIS

Figure: Figures from Aydin
et al, 2009
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Approach 1: The object-oriented data analysis of Marron et al

Tree metric
I De�ne a metric on the space of trees with vector attributes:

d(T1,T2) = dI (T1,T2) + dA(T1,T2)

A B

d (A,B) = 6I

I dI counts the number of TED leaf deletions/additions needed
to turn T1 into T2,

I dA is a weighted Euclidean metric on the attributes:

dA(T1,T2) =

√∑
v∈V

cv‖A1(v)− A2(v)‖2,

s.t. cv > 0 for all v ∈ V and
∑

v∈V cv = 1.

18/50
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Approach 1: The object-oriented data analysis of Marron et al

�Object Oriented Data Analysis�

I Metric used for analyzing clinical data (brain blood vessels).

I Primary statistic: median-mean tree (combinatorial median,
mean attributes)

I Secondary statistic: form of �PCA� where the principal
components are �treelines�; describing directions in the tree
where most of the variation is found. 2

2Aydin, Pataki, Wang, Bullitt, Marron: A principal component analysis for
trees, 2009
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Approach 1: The object-oriented data analysis of Marron et al

Modeling issues

I The tree representation assumes a common, ordered
underlying tree-structure

I The metric has discontinuities

Figure: The sequence Tn with edge length attributes, does not
converge. The length of e is 3 and all the ce are 1/3, lim d(Tn,T

′)
is the same as lim d(Tn,T

′′) = 1.

I The median-means de�ned are not unique

I The treeline PCA is mostly combinatorial

I Application-speci�c metric.
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Approach 1: The object-oriented data analysis of Marron et al

Summary
Pros:

I Easy to pass from the data tree to its representation

I Distances and statistical properties are easy and fast to
compute

I First formulation of PCA for trees (or graphs?)

Cons:

I Modeling issues: Will not work for continuous, deformable
trees, di�erent topological structures

I Noise insensitivity, discontinuities

I No room for topological di�erences between trees except at
leaves

I Statistical properties not well de�ned � for instance, a given
set can have more than one median-mean

21/50
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Approach 2: Phylogenetic trees and their like

Approach 2: Phylogenetic trees and their like
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Approach 2: Phylogenetic trees and their like

Spaces of phylogenetic trees

3Billera, Holmes, Vogtmann: Geometry of the space of

Phylogenetic trees, Adv. in Appl. Math, 2001.
23/50

Figure: Figure borrowed
from 3

I Billera et al. study the metric geometry of
spaces of phylogenetic trees3, which describe
genetic development of species.

I Rooted trees with labeled leaves (so ordered
trees) and length attributes on all edges.

I Metric geometry  existence and
uniqueness of geodesics and dataset
centroids, computation of centroids of a set
of phylogenetic trees.

I Centroid computation is NP hard

I Model applies directly to leaf-labeled trees with constant
labels sets and edge length attributes
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Approach 2: Phylogenetic trees and their like

Modeling phylogenetic trees
I Fix a set of n leaf labels, e.g. {human, gorilla, orangutan,

computer scientist}, or {1, 2, 3, 4}.

I Build the binary tree with the corresponding leaves
I Attach lenghts ∈ R+ = [0,∞[ to all branches, representing

evolutionary length

specified.

1 42 3

0

1 32 4

0

2 14 3

0

FIG. 6. Three pictures of the same tree.

Figure: Figure borrowed from Billera et al
24/50
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Approach 2: Phylogenetic trees and their like

Modeling phylogenetic trees
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This gives a space of phylogenetic trees:

I For each type of binary tree with the
given labels, we form a quadrant
RN
+ ⊂ RN

(N = ] branches in binary tree with n

leaves)

I Now for a point x ∈ RN
+ the

coordinate xi ≥ 0 is the length of the
i th branch

I Glue the quadrants together along the
natural branch collapses
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Approach 2: Phylogenetic trees and their like

The space of phylogenetic trees
geometry of tr ee space 741
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FIG. 4. Cubical tiling of M0 5, where the arrows indicate oriented identifications.

4 bil l er a, holmes, and vogtmann

= (0,1) (1,1) =

= (0,0)
(1,0) =

1 42 3

1

1 42 3

1 42 3

1

1 42 3

1

1

1 42 3

0.6
0.3

(.3,.6) = 

0

0

0

0

0

FIG. 8. The 2-dimensional quadrant corresponding to ametric 4-tree.

