
7

A Methodology for Automated Cartographic
Data Input, Drawing and Editing Using Kinetic
Delaunay/Voronoi Diagrams

Christopher M. Gold1, Darka Mioc2, François Anton3, Ojaswa Sharma3,
and Maciej Dakowicz1

1 Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales,
CF37 1DL, UK
{cmgold,mdakowic}@glam.ac.uk

2 Department of Geodesy and Geomatics Engineering, University of New Brunswick,
P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
dmioc@unb.ca

3 Informatics and Mathematical Modelling, Technical University of Denmark,
Richard Petersens Plads, Building 321, 2800 Kgs. Lyngby, Denmark
{fa,os}@imm.dtu.dk

Summary. This chapter presents a methodology for automated cartographic data in-
put, drawing and editing. This methodology is based on kinematic algorithms for point
and line Delaunay triangulation and the Voronoi diagram. It allows one to automate
some parts of the manual digitization process and the topological editing of maps that
preserve map updates. The manual digitization process is replaced by computer assisted
skeletonization using scanned paper maps. We are using the Delaunay triangulation
and the Voronoi diagram in order to extract the skeletons that are guaranteed to be
topologically correct. The features thus extracted as object centrelines can be stored
as vector maps in a Geographic Information System after labelling and editing. This
research work can also be used for updates from sources that are either paper copy
maps or digital raster images. A prototype application that was developed as part of
the research has been presented.

We also describe two reversible line-drawing methods for cartographic applications
based on the kinetic (moving-point) Voronoi diagram. Our objectives were to optimize
the user’s ability to draw and edit the map, rather than to produce the most efficient
batch-oriented algorithm for large data sets, and all our algorithms are based on local
operations (except for basic point location). Because the deletion of individual points
or line segments is a necessary part of the manual editing process, incremental inser-
tion and deletion is used. The original concept used here is that, as a curve (line)
is the locus of a moving point, then segments are drawn by maintaining the topol-
ogy of a single moving point (abbreviated as MP hereafter, or the “pen”) as it moves
through the topological network (visualized as either the Voronoi diagram or Delaunay
triangulation). This approach also has the interesting property that a “log file” of all
operations may be preserved, allowing reversion to previous map states, or “dates”, as
required.

M.L. Gavrilova (Ed.): Generalized Voronoi Diagram, SCI 158, pp. 159–196.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



160 C.M. Gold et al.

7.1 Introduction

In recent years, GISs have undergone major changes. Commercial GISs can now
handle dynamic updates and topology, versioning and advanced data editing.
However, there are still many functionalities missing in commercial GISs. One
of them is automated raster to vector conversion. Automated feature extraction
from images is the key to real-time map updates, automated digitization and
many other tasks that involve robotic vision. This research work is concerned
with centreline extraction from colour scanned maps. Various map features have
been considered but our primary interest is in linear features, since they provide
excellent identification of objects in any analysis.

However, in many cases in cartography the observable features are man-made,
and known to be composed of straight edges. While these may be approximately
extracted by various generalisation techniques, (e.g. early Douglas-Peucker meth-
ods), they are then incompatible with the point Delaunay triangulation (abbre-
viated DT hereafter) / Voronoi diagram (abbreviated VD hereafter) forming the
underlying spatial structure.

In an interactive editing environment it is desirable to be able to adjust fea-
tures individually within the current spatial model — in this case the VD. The
problem has previously been addressed for the case of terrain modelling, where
the terrain is represented by the DT and additional constraints such as river
bottoms need to be added. Here the constrained DT is often used — this is
constructed from the simple DT by inserting triangle edges of arbitrary length,
flagged so that they may not be changed by subsequent triangle flips. This may
also be used with the results of our feature extraction from skeletons, rather
than for terrain.

One problem, however concerns the meaning of the triangle edges — some rep-
resent particular linear features and some merely represent Voronoi adjacency
relationships between data elements. In particular, features usually require addi-
tional attribute information, unlike the remaining edges. The solution in this case
should be a complete separation of the features (points, line segments) and the
relationship information (topology: triangulation). For urban features in par-
ticular, the line segment VD holds strong theoretical attractions, as the dual
triangulation merely represents the topological relations, while the map features
are preserved separately with the associated attribute data. While functioning
software exists (see [45]) it is not interactive, thus not allowing the manual edit-
ing we desire, and the algorithms are extremely complex.

This chapter is organised as follows. Section 7.2 introduces the Voronoi dia-
gram of points and open oriented straight line segments and describes its core
properties used in Section 7.3. Readers interested only in applications may skip
this section and go directly to Section 7.3. Section 7.3 describes the extraction
of features from images to produce “polylines” representing the desired enti-
ties — coastlines, rivers, etc. Section 7.4 addresses this issue by looking at the
Moving Point VD as the basic algorithm, with modifications added to generate
first the Constrained DT and secondly the Line Segment VD, with operations
that permit the insertion and deletion of map features. This has not previously



7 A Methodology for Automated Cartographic Data Input 161

been achieved robustly — that is, handling degenerate cases with finite precision
computer arithmetic.

7.2 Introduction to the Voronoi Diagram of Points and
Open Oriented Straight Line Segments

Let us first introduce the definition of the Voronoi diagram for a set of sites
(i.e. objects or subsets) in the Euclidean affine plane. Let us now consider a set
of points and open oriented1 segments O={O1, ..., Os} in the Euclidean plane.
We recall that an open oriented segment is the open set formed from a (closed
straight line) segment [AB] by removing its extremities A and B and considering
as positive orientation along the line (AB) the orientation from A to B. The
distance from a point M to an object Oi is defined as: either the Euclidean
distance between the two points if Oi is a point, or ∞ if the point M lies on the
right of Oi, or d (M, Oi) := infP∈Oi de (M, P ) where de denotes the Euclidean
distance between two points, otherwise. The Voronoi diagram for a set of points
and open oriented line segments is a generalized Voronoi diagram. Let us now
introduce the definition of a generalized Voronoi diagram (see (45)), in order to
be able to introduce the definition of the Voronoi diagram for a set of points and
oriented line segments as a generalized Voronoi diagram. Let S be the metric
space in which we place ourselves (typically R2).

Definition 1. A mapping δ : S × O → {0, 1} defined by (p, Oi) $→ δ (p, Oi) such
that:

δ (p, Oi) =
{

1,
0,

if p is assigned to Oi

otherwise

is called an assignment rule.

Under an assignment rule δ, we consider the set V (Oi) of points assigned to Oi,
and the set e(Oi, Oj) of points assigned to both Oi and Oj with i %= j.

Definition 2. A Voronoi tessellation is a set V (O, δ, S) such that the assign-
ment rule δ satisfies the following two conditions:

• every point in S is assigned to at least one element of O i.e., ∀p ∈
S,

∑n
i=1 δ (p, Oi) ≥ 1;

• the set e (Oi, Oj) pertains to the boundaries of V (Oi) and of V (Oj), i.e.,
∀ε > 0, ∀p ∈ e (Oi, Oj):
– Nε (p) ∩ [V (Oi) \ e (Oi, Oj)] %= ∅ and
– Nε (p) ∩ [S \ V (Oi)] %= ∅ and
– Nε (p) ∩ [V (Oj) \ e (Oi, Oj)] %= ∅ and
– Nε (p) ∩ [S \ V (Oj)] %= ∅,
where Nε (p) is the open ball centred at p of radius the real number ε.

1 As in simplex orientation or segment direction, that is not the same as the orientation
of the underlying topological space.



162 C.M. Gold et al.

Indeed, the first condition implies that the elements in V (O, δ, S) are collectively
exhaustive i.e.,

⋃n
i=1 V (Oi) = S.

The definitions of V (Oi) and of e (Oi, Oj) together with the second condition
imply that the elements in V (O, δ, S) are mutually exclusive except for bound-
aries i.e.,

[V (Oi) ∩ V (Oj)] \ e (Oi, Oj) = ∅ for all i %= j.

Definition 3. The Voronoi region of Oi is:
V (Oi) = {p ∈ S | δ (p, Oi) = 1}.

Definition 4. The Voronoi edge of Oi and Oj with i %= j is:

e (Oi, Oj) = {p ∈ S | δ (p, Oi) = δ (p, Oj) = 1} .

Definition 5. The Voronoi tessellation is the set
V (O, δ, S)={V (O1) , ..., V (On)}.

We designate this tessellation the generalized Voronoi diagram generated by the
generator set O with assignment rule δ in space S, and V (Oi) the generalized
Voronoi region associated with Oi. We call the assignment rule δ that generates a
generalized Voronoi diagram, the Voronoi generation assignment rule, or, shortly,
the V −assignment rule.

Definition 6. The Voronoi diagram for a set of points and open oriented seg-
ments in the Euclidean plane is a generalized Voronoi diagram where the space is
the Euclidean plane, the generator set is comprised of points and/or pairs of open
oriented straight line segments in the Euclidean plane such that their extremities
belong also to the generator set, and the generator assignement rule is as follows.