Figure: Figures shamelessly copied from Billera, Holmes, Vogtmann:
Geometry of the space of Phylogenetic Trees
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Approach 2: Phylogenetic trees and their like

The really cool thing about the space of phylogenetic trees!

Theorem (Billera, Holmes, Vogtmann)

The space of phylogenetic trees is a CAT (0) space

What does that mean?
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Timeout: CAT (0)-spaces, our new favorite statistical playground?

Statistics in metric spaces?

Recall that a metric space is a space X of points with a distance
measure d such that

I d(x , y) = d(y , x)

I d(x , y) = 0 if and only if x = y

I d(x , y) + d(y , z) ≥ d(x , z) (triangle inequality)

I In order to formulate statistics, we want to have geodesics.
What does the word �geodesic� even mean in a metric space?
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Timeout: CAT (0)-spaces, our new favorite statistical playground?

Geodesics in metric spaces
I Let (X , d) be a metric space. The length of a curve

c : [a, b]→ X is

l(c) = supa=t0≤t1≤...≤tn=b

n−1∑
i=0

d(c(ti , ti+1)).

I A geodesic from x to y in X is a path c : [a, b]→ X such that
c(a) = x , c(b) = y and l(c) = d(x , y).

I (X , d) is a geodesic space if all pairs x , y can be joined by a
geodesic.
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Timeout: CAT (0)-spaces, our new favorite statistical playground?

Curvature in metric spaces

I A CAT (0) space is a metric space in which geodesic triangles
are �thinner� than for their comparison triangles in the plane;
that is, d(x , a) ≤ d(x̄ , ā).

I A space has non-positive curvature if it is locally CAT (0).
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Timeout: CAT (0)-spaces, our new favorite statistical playground?

Curvature in metric spaces

Example geometry of tr ee space 741
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FIG. 4. Cubical tiling of M0 5, where the arrows indicate oriented identifications.

Figure: CAT (0) spaces.

Theorem (see e.g. Bridson-Hae�iger)

Let (X , d) be a CAT (0) space; then all pairs of points have a
unique geodesic joining them.
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Let (X , d) be a CAT (0) space; then all pairs of points have a
unique geodesic joining them.
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Timeout: CAT (0)-spaces, our new favorite statistical playground?

Curvature in metric spaces

Subsets {x1, . . . , xn} in CAT (0)-spaces

Theorem
4 ...have unique means, de�ned as argmin

∑
d(x , xi )

2.

4Feragen, Hauberg, Nielsen, Lauze, Means in spaces of treelike shapes,
ICCV 2011
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Timeout: CAT (0)-spaces, our new favorite statistical playground?

Curvature in metric spaces

Subsets {x1, . . . , xn} in CAT (0)-spaces

Theorem (Bridson, Hae�iger)

...have unique circumcenters, de�ned as the center of the smallest
sphere containing all the {xi}si=1.
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Timeout: CAT (0)-spaces, our new favorite statistical playground?

Curvature in metric spaces

Subsets {x1, . . . , xn} in CAT (0)-spaces

Theorem (Billera, Vogtmann, Holmes)

...have unique centroids, de�ned by induction on |S | = n:

I If |S | = 2, then c(S) is the midpoint of the geodesic between
the two elements of S .

I If |S | = n > 2 and we have de�ned c(S ′) for all S ′ with
|S ′| < n, then denote by c1(S) the set
{c(S ′)|S ′ ⊂ S , |S ′| = n − 1} and denote by
ck(S) = c1(ck−1(S)) when k > 1.

I If ck(S)→ p for some p ∈ X̄ as k →∞, then c(S) = p is the
centroid of S .

30/50
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Timeout over: Back to the phylogenetic trees

What does this mean for the phylogenetic trees?

I We can compute average phylogenetic trees!

I Possible problem: Based on Billera, Holmes, Vogtmann,
centroid phylogenetic trees have exponential computation time

I Moreover, geodesics between phylogenetic trees do not have
obvious polynomial computation algorithms, either.

32/50



Timeout over: Back to the phylogenetic trees

Computability?

Using the CAT (0) properties, it is possible to prove:

Theorem
4 There is a polynomial time algorithm for computing the geodesic

between two phylogenetic trees.

4Owen, Provan: A Fast Algorithm for Computing Geodesic Distances in
Tree Space, IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2011
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Timeout over: Back to the phylogenetic trees

Summary

Pros:

I A nice mathematical theory

I Computability

I Excellent modeling properties for phylogenetic trees

I CAT (0) property gives potential for more statistical
measurements

Cons:

I Does not carry directly over to trees with more geometric
branch descriptors

I Fixed branch label set

I Ordered trees (⇔ leaf labels)

I No noise tolerance
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Approach 3: Statistical tree-shape analysis

Motivating application: Airway shape analysis

I Unlabeled (unordered) tree in 3D

I Di�erent nr of branches

I Structural noise (missing/extra branches)

36/50



Approach 3: Statistical tree-shape analysis

Tree representation

How to represent tree-like shapes mathematically?

Tree-like (pre-)shape = pair (T , x)

I T = (V ,E , r , <) rooted, ordered/planar binary tree,
describing the tree topology (combinatorics)

I x ∈
∏

e∈E A a product of points in attribute space A

describing edge shape
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Approach 3: Statistical tree-shape analysis

Tree representation

We are allowing collapsed edges, which means that

I we can represent higher order vertices

I we can represent trees of di�erent sizes using the same
combinatorial tree T

(dotted line = collapsed edge = zero/constant attribute)

37/50



Approach 3: Statistical tree-shape analysis

Tree representation

37/50

Edge representation through landmark points:
Edge shape space is (Rd )n, d = 2, 3.



Approach 3: Statistical tree-shape analysis

The space of tree-like preshapes

Fix a maximal combinatorial T . We use a �nite tree; could
reformulate for in�nite trees.

De�nition
De�ne the space of tree-like pre-shapes as the product space

X =
∏
e∈E

(Rd )n

where (Rd )n is the edge shape space.

This is just a space of pre-shapes.
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Approach 3: Statistical tree-shape analysis

From pre-shapes to shapes

Many shapes have more than one representation
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Approach 3: Statistical tree-shape analysis

From pre-shapes to shapes

Not all shape deformations can be recovered as natural paths in
the pre-shape space:

39/50



Approach 3: Statistical tree-shape analysis

Shape space de�nition

I Start with the pre-shape space X =
∏

e∈E (Rd )n.

I Glue together all points in X that represent the same
tree-shape.

I This corresponds to identifying, or gluing together, subspaces
{x ∈ X |xe = 0 if e /∈ E1} and {x ∈ X |xe = 0 if e /∈ E2} in X .
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Approach 3: Statistical tree-shape analysis

Shape space de�nition

quotient

I For the landmark point shape space this is just a folded
Euclidean space; we call it X̄ .

I The Euclidean norm on X induces a metric on X̄ , called QED
(Quotient Euclidean Distance) metric.
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Approach 3: Statistical tree-shape analysis

QED properties

It de�nes a geodesic metric space 5

Tree-space

5Feragen, Lo, de Bruijne, Nielsen, Lauze: Geometries in spaces of treelike
shapes, ACCV 2010
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Approach 3: Statistical tree-shape analysis

QED properties

Example of a QED geodesic deformation:

Play movie

Note the tolerance of topological di�erences and natural
deformation.
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Approach 3: Statistical tree-shape analysis

QED properties

Noise tolerance:

Sequences of trees with disappearing branches will converge
towards trees without the same branch.
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Approach 3: Statistical tree-shape analysis

Curvature of shape space

Theorem
5

I Consider (X̄ , d̄2), shape space with the QED metric.

I At generic points, this space has non-positive curvature, i.e. it
is locally CAT (0).

I Its geodesics are locally unique at generic points.

I At non-generic points, the curvature is unbounded.

I Su�ciently clustered datasets in X̄ will have unique means,
centroids and circumcenters.

5Feragen, Lo, de Bruijne, Nielsen, Lauze: Geometries in spaces of treelike
shapes, ACCV 2010
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Approach 3: Statistical tree-shape analysis

3D trees6

So far we talked about ordered tree-like shapes; what about
unordered (spatial) tree-like shapes?