If Oi is a point, then

δ (p, Oi) =
{

1,
0,

if d (p, Oi) ≤ d(p, Oj), ∀j
otherwise .

If Oi is an open oriented line segment, then

δ (p, Oi) =






1,

0,

if d (p, Oi) ≤ d(p, Oj), ∀j and
p is on the left of Oi or on Oi

otherwise
.

The Voronoi cell V (Oi) of Oi is the set of points that are closer (in the sense
of the distance between a point and an object defined just above) to Oi than to
other sites Oj : j %= i of O. Then, let us introduce the definition of the Delaunay
graph of a set of sites (or objects) in the Euclidean affine plane.

Definition 7. The Delaunay triangulation of O is the geometric dual of the
Voronoi diagram of O: two sites of O are linked by an edge in the Delaunay
triangulation if and only if their cells are incident in the Voronoi diagram of O.



7 A Methodology for Automated Cartographic Data Input 163

7.2.1 Quad-Edge Based Voronoi Data Structure

Guibas and Stolfi (26) developed a convenient mathematical structure for repre-
senting the topological relationships among edges of a pair of dual subdivisions
on a two-dimensional manifold2. A subdivision of a manifold M is (26) a parti-
tion S of M into three finite collections of disjoint parts, the vertices (denoted
by VS), the edges (denoted by ES) and the faces (denoted by FS) with the
following properties:

• Every vertex is a point of M,
• Every edge is a line of M,
• Every face is a disk of M,
• The boundary of every face is a closed path of edges and vertices.

A directed edge of a subdivision P is an edge of P together with a direction
along it (see page 80 in (26)). Since directions and orientations can be chosen in-
dependently, for every edge of a subdivision there are four directed, oriented edges
(26). For any oriented directed edge e we can define unambiguously its vertex of
origin e.Org, its destination, e.Dest, its left face, and its right face. The flipped
version e.F lip of an edge e is the same unoriented edge taken with opposite ori-
entation and same direction. The edge e.Rot is the edge of the dual subdivision
that goes from the right face of e to the left face of e and oriented so that moving
counterclockwise around the right face of e corresponds to moving counterclock-
wise around the origin of e.Rot. The next edge with the same origin, e.Onext is
defined as the one immediately following e (counterclockwise) in the ring of edges
out of the origin of e (see Figure 7.1). Edge functions (see Figure 7.1) allow the
traversal of the pair of dual subdivisions.

An edge algebra (26) is the mathematical structure used for representing si-
multaneously a pair of dual subdivisions (in our use of the Quad-Edge data
structure, the Delaunay triangulation and the Voronoi diagram). It captures all
the topological properties of a subdivision (26). The topology of the subdivi-
sion is completely determined by its edge algebra, and vice versa. This allows
all the edge functions to be expressed using three basic primitives, Flip, Rot,
and Onext described above (26). The edge algebra (26) is an abstract algebra
(E, E∗, Onext, F lip, Rot) where E and E∗ are arbitrary finite sets (of edges),
and Onext, Rot, and Flip are functions on E and E∗. The main advantage
of the Quad-Edge data structure is that all the construction and modification
of planar graphs can be done using two basic topological operators, and the
complex topological operations built from these two basic topological operators:

• e := MakeEdge[] creates an edge e to a newly created data structure repre-
senting an empty manifold;

• Splice[a, b] joins or separates the two edge rings a.Org and b.Org, and inde-
pendently, the two dual edge rings a.Left and b.Left (see Figure 7.2).

2 A two-dimensional manifold is a topological space with the property that every point
has an open neighbourhood which is a disk.



164 C.M. Gold et al.

Fig. 7.1. The edge functions (adapted from Guibas and Stolfi (26))

Fig. 7.2. The Splice topological operator



7 A Methodology for Automated Cartographic Data Input 165

7.2.2 The Operations on the Dynamic Voronoi Data Structure

The complex operations (18) can be decomposed into sequences of atomic ac-
tions. Each atomic action in a complex operation executes the geometric al-
gorithm for addition, deletion or change of objects and corresponding Voronoi
cells.

The atomic actions are:

• the Split action, which inserts a new point into the structure by splitting the
nearest point from the pointed location into two points;

• the Merge action, which deletes the selected point by merging it with its
nearest neighbour;

• the Switch action, which is performed when a point moves and a “topological
event” — defined in Section 7.4.2 — occurs (i.e. the moving point enters or
exits a circle circumscribed to a Delaunay triangle);

• the Move (topological event) action, which moves the selected point from its
current position to a new position or until the next topological event;

• the Link action, which adds a line segment between the points obtained after
a Split action; the Link action must occur after a Split action, and adds a
line segment between the point selected for splitting and the newly created
point;

• the Unlink action, which removes the selected line segment; the Unlink action
must occur before a Merge action, and removes the line segment between the
selected point and its nearest object.

These actions compose the set of atomic actions of the dynamic spatial
Voronoi data structure (37).

The atomic actions are the basis upon which complex operations have been
built. All the complex operations (18; 40) of this dynamic Voronoi data structure
are complex operations composed of atomic actions. The composition of atomic
actions into complex operations is provided by syntactic rules.

The complex operations are composed of atomic operations, and the exact
decomposition of complex operations into sequences of atomic actions is given
in (38).

7.3 A Methodology for Raster to Vector Conversion of
Colour Scanned Maps and Satellite Imagery

Manual digitization is very time consuming and tedious in nature. The semi-
automated algorithms (35) for digitization involve tracing the object from a
black and white map and then picking up the centreline of the object. Other al-
gorithms ask for human input for decisions, such as to connect lines at junctions.
Interactive systems for map digitization and query, that involve human interac-
tion with the machine, have been designed (47). A fully automated approach is
still an open problem, since the maps are produced for human consumption and
make use of the heuristic reasoning and world knowledge of human beings (34).



166 C.M. Gold et al.

7.3.1 Skeletonization

As discussed in (7), the skeletons produced by any skeletonization algorithm
are expected to have homotopy, one pixel thickness, mediality, motion invari-
ance, noise immunity and reconstructability. In practice, however, all of these
properties cannot be satisfied simultaneously (7) and some of the properties
are even contradictory. Therefore, the choice of properties is entirely dependent
on the application. Popular methods of skeleton extraction are thinning using
mathematical morphology (24, chap. 9) and skeletonization using distance trans-
form (9). This research is concerned with skeleton extraction using the Voronoi
diagram (1; 17; 43; 42).

Image Segmentation

Edge detection produces global edges in an image. This means that there is
no object definition attached to the edges. Therefore it is required to somehow
define the objects first and then obtain edges from them. This can be achieved by
using image segmentation. The main goal of image segmentation is to divide an
image into parts that have a strong correlation with objects or areas of the real
world depicted in the image (52, chap. 5). Thus, image segmentation divides the
whole image into homogeneous regions based on colour information. The regions
can be loosely defined as representatives of objects present in the image.

Feature space analysis is used extensively in image understanding tasks. Co-
maniciu and Meer (11) provide a comparatively new and efficient segmentation
algorithm, that is based on feature space analysis and relies on the mean-shift
algorithm to robustly determine the cluster means. A feature space is a space
of feature vectors. These features can be object descriptors or patterns in case
of an image. A colour vector corresponding to a pixel from an image can be
represented as a point in the feature space.

In order to understand the mean shift algorithm, consider n data points xi,
i = 1, . . . , n in the d -dimensional space Rd. A flat kernel that is the characteristic
function of the λ-ball in Rd is defined as

K(x) =
{

1 if ‖x‖ ≤ λ
0 if ‖x‖ > λ

(7.1)

The mean shift vector at a location x is defined as

Mλ(x) =

∑

r∈Rd

xK(r − x)

∑

r∈Rd

K(r − x)
− x (7.2)

The mean shift vector, a vector of difference between the local mean and the
center of the window K(x), is proportional to the gradient of the probability
density at x (10). Thus, the mean shift is the steepest ascent with a varying step
size that is the magnitude of the gradient. Comaniciu and Meer (12) use the



7 A Methodology for Automated Cartographic Data Input 167

mean shift vector in seeking the mode of a density by shifting the kernel window
by the magnitude of the mean shift vector repeatedly. The authors also prove
that the mean shift vector converges to zero and eventually reaches the basin of
attraction of that mode.

A simple, adaptive steepest ascent mode seeking algorithm is suggested in
(11).

1. Choose the radius r of the search window (i.e, radius of the kernel).
2. Choose the initial location of the window.
3. Compute the mean shift vector and translate the search window by that

amount.
4. Repeat till convergence.

The mean shift algorithm gives a general technique of clustering multi-dimensional
data that can be applied in colour image segmentation. The fundamental use of
the mean shift is in seeking the modes that gives the regions of high density in any
data.

The method described in (11) provides an autonomous segmentation tech-
nique with only the type of segmentation to be specified by the user. This method
emphasizes the importance of utilizing the image space along with the feature
space to efficiently perform the task of segmentation. The segmentation has three
characteristic input parameters:

• Radius of the search window, r,
• Smallest number of elements required for a significant colour, Nmin, and
• Smallest number of connected pixels necessary for a significant image region,

Ncon.