6Feragen, Lo, de Bruijne, Nielsen, Lauze: Towards a theory of statistical
tree-shape analysis, submitted
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Approach 3: Statistical tree-shape analysis

3D trees6

I Unordered trees: Give a random order
I Denote by G the group of reorderings of the edges that do

not alter the connectivity of the tree.
I The space of unordered trees is the space ¯̄X = X̄/G

I There is a (pseudo)metric on ¯̄X induced from the Euclidean
metric on X .

I ¯̄d(¯̄x , ¯̄y) corresponds to considering all possible orders on ¯̄y and

choosing the order that minimizes ¯̄d(¯̄x , ¯̄y).

6Feragen, Lo, de Bruijne, Nielsen, Lauze: Towards a theory of statistical
tree-shape analysis, submitted
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Approach 3: Statistical tree-shape analysis

3D trees6

Theorem

I For the quotient pseudometric ¯̄d induced by either d̄1 or d̄2,

the function ¯̄d is a metric and ( ¯̄X , ¯̄d) is a geodesic space.

I At generic points, ( ¯̄X , ¯̄d2) has non-positive curvature, i.e. it is
locally CAT (0).

I At generic points, geodesics are locally unique-

I At generic points, su�ciently clustered data has unique
means, circumcenters, centroids.

I ...so everything we proved for ordered trees, still holds.

6Feragen, Lo, de Bruijne, Nielsen, Lauze: Towards a theory of statistical
tree-shape analysis, submitted
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Approach 3: Statistical tree-shape analysis

Examples 7

7with S. Hauberg, M. Nielsen, F. Lauze, Means in spaces of treelike shapes,
ICCV 2011
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Approach 3: Statistical tree-shape analysis

Averages in the QED metric

Synthetic data:

Figure: A small set of synthetic planar tree-shapes.

Figure: Left: Mean shape. Right: Centroid shape.

These choices of �average� give rather similar results.
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Approach 3: Statistical tree-shape analysis

Averages in the QED metric
Leaf vasculature data:

Figure: A set of vascular trees from ivy leaves form a set of planar
tree-shapes.

Figure: a): The vascular trees are extracted from photos of ivy leaves. b)
The mean vascular tree.
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Approach 3: Statistical tree-shape analysis

Averages in the QED metric

Airway tree data:

Figure: A set of upper airway tree-shapes along with their mean
tree-shape.
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Approach 3: Statistical tree-shape analysis

Averages in the QED metric

Figure: A set of upper airway tree-shapes (projected).8

QED TED

Figure: The QED and TED (algorithm by Trinh and Kimia) means.

8with P. Lo, M. de Bruijne, M. Nielsen, F. Lauze, submitted
45/50



Approach 3: Statistical tree-shape analysis

Summary

Pros:

I Strong modeling properties

I Does not require labels, ordered, or same number of branches

I Continuous topological transitions in geodesics

I Local CAT (0) property ⇒ promising for statistical
computations

I Good noise-handling properties

Cons:

I Algorithmic properties

I Computational complexity
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Approach 3: Statistical tree-shape analysis

Conclusions and open problems

Conclusions and open problems

47/50



Approach 3: Statistical tree-shape analysis

Conclusions and open problems

Conclusions

I The interplay between structure/topology/combinatorics and
features (geometry) poses a challenging modeling problem

I There is often a tradeo� between modeling properties and
computational complexity

I Analysis of tree-structured data can be attacked as a
geometric, algorithmic, modeling, statistical, machine
learning, .... -problem
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Approach 3: Statistical tree-shape analysis

Conclusions and open problems

Open questions

I Statistical properties: How to analyze data variation? PCA
analogues and so on?

I How does the choice of branch attribute change the
tree-space geometry in the di�erent models?

I Can the models be generalized to graphs?

I Can we �nd e�cient algorithms for computing distances and
statistical measurements?

I Our main goal: Large-scale statistical studies on medical data
I Geometry-based biomarkers for disease (COPD)?
I Anatomical modeling?
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Approach 3: Statistical tree-shape analysis

Conclusions and open problems

One more thing!

Means in the Space of Phylogenetic Trees

Talk by Megan Owen
on computational geometry and statistics

for Phylogenetic trees
30. august 2011 kl. 14 - 15 @DIKU
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