The size of the search window determines the resolution of the segmentation,
smaller values corresponding to higher resolutions. The authors use square root
of the trace of global covariance matrix of the image, σ, as a measure of the visual
activity in the image. The radius r is taken proportional to σ. For the implemen-
tation of the segmentation algorithm, the authors provide three segmentation
resolution classes:

1. Undersegmentation refers to the coarsest resolution with a minimum
number of colours and only dominant regions of the image. The three pa-
rameters for this class are:
(0.4σ, 400, 10).

2. Oversegmentation refers to intermediate resolution and represents ob-
jects with some level of detail. The three parameters for this class are:
(0.3σ, 100, 10).

3. Quantization refers to the finest resolution and produces images with all
the important colours with no object connectivity requirement. The three
parameters for this class are: (0.2σ, 50, 0).

Figure 7.3 shows the results of this segmentation algorithm on a natural image.
Note the variation in number of colours for each segmentation type.



168 C.M. Gold et al.

(a) Original image with 108440
colours

(b) Undersegmented image with 8
colours

(c) Oversegmented image with 34
colours

(d) Quantized image with 49 colours

Fig. 7.3. Colour image segmentation by (11)

Later, Comaniciu and Meer provide an improvement (12) over this segmenta-
tion algorithm by merging the image domain and the feature (range) space into
a joint spatial-range domain of dimension d = p+2, where p is the dimension of
the range domain. This gives an added advantage of considering both spaces to-
gether and gives good results in cases where non-uniform illumination produces
false contours when the previous segmentation algorithm is used. Therefore, the
new algorithm is particularly useful to segment natural images with man-made
objects. An added computational overhead to process higher dimensional space
is inevitable here. In this research, since we are dealing with scanned maps, the
simple mean shift based segmentation algorithm provides satisfactory results.

Image segmentation provides us with definite object boundaries that are used
to extract sampling points around an object. These sample points can then be
used to compute the skeleton and the boundary of the object.

Crust Extraction

Amenta et al. (1) perform the extraction of object boundaries from a set of suf-
ficiently well sampled data points. The vertices of the Voronoi diagram approxi-
mate the medial axis of a set of sample points from a smooth curve. Vertices of the
Voronoi diagram of the sample points were inserted into the original set of sample
points and a new Delaunay triangulation was computed (1). The circumcircles of



7 A Methodology for Automated Cartographic Data Input 169

this new triangulation approximate empty circles between the original boundary
of the object and its skeleton. Thus, any Delaunay edge connecting a pair of the
original sample points in the new triangulation is a part of the border (1).

Further research by Gold (17) leads to a one-step border (crust) extraction
algorithm. In a Delaunay triangulation, each Delaunay edge that is not on the
convex hull of the triangulation is adjacent to two triangles and the circumcircles
of these triangles are the Voronoi vertices. A Voronoi edge connecting these two
circumcenters is the dual edge to the Delaunay edge considered here. According
to Gold (17), a Delaunay edge is a part of the border if it has a circle that
does not contain any Voronoi vertex. It is sufficient to test only the vertices of
the dual Voronoi edge. The test is the standard InCircle test. Considering two
triangles (p, q, r) and (r, q, s) sharing an edge (q, r) in a Delaunay triangulation
and let v be the a vector orthogonal to edge (r − q) in clockwise order, then the
test becomes:

(s − q) · (s − r) ∗ (p − q) · (p − r) ≥ − (s − r) · v ∗ (p − q) · v (7.3)

This test will be true for an edge in the border set. Furthermore, those De-
launay edges internal to the object that are not the part of the border set have
their dual Voronoi edges as being part of the skeleton (shown in Figure 7.4).

(a) Map (b) Boundary

Fig. 7.4. Result of boundary (crust) extraction using algorithm by Gold

Skeleton Extraction

Research in (4) suggests a new algorithm for skeleton extraction. This is based
on the concept of Gabriel graph (15).

A Gabriel graph G (highlighted in Figure 7.5) is a connected subset of the
Delaunay graph D of points in set S, such that two points pi and pj in S are
connected by an edge of the Gabriel graph if, and only if, the circle with diameter
pipj does not contain any other point of S in its interior. In other words, the
edges in G are those edges from D whose dual Voronoi edges intersect with them.

Given the Delaunay triangulation D and the Voronoi diagram V of sample
points S from the boundary of an object, the algorithm for centreline extration
proceeds by selecting all the Gabriel edges in graph G. Each dual Voronoi edge



170 C.M. Gold et al.

Fig. 7.5. Gabriel graph highlighted in a Delaunay triangulation

(a) Map (b) Skeletons of streams in red

Fig. 7.6. Result of skeleton extraction using the algorithm by Anton et al.

v of the Gabriel edge g from G is inserted in the skeleton K if the following
condition is met:

g.Org.Col %= g.Dst.Col
Or

g.Org.Col %= v.Org.Col
Or

g.Org.Col %= v.Dst.Col
And

‖g.Org.Col − g.Dst.Col‖ ≥ ‖v.Org.Col − v.Dst.Col‖

(7.4)



7 A Methodology for Automated Cartographic Data Input 171

Here, Org.Col and Dst.Col are colour values from the gray scale image corre-
sponding to the location of the origin and the destination of an edge respectively.
Figure 7.6(b) shows the result of skeleton extraction from streams present in a
map (Figure 7.6(a)). However, a close observation reveals that the skeleton thus
obtained has gaps. These gaps are prominent if the object under consideration
has sharp turns in its geometry, which is further amplified if the object is thick.
An ongoing research project tries to overcome this by locating skeleton edges by
moving along the border set.

7.3.2 Automated Approach to Skeletonization of Scanned Map
Features

Colour images provide more contextual details about the objects present in the
image. Therefore, processing colour images rather than gray scale images can
provide much more accurate information. The general approach adopted here is:

1. Segment a colour image into prominent objects,
2. Ask the user to select an object or process all the objects independently,
3. Collect sample points for each object to be processed, and
4. Extract the skeletons using a Delaunay/Voronoi diagram based algorithm.

These steps are explained next in detail.
Once objects are defined as homogeneous regions by the segmenter, the next

step is to select them and operate on them. This is implemented as an interactive
object selection in the application VGUI. To achieve this, the user is allowed to
select a region on the image. If an object is composed of more than one regions
then multiple object selection can be made and regions combined to form a
single object. A wrongly selected region can be removed from the selection. The
user input is processed and the selected region is highlighted and selected for
subsequent processing.

Once we have an object selected from an image, the next step is to sample its
boundary in order to generate points used to construct the Delaunay triangu-
lation. In order to automatically generate these sample points, edge pixels that
are returned by the morphological edge detector are used. Using edge pixels also
helps in generating a dense sampling which is required to give a better approx-
imation of the skeleton (1). Morphological edge detection on the binary image
containing the selected object is performed and the edge pixels are then sequen-
tially inserted into the Delaunay triangulation. The triangulation is updated
after every insertion (using the incremental algorithm).

The Delaunay triangulation of the sample points (see Figure 7.7(a)) is com-
puted using the incremental algorithm given in (25), which is stored in the
quad-edge data structure. This is followed by the computation of the Voronoi
vertices for all faces of the triangulation. The boundary of the object is extracted
using the criteria given in (17). The edges in the Delaunay triangulation are an-
alyzed and flagged as being part of the boundary. Figure 7.7 shows the Delaunay
triangulation and extracted boundary for a linear object. The sample points of
the object are shown as black pixels on the DT in Figure 7.7.



172 C.M. Gold et al.

(a) The Delaunay triangulation

(b) Extracted boundary

Fig. 7.7. Boundary extraction from colour image

Skeleton extraction from the Voronoi diagram

Amenta et al. (1) show that the “crust” or the boundary of a polygon can
be extracted from an unstructured set of points provided the data points are



7 A Methodology for Automated Cartographic Data Input 173

well sampled. Gold et al. (22) further simplify their method and show that the
boundary can be extracted in a single step (see section 7.3.1). Gold (17) discusses
the “anti-crust” in the context of skeleton extraction citing a brief introduction
of this term in (1). The idea behind getting the skeleton is that a Voronoi edge
is a part of the skeleton, if its corresponding dual Delaunay edge is not a part
of the border set (crust) and it lies completely within the selected object. Thus,
selecting the Voronoi edges lying inside the selected object that are dual to
the non-crust Delaunay edges should give us the skeleton (see Figure 7.8). The
Voronoi edges thus selected form a tree structure called the “anti-crust” (17)
that extend towards the boundary but do not cross it.

The anti-crust of an object, as described above, forms a tree like structure
that contains the skeleton. Once all the Delaunay edges belonging to the border
set or the crust are identified using the condition given in (17), it is easy to
identify the Voronoi edges belonging to the anti-crust. In Figure 7.9, consider
the Delaunay triangulation (dashed edges), the corresponding Voronoi diagram
(dotted edges) and the crust edges (solid red edges).

Navigation from a Delaunay edge to its dual Voronoi edge can be achieved by
using the Rot() operator in the quad-edge data structure. A Voronoi edge e.Rot()
of the dual Delaunay edge e is marked as an edge belonging to the anti-crust if
the following conditions are satisfied:

1. e /∈ Crust
2. e.Rot().Org ∈ I
3. e.Rot().Dst ∈ I

Where e.Rot().Org is the origin coordinate of edge e.Rot(), e.Rot().Dest is the
destination coordinate of edge e.Rot() and I is the selected object. This marks
all the Voronoi edges belonging to the anti-crust that fall inside the selected
object. Negating conditions (2) and (3) so that the coordinates do not fall inside
the object will give us the exterior skeleton or the exoskeleton. Once the anti-
crust is identified, an appropriate pruning method can be applied to get rid of
the unwanted edges.

Skeleton Pruning

The “hairs” around the result of the skeletonization are due to the presence
of three adjacent sample points whose circumcircle does not contain any other
sample point - either near the end of a main skeleton branch or at locations
on the boundary where there is minor perturbation because of raster sampling
(17). A skeleton retraction scheme suggested in (23) gets rid of the hairs and also
results in smoothing of the boundary of the object. Ogniewicz (41) presents an
elaborate skeleton pruning scheme based on various residual functions. Thus,
a hierarchic skeleton is created which is good for multiscale representation.
The problem of identifying skeleton edges now reduces to reasonably prune the
anti-crust.

Gold and Thibault (23) present a retraction scheme for the leaf nodes in the
anti-crust. The skeleton is simplified by retracting the leaf nodes of the skeleton



174 C.M. Gold et al.

(a) The Voronoi diagram (b) Anti-crust

(c) Skeleton

Fig. 7.8. Skeleton as seen as the anti-crust

Fig. 7.9. Anti-crust from the crust

to their parent nodes. They (23) recommend performing the retraction operation
repeatedly until no further changes take place. An observation reveals that an
unwanted branch in a skeleton may be composed of more than one edge (see
Figure 7.10). Therefore, single retraction may not be sufficient to provide an
acceptable skeleton.



7 A Methodology for Automated Cartographic Data Input 175

Fig. 7.10. Hair around the skeleton composed of multiple edges

Fig. 7.11. Accessing neighboring edges in a quad-edge

(a) National High-
way

(b) Skeleton after
pruning

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

Iteration →

N
o
.
 
o
f
 
e
d
g
e
s
 
p
r
u
n
e
d
 

→

Plot of edges pruned in every iteration

Highway

(c) Pruning plot of object

Fig. 7.12. Skeleton obtained after pruning leaf edges: Test image 1

A similar simplification can be achieved by pruning the leaf edges instead of
retracting the leaf nodes. Leaf edge pruning produces satisfactory results and
requires only two or three levels of pruning. Before pruning the leaf edges, these
must be identified in the anti-crust using the operations provided by the quad-
edge data structure. Figure 7.11 shows operators to access neighboring edges of
an edge e.

An edge e from a tree of edges T ⊂ V , where V is the Voronoi diagram, is
marked as a leaf edge if the following condition is satisfied:



176 C.M. Gold et al.

e.Oprev() /∈ T And e.Onext() /∈ T
Or

e.Sym().Oprev() /∈ T And e.Sym().Onext() /∈ T
(7.5)

This condition essentially selects all the Voronoi edges belonging to the anti-
crust that have at least one end point free (i.e., connected to an edge not be-
longing to the anti-crust). This condition is used to locate leaf edges followed
by their removal from the skeleton. Experiments show that removing leaf edges
two to three times simplifies the skeleton to a major extent for linear features.

Presented next are a few examples showing removal of extraneous hair from
the skeleton by pruning the leaf edges. Figure 7.12(a) shows a national highway
selected from a scanned map. This serves as an example of a thick linear feature.
The result of leaf edge pruning is shown in Figure 7.12(b). A plot of the edges
pruned in every iteration (see Figure 7.12(c)) underlines the fact that first two
iterations are enough to produce an acceptable skeleton and that further pruning
results in more contraction of the skeleton (indicated by the horizontal plot after
a steep drop after third iteration).

Another example shown in Figure 7.13 of roads selected from a scanned map
serves as a case of thin linear features. Again the plot shown in Figure 7.13(c)
confirms the adequacy of two iterations of pruning. It should be noted, however,
that the case of thin linear features is even simpler than the previous case of thick
linear objects due to the presence of majority of single edge hairs. Since the plot
shows a steep slope followed by a curve that is almost horizontal, one can expect
most of the extraneous edges to be removed after the first iteration itself.

7.3.3 Results with Maps and Satellite Images

Image segmentation allows partitioning the image into homogeneous regions
based on their colour that has been achieved here by clustering using the mean
shift algorithm. The quality of the extracted objects, in terms of geometry and

(a) Roads (b) Skeleton after
second pruning

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

Iteration →

N
o
.
 
o
f
 
e
d
g
e
s
 
p
r
u
n
e
d
 

→

Plot of edges pruned in every iteration

Roads

(c) Pruning plot of object

Fig. 7.13. Skeleton obtained after pruning leaf edges: Test image 2



7 A Methodology for Automated Cartographic Data Input 177

(a) Map with
65415 colours

(b) Over-
segmented image
with 7 colours

(c) Roads (d) Skeleton of
roads

Fig. 7.14. Extraction of dense urban roads

connectivity, depends on the quality of the scanned image. A noisy image may
result in disconnected regions of an object that may produce a broken skeleton.
For sharp images with homogeneous regions, quantization produces good results
while for noisy images over-segmentation or under-segmentation gives satisfac-
tory results. A low pass (blurring) filter applied to an image, before processing
it, often results in a well segmented image since it subdues the high frequency
textural details and the noise. The developed application has the flexibility to se-
lect and combine the regions. Thus, different regions corresponding to an object
with varying hue of a colour can be combined together as a single selection.

The skeletons and boundaries of map objects shown in this section are ex-
tracted using the algorithms implemented in the application. The skeletons are
obtained by first computing the anti-crust and then pruning them by removing
the leaf edges. The boundary (crust) is generated using the single step algorithm
(17). A few examples of segmentation on scanned maps are shown next.

Figure 7.14 shows a typical case of a dense urban road network. The extracted
skeletons are of excellent quality and maintain good connectivity except at the
places where other features were drawn over the roads in the original map.

The next example shows a contour map obtained on-line from:
http://www.maptext.com/maps/Contour2.htm.

Fig. 7.15(b) shows a segmented image of the map. The map was treated with
a low pass filter to even out noise in the image. The contour object in the
segmented image is well separated from other objects (like roads and the back-
ground). Figure 7.15(d) shows the extracted centrelines of the contour curves,
while Figure 7.15(f) shows the extracted road centrelines. The extracted contour
centrelines, despite being broken at a few places, are valuable to be imported
into a GIS, to attach labels and optionally to generate a digital elevation model.

In order to test the applicability of the designed system to satellite images as
well, a few experiments were conducted. Since the system is designed to make
use of homogeneity in colours of objects, natural objects are better suited for
our analysis. A few cases of coastline extraction have been considered here. A
coastline is defined as the boundary between land and water. Coastline mapping
is important for coastal activity monitoring, resource mapping, navigation, etc.
A lot of work on coastline extraction from SAR (Synthetic Aperture Radar)



178 C.M. Gold et al.

(a) Map with
8894 colours

(b) Segmented
image with 9
colours

(c) Contours (d) Skeleton of
contours

(e) Roads (f) Skeleton of
roads

Fig. 7.15. Extraction of contours and roads from a map

and multi-spectral imagery has been done. Bo et al. (8) provide a technique
for coastline extraction from remotely sensed images using texture analysis. Liu
and Jezek (36) showed delineation of the complete coastline of Antarctica us-
ing SAR imagery. Bagli and Soille (6) suggest a morphological segmentation
based automated approach for coastline extraction. Di et al. (14) use the image
segmentation algorithm in (12) to segment an image and detect the shoreline.
The final shoreline is obtained by local refinement. In the following examples,
the coastline is extracted as the crust of the selected object. The accuracy of
the coastline depends on the spatial resolution of the imagery.

Figure 7.16 shows the complex coastline of Guinea Bissau. Segmentation re-
sults in four colours that define the water body out of which three define the
coastline. Multiple selection allows the combination of these three regions to-
gether to form the complete coastline as shown in Figure 7.16(c).

Next, the coastline of the Hebrides is shown in Figure 7.17. As can be seen,
the coastline is corrugated. The extracted coastline is shown in Figure 7.17(c).

Applicability of the developed methodology can be easily extended to natural
colour satellite imagery to extract homogeneous features. Coastline delineation,
snow cover mapping, cloud detection, and dense forest mapping are a few areas
where satisfactory results can be obtained. In the next section we will introduce
kinetic Voronoi diagrams and Delaunay triangulations and we will present their
applicability in GIS.

In this section, we have described an approach for extracting features from
images using the point VD and skeletonisation techniques. Where the resulting
features are linear (usually man made) an incremental generalisation process is



7 A Methodology for Automated Cartographic Data Input 179

(a) Satellite image of
Guinea Bissau

(b) Over-segmented
image

(c) Extracted coast-
line

Fig. 7.16. Feature polygon extraction from the satellite image of Guinea Bissau

(a) Satellite image of
Hebrides

(b) Over-segmented
image

(c) Extracted coast-
line

Fig. 7.17. Feature polygon extraction from the satellite image of Hebrides west coast

needed to produce the simpler vector representation of the features, preferably
within the VD/DT space used for the skeletonisation itself. This is addressed
by the incremental DT or, preferably, the Line Segment VD described in the
next section. The result is a toolkit permitting feature extraction from imagery
and subsequent derivation of linear features within a single spatial model and
software environment.

7.4 Kinetic Voronoi/Delaunay Drawing Tools

Kinetic data structures can be used for simulation of a complex system of mul-
tiple moving objects (27), that can not be handled by commercially available
GISs. Although GISs have evolved a lot recently, they are still a few “real world”
features that they can not handle.

7.4.1 Map Drawing and Editing

Constructing digital maps with line data has various difficulties, especially with
the connectivity (“topology”) between various polylines. This is implicit in the



180 C.M. Gold et al.

spatial model used — one-dimensional features floating loose in two-dimensional
space. A more hopeful approach is based on tessellating the whole map space,
so that all cells are bounded by other cells. Connectivity is thus automatic.
Tessellations may be regular or irregular. A regular grid (“raster”) has simple
spatial relationships but, because it is based on the coordinate system and not on
the features being represented, has difficulties in managing complete features or
polylines. Irregular tessellations may be triangulations or other cell structures,
e.g. the Voronoi diagram (VD). Triangulations connecting data points may follow
any chosen properties, but the Delaunay triangulation (DT), the dual of the VD,
has a geometric (coordinate-based) specification that gives a unique solution,
except in degenerate cases, and most importantly it can be updated locally
while perturbing only the immediately neighbouring triangles.

However, the triangle edges may not exactly follow the desired polyline.
Voronoi cells are usually constructed for sets of data points, giving the prox-
imal region to each point, but they are not readily aggregated into polylines. A
topological model is required for two purposes: to perform analysis on the final
map (e.g. network flow) or to construct the map in the first place (e.g. snap-
ping one polyline to another). Saving individual features (polygons, polylines)
to a database and reconstructing the connectivity as required may suffice for
some types of analysis (but not network flow), but this still leaves the construc-
tion problem. Node construction from the intersections of individual polylines
is a classical GIS problem, caused because the intersections of individual one-
dimensional entities, and their subsequent merging to form nodes (in a polygon
map for example) do not always give a well-defined ordering of edges around
the nodes — a requirement for an elementary topology on a 2-manifold. Here
a tessellation is an attractive option. In addition, traditional topology-building
algorithms in GIS are batch-oriented: all polylines are inserted at once, and
any local changes require a complete rebuild (although in some cases a “patch”
may be recalculated and reinserted into the larger map). In practice, many con-
struction and editing operations are incremental, mimicking the manual use of
a pen (and an eraser) to make local changes. This suggests the use of a kinetic
algorithm to simulate pen movement.

7.4.2 An Integrated Approach

We propose here an integrated approach to tessellated map construction, which
uses locally-updated tiles as a consistent and kinetic definition of adjacency.
The first component is the moving-point VD/DT, which manages the topol-
ogy of the moving pen. The second component is the Constrained DT, which
permits the specification of certain triangle edges, even if they fail the Delau-
nay conditions, thus allowing the construction and connection of line segments.
The third component is the Line-Segment VD, where the VD defines proxi-
mal regions around line segments as well as points. This integrated approach
uses the Moving-Point VD (or DT) to “draw” the desired line segment in both
modes, thus applying a common underlying algorithm to both processes. This ap-
proach to preserving topology assists in the construction process, and also in the



7 A Methodology for Automated Cartographic Data Input 181

analysis of the final map, for example for map generalization or network flow. Its
main drawback, as with all large-scale graph structures, is the lack of an efficient
mapping to a database system — although some object-oriented databases may
assist in this. This algorithmic approach has the following stages:

The Moving-Point VD or DT

This requires the dynamic incremental insertion and deletion of data points.
In addition, individual points may be moved from their previous location to
some subsequent location — the “trajectory”. In order to maintain the VD/DT
geometric properties there must be a predictive tool to specify at what loca-
tion the neighbouring VD/DT edges must be modified — a “topological event”
(abbreviated hereafter TE).

The Kinetic Constrained DT

The Moving Point (MP) in the moving point VD is split from a previous “old”
point (making two new adjacent triangles with “zero” area) and moved towards
its “new” destination. The initial zero length triangle edge between the old and
new points is flagged as constrained (abbreviated hereafter CE), and any TE
generated by the moving point is ignored if it involves switching any CE.

The Kinetic Line-Segment VD

Instead of flagging the CE in the initial position of the Constrained DT, a pair
of “open oriented line segments” (also called half-lines hereafter) is generated.
These are two new generators in the VD — one for each side of the line, in
addition to the two end points. Each of these is the potential generator of a
Voronoi proximal region. As the MP moves, TEs are identified as before, and
the topology updated, thus giving an expanding region associated with each
open oriented line segment.

In this model the topological events are the same as before, but the circum-
circle (CC) calculation must be expanded in order to work with distances from
line segments as well as points. In earlier work (16; 55) a direct calculation of
Voronoi boundary intersections was used to find the circumcentre. This failed on
occasion as arithmetic precision limitations could place the centre on the wrong
side of a line segment, thus destroying the node-ordering necessary for topology
maintenance. A new iterative algorithm was developed (2; 3) that converged on
the correct solution from an initial condition while preserving the necessary or-
der of the generator locations around the circumcircle. All the operations used
have their inverses, as MP movement may expand or contract the trailing line
(38). Preserving the topological relationships during construction means that
potential collisions may be detected in advance, and the appropriate join opera-
tions implemented. This is simplified as the lines and their proximal regions are
embedded in the two-dimensional space, guaranteeing that, for example, one VD



182 C.M. Gold et al.

line segment may detect an imminent collision and form the appropriate junction
that preserves the correct node and region ordering around the junction point.

7.4.3 The Kinetic Point VD and Its Dual DT

“Kinetic” data structures maintain their topological structure while the entities
move; dynamic ones merely permit local insertion and deletion of these entities
(points, segments, etc.) Insertion algorithms are well known, but published point
deletion algorithms are relatively recent.

The dynamic VD and DT

The simple VD can be constructed in many ways (5; 44), but the incremental
algorithm has often been found to be both stable and simple (26). In simple
terms, each new point is inserted into the existing DT by first finding the en-
closing triangle, using the CCW test of (26), splitting it into three triangles using
the new point, and then testing each edge recursively to see if it conforms to the
Delaunay criterion: that neither of the adjacent triangles CCs have an interior
point. If they do, the common diagonal is switched and the new edges are added
to the stack of edges to be tested (26). This CC test (INCIRCLE) (26) can be
shown to be equivalent to calculating the VD vertices and testing if the VD edges
cross. Point deletion can be performed by approximately following the inverse
process: switch DT edges if the result gives an exterior triangle whose CC is
empty except for the point being deleted. When only three triangles remain the
central point is deleted. There are two similar approaches: (13; 39). Thus, the
VD is updated at the same time as the DT. Both insertion and deletion may
be considered as partitioning the DT into two parts: the valid DT exterior area
and the valid DT interior area. Boundary edges are then switched until the two
parts merge.

The moving-point VD and DT

When a point MP moves as part of a DT/VD it may either travel a short distance
without requiring a topology update, or else triangle edges must be switched to
maintain the Delaunay criterion. These TEs (16; 49; 28) occur when MP moves
into or out of a CC. Real CCs are those formed from triangles immediately
exterior to the star or set of triangles connected to MP. “Imaginary” CCs are
formed by triangles that would be created if MP was moved out of its CC, and
are formed by triples of adjacent points around MPs star. Thus, if MP moved
into a constellation of points in a DT it would first enter the CC of a triangle,
causing a triangle edge switch and adding the furthest point of the triangle to
the star of MP. The original real CC is now preserved as an imaginary one. As
MP continued to move, at some later time it would move out of this imaginary
CC, the original triangle would be recreated and the CC would become real
again. As MP moves in any direction, it may enter or leave many CCs, and



7 A Methodology for Automated Cartographic Data Input 183

Fig. 7.18. Left: “Real” circumcircles to MP; right: “Imaginary” circumcircles to MP

the triangle edges must be updated accordingly. Topological operators are used
to extract the real CCs surrounding MPs star, and the imaginary CCs formed
by consecutive triples around MPs star. Real CCs are dropped if they are re-
formed from the imaginary ones. (Initially, before a point is first moved, all
surrounding real CCs are found and tested against the proposed trajectory.) To
maintain the DT during MPs movement it is therefore necessary only to find
the intersection of its trajectory with the first CC (either real or imaginary),
move MP to the intersection point, switch the affected edge, and then repeat
the process (see Figure 7.18). To avoid problems due to degenerate cases, e.g.
when several CCs are superimposed due to a regular square grid of data points
for example, the “first” intersection must be clearly defined. In practice it is
critical not to “forget” an intersection because it is behind MPs current position,
usually due to computer arithmetic limitations. This is achieved by always using
the earliest intersection, even if it is behind MP, subject to a test that the
intersection point is associated with an arc of the triangle edge to be switched.

This looping process: find the next intersection with a CC; move MP; switch
the DT edge — is continued until the MP’s destination is reached. If there is
already a node at the destination then the MP is merged with that node (remov-
ing that point and two triangles adjacent to the edge connecting those nodes).
It is, however, possible that MP collides with an existing point, destroying the
DT structure. Thus, at each iteration of the loop the distance from MP to each
new neighbouring point is tested, and if it is below some tolerance the collision
is detected — the MP is rolled back to its origin, then moved again towards the
collision point CP. Eventually the MP and CP are merged and the process is
continued from the CP by splitting the MP again and moving it towards the
original destination.

The Kinetic Constrained DT

Where MP collides exactly with a neighbouring point, the points are merged by
removing MP along with the two triangles adjacent to the edge between these
points. The reverse process may be used to create a new MP from a previous



184 C.M. Gold et al.

Fig. 7.19. Four stages in the construction of a constrained edge

point (split). This creates a zero-length edge between them, which expands as
MP moves away. In the normal course of events this edge will be switched once
MP moves outside the imaginary CC formed by the previous point and its two
adjacent points in the star. However, for many applications it would be desirable
if the edge was preserved, and MP used to “draw” a triangle edge between two
locations. In this case the trailing edge of MP is flagged “do not switch”, and
all tests to switch it are ignored. This generates the Constrained DT, where
specific triangle edges are fixed (constrained, CE) and do not follow the DT/VD
condition (46; 50) and (48). See Figure 7.19.

The interesting thing about this approach, as opposes to those in the liter-
ature, is that it is incremental, allowing the addition of further points or con-
straints as required. A further property is that it is reversible — MP may be
moved back along its (constrained) trajectory, “rolling it up” as it goes, until it
reaches its starting point, with which it may be merged. Thus, each operation
has its inverse, giving a kinetic data structure which allows the construction
and incremental or interactive modification of the desired map. In addition, the
construction commands may be preserved as a “log file” for later reconstruction
or modification. If timestamps are associated with each command the map may
be rolled forwards or rolled backwards to any desired time (38). Because of this
reversibility, intersections of pairs of CEs may be managed. If MP finds a new
CE (CE1) as part of its star, and attempts to switch it, then a potential collision
exists. Then, if necessary, MP is rolled back to its origin, an intersection point
IP between the trajectory for CE and CE1 is computed, CE1 is rolled back to
IP and a new portion of CE1 is created by splitting a new node from IP and re-
constructing CE1 (leaving IP as a new point on CE1). Then, MP is moved again
towards IP. They eventually merge and then a new portion of CE is drawn from
the intersection point to the original destination of MP. This may be repeated
for as many intersections as necessary (See Figure 7.20).

Figure 7.21 shows the construction of the Constrained DT for a UK urban data
set. This is of particular interest because of the work described in (31; 32; 54) that



7 A Methodology for Automated Cartographic Data Input 185

Fig. 7.20. Constrained DT with intersections

Fig. 7.21. a) Building boundaries; b) the Voronoi Diagram (note the two overlapping
Voronoi boundaries where the constrained edge differs from the unconstrained edge);
c) constrained Delaunay Triangulation

constructed the CDT of roads and building outlines and then used the adjacency
information to modify and move the buildings as part of the process of map
generalization. Figure 7.21c shows that for this example only two constrained
edges are absolutely necessary (their Voronoi edges overlap) — these prevent
the switching to give a valid VD/DT — while the others would be unchanged.
Figure 7.22 shows the constrained DT for several buildings and roads.

7.4.4 The Kinetic Line-Segment VD

The primary problem with the Constrained DT is the confusion of entities.
For a simple point DT/VD the primary objects are data points, which are the
generators of the proximal Voronoi cells. The DT merely describes the dual



186 C.M. Gold et al.

Fig. 7.22. The Constrained DT for several buildings and roads

relationships of the Voronoi edges: Delaunay edges are merely pointers express-
ing which pairs of data points are separated by Voronoi boundaries. For a simple
TIN model it is convenient to imagine that these are geometrically defined as
“straight”, as the triangle is a 2D simplex and hence forms a basis for linear
interpolation within, but their real function is to support the set of equidistant
boundaries that form the VD of a set of generators. (These generators may,
if required, be any set of non-overlapping objects: the dual DT remains a tri-
angulation.) However, with the Constrained DT there is a confusion between
triangle edges that express duals of VD edges and those that have been manu-
ally added as objects — in the sense that a building outline is formed of point
and line-segment objects. Thus, the VD of a Constrained DT is broken at each
constrained edge, and the VD edges that are correct on one side of a constrained
edge are invalid when they penetrate to the other side. It is more correct to define
the mapped objects separately (perhaps composed of points and line segments)
and then to construct the DT/VD expressing the spatial relationships between
them.

Unfortunately, the construction of the VD of points and line segments has
proved to be a difficult task, primarily due to the limited precision of computer
arithmetic. This causes no great difficulty for well-separated individual line seg-
ments (e.g (20)), but map objects constructed from connected points and line
segments need to have tight guarantees that, for example, the circumcircle for
a line segment, its end-point, and a line segment connected to that point, falls
on the correct side of the polyline. (Geometrically it falls precisely on the com-
mon end-point, but topologically it must be associated with the correct side.)
This has proved difficult to achieve, and workers have spent a great deal of time
attempting to construct robust algorithms (e.g (29; 30; 53)).

In addition, we have wanted to allow incremental, rather than batch, con-
struction, so we followed the approach of (20) which was based on the concept
of the moving point VD described above. Instead of preserving a trailing triangle



7 A Methodology for Automated Cartographic Data Input 187

Fig. 7.23. Half-lines (open oriented line segments) between two data points

edge, as described above for the Constrained DT, the “old point” OP and the
“moving point” MP are connected with additional map objects: open oriented
line segments connecting OP and MP that stretch as MP moves away. Here an
“open oriented line segment” or half-line is similar to the “half-edge” structure
used in CAD consisting of one side of the desired line segment, in anticlockwise
orientation viewed from the face. As both end points and both open oriented line
segments are map objects they are therefore generators of the VD, and thus they
are vertices of the dual DT, as shown in Figure 7.23. Half-lines HL1 and HL2
are linked with DT edge ne7, and they are linked by DT edges to endpoints OP
and MP. In (33) an incremental algorithm was produced for exact arithmetic
which allowed intersections by splitting line segments in advance, using exact
arithmetic and implicit coordinates for intersections, as they have the original
end points as support. We can not do this, as we allow arbitrary line segment
deletion, but we allow MP to move from its origin to its destination and manage
any collisions as it detects them. Thus, calculation of the circumcircles of these
triangles is more complex than for point data sets. In (55) this was calculated
from the intersections of the curves forming the Voronoi boundaries, but this
suffered from the arithmetic precision problems mentioned above.

Circumcircle

In our new work we use the approach of (3) where the simple point circumcircle
(CC) calculation (INCIRCLE) (26) was given an initial estimate based on the
configuration of the points/line-segments used. Initially, points and the mid-
points of valid portions of the line segments were used for the INCIRCLE test.
The centre was then projected onto each line segment, and a new CC calculated
based on INCIRCLE. When the new circumcentre was projected onto each line,
and the projection point was outside the line segment, then a point half way
between the old projection point and the appropriate endpoint of the line was
used. This was iterated to a suitable level of precision, and the method was
guaranteed to preserve the order of the generating points around the CC, thus



188 C.M. Gold et al.

keeping the initial Voronoi edge order around the circumcentre (and thus the
correct DT order as well), (3). Figure 7.24 shows the rapid convergence of the
method for two initial configurations.

The key improvement over the work of (2) was the trimming of the potential
space for the initial estimate: the centre had to be on the correct side of the line
segments, given the original anticlockwise order of the vertices obtained from
the data structure; line segments had to be trimmed to be on the correct side of
other line segments; data points had to be on the correct sides of line segments
and projected within the trimmed segment, etc. (Figure 7.25). While all “real”
CCs, as defined previously, had to have valid solutions, as they were part of a
valid VD, “imaginary” CCs might not have valid solutions, and needed to be
rejected in order to avoid false topological changes. After extensive testing, our
current algorithm appears robust under any conditions of the three generators,
and is able to detect invalid combinations successfully.

Line segment construction

As with the Constrained DT, the MP is used to draw the line segment using the
open oriented line segments described above. As MP moves it acquires and loses
Voronoi neighbours, as with the simple moving point, but when it loses them they
are transferred to the trailing line segment: since this is the locus of MP, it retains
all the neighbourhood relationships previously held by MP (see Figure 7.26).

For a simple line segment with two end points there are four Voronoi regions:
one for each end point and one for each open oriented line segment. This permits
the querying of each side of a line, e.g. to find if a point is inside or outside a poly-
gon. As shown in (16) the partitioning of the map space into proximal regions also
makes buffer-zone generation an elementary operation on each region. Figure 7.4.4
shows the line segment VD for the same urban dataset as shown previously. When
the DT is also displayed, note that each line segment is also a DT vertex. This
clearly distinguishes the DT function of expressing the adjacency relationships,
and not being part of the map object. Each of the map objects may be edited by
the insertion or deletion of line segments (open oriented line segment pairs) and
free vertices. The method is dynamic, in the sense of being locally updatable, and

Fig. 7.24. Iterative circumcircle calculations



7 A Methodology for Automated Cartographic Data Input 189

Fig. 7.25. Trimming segments a) Initial line segments; b) The resulting circle after
trimming the lines and iterative circumcircle calculations

Fig. 7.26. Two stages in drawing a line segment VD

kinetic, in the sense that MP may move within the map space. However, line seg-
ments may only expand or shrink, and not sweep sideways, as collision detection
and topology maintenance are based on MP alone. As with the Constrained DT,
the Line-segment VD may have intersecting segments. The line segments are map
objects having two separate sides (Figure 7.23), allowing attributes (such as poly-
gon colour) to be assigned to each side.

7.4.5 Robustness

Space does not permit the description of all the details of the suite of algorithms
described in this chapter. The key question in practice is the robustness of the
method for all types of data input, given the problems of arithmetic precision.
The underlying method described here consists of two parts: a geometric test
and a topological update. Any arithmetic operation not resulting in a topolog-
ical change causes no robustness problems — for example calculating the CC
(Voronoi node) for display purposes, or the projection of a point onto the inte-
rior of a line segment. Only geometric tests used to trigger topological changes
can cause robustness problems, and there are only two — calculation of CCs
and a sidedness test (“walk” in (21), “CCW” in (26)). CCW and INCIRCLE



190 C.M. Gold et al.

Fig. 7.27. a) Line segment VD; b) VD plus DT for the simple buildings of Figure 7.21

Fig. 7.28. Line-segment VD for contours

(for three points) are geometric predicates that have been studied extensively,
and arbitrary-precision solutions are readily available (51). The iterative circle
calculation for line-segments described above uses INCIRCLE, and although it
is iterative (and therefore approximate) this causes no problem where the centre
projects onto the interior of the line-segment. In practice, a tolerance value is
needed (to allow for arithmetic imprecision) only in the specific cases described
below.

1. For moving points, when a point is selected for movement or splitting, the
CCs for “exterior” triangles must be put on a list if their projections onto
the trajectory are in front of MP. A tolerance is used here and causes no
difficulties for these approximately tangent cases.



7 A Methodology for Automated Cartographic Data Input 191

2. When finding the next topological event for MP, the intersection of the
trajectory with the CC is imprecise. A tolerance is used to check if the
intersection of a “real” or “imaginary” CC is too close to the trajectory
start or end, and are snapped to their coordinates if necessary (to avoid the
oscillation of the MP at those locations). The tolerance is also used to test
whether the intersection point falls on one of the vertices of the circle.

3. There is a tolerance check for collisions with objects in MPs path (points
are treated as disks with a specified radius).

Another important issue while using floating point arithmetic is to guarantee the
same results of determinant and circumcircle calculations for the same objects
(for example a different order of three points in determinant calculation gives
three slightly different results due to the computer’s arithmetic precision). This is

Fig. 7.29. a) Line-segment VD

Fig. 7.30. b) Constrained DT for a road network



192 C.M. Gold et al.

achieved by consistent ordering of objects (points and lines) before doing actual
calculations.

7.4.6 Applications

Our previous examples have been urban applications, showing building and street
boundaries, for potential application in map generalization (31; 32). We will briefly
show two others. Figure 7.28 shows the Line-segment VD for a portion of a contour
map. Both the points and line-segments forming the contours are map objects, as
would have been the intention of the compilers. In addition, the medial axis, or
skeleton, between or within the contours is clearly seen (see (22), for further dis-
cussion of the skeleton). This map is directly editable if required.

Figures 7.29 and 7.30 show the Line-segment VD and the Constrained DT for
a road network. Again, the relationships between map objects are clearer in the
VD, and both maps are directly editable.

7.5 Conclusions

In this chapter, we have presented an effective methodology for automated digi-
tization of features from scanned maps. The methodology enables extraction of
centreline as well as boundary of an object in a single step. The centrelines are
required while digitizing linear features like roads, contours, streams, etc. On the
other hand, boundaries are needed to obtain polygons from features like fields,
islands, etc.

Based on the methodology, an interactive software application has been de-
veloped. It incorporates object extraction from input image using colour image
segmentation. Segmentation based on clustering using mean shift algorithm in
feature space has been adopted here. Mean shift algorithm is a popular and
robust method of clustering and provides good results in segmentation. The ap-
plication allows selection of multiple objects for extraction of the skeleton or the
boundary, as well as automatic extraction for all the features in the scanned map.
Skeletonization and boundary extraction is based on the Voronoi diagram and
the Delaunay triangulation. This not only gives accurate skeletons and bound-
aries, but also preserves the topology of the extracted feature.

We have also attempted to show that a tessellated spatial model has definite ad-
vantages for cartographic applications, and facilitates a kinetic structure for map
updating and simulation. Firstly, the moving-point DT/VD model approximates
human thinking, and manages collision detection, snapping and intersection at
the data input stage by maintaining a topology based on a complete tessellation.
Secondly, the Constrained DT allows the simulation of edges, and not just points,
with only minor changes to the moving-point model, but at the cost of confusing
map objects and topological entities. Thirdly, the Line-segment VD is a better-
specified model of the spatial relationships for compound map objects built from
points and line segments than is the Constrained DT. However, until now it has
been more difficult to develop. We believe that this method is now viable for 2D



7 A Methodology for Automated Cartographic Data Input 193

cartography, and in many cases it should replace the Constrained DT. However,
whichever method is used, the concept of using the moving point as a pen, permit-
ting interactive navigation within the map under construction, together with the
ability to delete and add line segments as desired in the construction and updating
process, appears to be a very useful approach.

In conclusion, we firstly describe an approach for extracting features from
images using the point VD and skeletonisation techniques. Where the resulting
features are linear (usually man made) an incremental generalisation process is
needed to produce the simpler vector representation of the features, preferably
within the VD/DT space used for the skeletonisation itself. This is addressed
by the incremental DT or, preferably, the Line Segment VD described in the
second part of the chapter. The result is a toolkit permitting feature extraction
from imagery and subsequent derivation of linear features within a single spatial
model and software environment.

Acknowledgements

This research work has received the financial support from the Natural Sciences
and Engineering Research Council of Canada (NSERC) and New Brunswick
Innovation Funds (NBIF) for a project titled “Data structures and algorithms
for the integration of raster and vector GIS”.

We would like to acknowledge the financial support of the EU Marie-Curie
Chair in GIS at the University of Glamorgan.

References

[1] Amenta, N., Bern, M., Eppstein, D.: The crust and the β-skeleton: Combinatorial
curve reconstruction. Graphical models and image processing: GMIP 60(2), 125–
135 (1998)

[2] Anton, F., Gold, C.: An iterative algorithm for the determination of Voronoi ver-
tices in polygonal and non-polygonal domains. In: Proceedings of the Canadian
Conference on Computational Geometry, Kingston, Canada, pp. 257–262 (1997)

[3] Anton, F., Snoeyink, J., Gold, C.: An iterative algorithm for the determination
of Voronoi vertices in polygonal and non-polygonal domains on the plane and the
sphere. In: 14th European Workshop on Computational Geometry (1998)

[4] Anton, F., Mioc, D., Fournier, A.: 2D image reconstruction using natural neigh-
bour interpolation. The Visual Computer 17(3), 134–146 (2001)

[5] Aurenhammer, F.: Voronoi diagramsa survey of a fundamental geometric data
structure. ACM Computing Surveys (CSUR) 23(3), 345–405 (1991)

[6] Bagli, S., Soille, P.: Morphological automatic extraction of coastline from pan-
european landsat tm images. In: Proceedings of the Fifth International Symposium
on GIS and Computer Cartography for Coastal Zone Management, vol. 3, pp. 58–
59 (2003)

[7] Bernard, T.M., Manzanera, A.: Improved low complexity fully parallel thinning al-
gorithm. In: ICIAP 1999: Proceedings of the 10th International Conference on Im-
age Analysis and Processing, p. 215. IEEE Computer Society, Washington (1999)



194 C.M. Gold et al.

[8] Bo, G., Delleplane, S., Laurentiis, R.D.: Coastline extraction in remotely sensed
images by means of texture features analysis. In: Geoscience and Remote Sensing
Symposium, IGARSS 2001, Sydney, NSW, Australia, vol. 3, pp. 1493–1495 (2001)

[9] Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision,
Graphics, and Image Processing 27(3), 321–345 (1984)

[10] Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 17(8), 790–799 (1995)

[11] Comaniciu, D., Meer, P.: Robust analysis of feature spaces: color image segmen-
tation. In: Proceedings of the 1997 Conference on Computer Vision and Pattern
Recognition (CVPR 1997), pp. 750–755. IEEE Computer Society, Washington
(1997)

[12] Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on Pattern Analysis Machine Intelligence 24(5), 603–
619 (2002)

[13] Devillers, O.: On deletion in Delaunay triangulations. In: Proceedings of the fif-
teenth annual symposium on Computational geometry, pp. 181–188 (1999)

[14] Di, K., Wang, J., Ma, R., Li, R.: Automatic shoreline extraction from high-
resolution ikonos satellite imagery. In: Proceeding of ASPRS 2003 Annual Con-
ference, vol. 3., Anchorage, Alaska (2003)

[15] Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation
analysis. Systematic Zoology 18(3), 259–278 (1969)

[16] Gold, C.: Spatial Data Structures: the Extension from One to Two Dimensions.
LF Pau (ad.), Mapping and Spatial Modelling for Navigation, NATO ASI Series
F 65, 11–39 (1990)

[17] Gold, C.M.: Crust and anti-crust: A one-step boundary and skeleton extraction
algorithm. In: Symposium on Computational Geometry, pp. 189–196. ACM Press,
New York (1999)

[18] Gold, C.M.: An object-based dynamic spatial data model, and its applications
in the development of a user-friendly digitizing system. In: Proceedings of the
Fifth International Symposium on Spatial Data Handling, Charleston, pp. 495–
504 (1992)

[19] Gold, C.M.: Three approaches to automated topology, and how computational
geometry helps. In: Proceedings of the Sixth International Seminar on Spatial
Data Handling, Edinburgh, Scotland, pp. 145–158 (1994)

[20] Gold, C., Remmele, P., Roos, T.: Voronoi diagrams of line segments made easy.
Proc. 7th Canad. Conf. Comput. Geom, pp. 223–228 (1995)

[21] Gold, C., Charters, T., Ramsden, J.: Automated contour mapping using triangular
element data structures and an interpolant over each irregular triangular domain.
In: Proceedings of the 4th annual conference on Computer graphics and interactive
techniques, pp. 170–175 (1977)

[22] Gold, C.M., Snoeyink, J.: A one-step crust and skeleton extraction algorithm.
Algorithmica 30(2), 144–163 (2001)

[23] Gold, C.M., Thibault, D.: Map generalization by skeleton retraction. In: Proceed-
ings of the 20th International Cartographic Conference (ICC), Beijing, China, pp.
2072–2081 (August 2001)

[24] Gonzalez, R.C., Woods, R.E.: Digital Image Procesisng, 2nd edn. Prentice Hall,
Englewood Cliffs (2002)

[25] Green, P., Sibson, R.: Computing dirichlet tessellations in the plane. The Com-
puter Journal 21(2), 168–173 (1977)



7 A Methodology for Automated Cartographic Data Input 195

[26] Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and
the computation of voronoi diagrams. ACM Transactions on Graphics 4(2), 74–123
(1985)

[27] Guibas, L.: Kinetic data structures: A state of the art report (1998)
[28] Guibas, L., Mitchell, J., Roos, T.: Voronoi diagrams of moving points in the plane.

570, 113–125 (1992)
[29] Held, M.: VRONI: An engineering approach to the reliable and efficient computa-

tion of Voronoi diagrams of points and line segments. Computational Geometry:
Theory and Applications 18(2), 95–123 (2001)

[30] Imai, T.: A Topology Oriented Algorithm for the Voronoi Diagram of Polygons. In:
Proceedings of the 8th Canadian Conference on Computational Geometry table
of contents, pp. 107–112 (1996)

[31] Jones, C., Bundy, G., Ware, J.: Map generalization with a triangulated data struc-
ture. CARTOGR GEOGRAPH INF SYST. 22(4), 317–331 (1995)

[32] Jones, C., Ware, J.: Proximity Search with a Triangulated Spatial Model. The
Computer Journal 41(2), 71 (1998)

[33] Karavelas, M.: A robust and efficient implementation for the segment Voronoi
diagram. In: International Symposium on Voronoi Diagrams in Science and Engi-
neering (VD 2004), pp. 51–62 (2004)

[34] Kasturi, R., Fernandez, R., Amlani, M.L., chun Feng, W.: Map data processing
in geographic information systems. Computer 22(12), 10–21 (1989)

[35] Lee, K.H., Cho, S.B., Choy, Y.C.: A knowledge-based automated vectorizing sys-
tem for geographic information system. In: ICPR 1998: Proceedings of the 14th
International Conference on Pattern Recognition, vol. 2, p. 1546. IEEE Computer
Society, Washington (1998)

[36] Liu, H., Jezek, K.C.: A complete high-resolution coastline of antarctica extracted
from orthorectified radarsat sar imagery. Photogrammetric Engineering and Re-
mote Sensing 70(5), 605–616 (2004)

[37] Mioc, D., Anton, F., Gold, C., Moulin, B.: Spatio-temporal change representation
and map updates in a dynamic Voronoi data structure. In: Proceedings of the
Eight International Symposium on Spatial Data Handling, Vancouver, Canada,
pp. 441–452 (1998)

[38] Mioc, D., Anton, F., Gold, C., Moulin, B.: Time Travel. Visualization in a Dynamic
Voronoi Data Structure. Cartography and Geographic Information Science 26(2)
(1999)

[39] Mostafavi, M., Gold, C., Dakowicz, M.: Dynamic Voronoi/Delaunay Methods and
Applications. Computers and Geosciences 29(4), 523–530 (2003)

[40] Mioc, D., Anton, F., Gold, C.M., Moulin, B.: Map updates in a dynamic Voronoi
data structure. In: ISVD, pp. 264–269 (2006)

[41] Ogniewicz, R.L.: Skeleton-space: A multiscale shape description combining re-
gion and boundary information. In: Proceedings of Computer Vision and Pattern
Recognition 1994, pp. 746–751 (1994)

[42] Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi skeletons. Pattern Recogni-
tion 28(3), 343–359 (1995)

[43] Ogniewicz, R.: Automatic medial axis pruning by mapping characteristics of
boundaries evolving under the euclidean geometric heat flow onto Voronoi skele-
tons. Technical Report 95-4, Harvard Robotics Laboratory (1995)

[44] Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley & Sons, Chichester (1992)



196 C.M. Gold et al.

[45] Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: concepts and
applications of Voronoi diagrams, 2nd edn. John Wiley & Sons Ltd, Chichester
(2000)

[46] Paul Chew, L.: Constrained delaunay triangulations. Algorithmica 4(1), 97–108
(1989)

[47] Quek, F.K.H., Petro, M.C.: Human-machine perceptual cooperation. In: CHI 1993:
Proceedings of the SIGCHI conference on Human factors in computing systems,
pp. 123–130. ACM Press, New York (1993)

[48] Rognant, L., Chassery, J.M., Goze, S., Planès, J.G.: The delaunay constrained
triangulation: The delaunay stable algorithms. In: IV, pp. 147–152 (1999)

[49] Roos, T.: Voronoi diagrams over dynamic scenes. Discrete Appl. Math. 43(3),
243–259 (1993)

[50] Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996.
LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

[51] Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates. In: Discrete and Computational Geometry, vol. 18, pp. 305–363
(1997)

[52] Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision.
PWS publishing (1999)

[53] Sugihara, K., Iri, M., Inagaki, H., Imai, T.: Topology-Oriented Implementation–
An Approach to Robust Geometric Algorithms. Algorithmica 27(1), 5–20 (2000)

[54] Ware, J., Jones, C.: Conflict Reduction in Map Generalization Using Iterative
Improvement. GeoInformatica 2(4), 383–407 (1998)

[55] Yang, W., Gold, C.: Dynamic spatial object condensation based on the Voronoi
diagram. In: Proceedings, Fourth International Symposium of LIESMARS, vol. 95,
pp. 134–145 (1995)


	Introduction
	Introduction to the Voronoi Diagram of Points and Open Oriented Straight Line Segments
	Quad-Edge Based Voronoi Data Structure
	The Operations on the Dynamic Voronoi Data Structure

	A Methodology for Raster to Vector Conversion of Colour Scanned Maps and Satellite Imagery
	Skeletonization
	Automated Approach to Skeletonization of Scanned Map Features
	Results with Maps and Satellite Images

	Kinetic Voronoi/Delaunay Drawing Tools
	Map Drawing and Editing
	An Integrated Approach
	The Kinetic Point VD and Its Dual DT
	The Kinetic Line-Segment VD
	Robustness
	Applications

	Conclusions
	References

