Quasi Newton Optimization
via Levenber Marquardt and Camera Triangulation

Henrik Aanges Vesselin Perfanov

May 17, 2008

The aim of this exercise is to illustrate the use of Quasi Newton optimization schemes, particularly the very popular
Marquardt or Levenberg-Marquardt algorithm, [2, 3]. The task to which this algorithm is to be applied is that of
camera triangulation, i.e. given n-cameras, which observe a point, estimate the 3D location of that point. This is
a fundamental problem in computer vision and photogrammetry, and has a complexity which should allow you to
complete this exercise within the given time frame.

This exercise is run in MatLab. If you are not acquainted with this tool, an introductory primer can be found at:

e http://www2.imm.dtu.dk/~jmc/02501/exercises/introduction/introduction.pdf

e http://www2.imm.dtu.dk/~jmc/02501/exercises/introduction2/introduction?2.pdf

1 Getting Started

In order to get started you are to download a version of the Marquardt algorithm from http://www2.imm.dtu.dk/
~hbn/immoptibox/ and unzip it into the directory in which you wish to work.

In order to illustrate how this algorithm works please run the script TrialRun.m. This script applies the Marquardt
method to the well-known (in optimization circles) Rosenbrock function.
Task: Insert comments into the script, such that you can convince yourself that you know what is going on. Try
typing help marquardt.

There is also an out-commented section, which calculates the numerical gradient and compares it with the analytical.
This is an important way to validate your objective functions, because experience shows, that errors often occur in
computing the analytical gradient. Try it out and comment.

2 Generating an Initial Guess

Since the Quasi Newton methods, and the Marquardt method in particular, work via an iterative scheme, a starting
guess or point is required. The performance of the algorithm typically depends highly on this starting guess, both in
regards to speed of convergence, and more importantly if it finds the global or a local minimum.

A good way for finding a starting point is via a so called algebraic method [1], i.e. a method that minimizes a
non-interpretable error measure, but is linear (meaning easily solvable). To derive this method, assume a perspective
camera model, where the cameras are represented by 3 by 4 matrix. Denote the cameras by their columns, i.e.

C; = Ci% , (1)
Cis

and the 3D point by a homogeneous vector of length 4, denoted). The 2D coordinate of () projected into camera 4
is then given in homogeneous coordinates, by:

S;T;
g = | sy | =CQ . (2)

Si

Thus the z-coordinate is given by:
T; = ChQ
(2 ’
CiQ

which can be transformed into a linear constraint in Q (which is our unknown) by:
crt

Z%Q = I;
Cis@

A similar constraints can be calculated for y;, yielding two times the number of views linear constraints on . These
linear constraints can be arranged in a matrix, B, and Q can be found via, SVD in MatLab:

CHQ =ClQ = z:CLQ - ClQ =0= (z:,.Cf - ClHQ =0 . (4)

€Xr; =

]:%&éObs*Q, :)=gs{cObs}(2) *Cams{cObs} (3, :)-Cams{cObs}(2,:)

[u,s,v]=svd(B);
QO=v(:,end)/v(end,end);
Please refer to Section 4, if you want to see why this method is ’faulty’.
Task: Write MatLab functionality that calculates an initial estimate via the above described method.

The data you should use is located in CamData.mat, and can be retrieved via load CamData. It consists of three
cameras, Cams, with corresponding three 2D coordinates, gs.

3 Non-Linear Optimization

To run the actual Marquardt algorithm or non-linear optimization, you have to supply an objective function as
described in the help to the supplied algorithm. This function should supply the observation errors f; for a given Q:

ClQ
- 5
f2 1 CZEQ s ()
_ Cz:gQ dy
f2z - CZ;Q - g) (6)

and their derivatives wrt. Q, J,
12,j zSQ 023 ,J Q
(CQ)?

Task: Construct the objective function and test it by comparing your analytical derivatives with the corresponding
numerical derivatives. What is the effect of setting delta?

Joj ;=

Task: Run the Marquardt algorithm with your start guess.

4 Where did the Algebraic Method Go Wrong?

To see where the 'fault’ is in the algebraic method, consider once more (3):

CHQ

which should have been T
Ch@
ChQ

since there is a measurement error or noise. A more correct algorithm would solve the problem of:

win 3 el

+¢€ , (7)

T =

where || - ||» denotes some norm, usually the two norm squared, i.e. || - ||3. Redoing the calculations of (2) with this
more correct observation model, (7), would then result in
(2:C% — Cl)Q = €(CLQ) - (8)

So when minimizing

mln I Z (2:CF DR+ (wiCh — CL)QIS

as is done with the linear method, as described above, the observation errors ¢€; are ‘erroneously’ weighted by C5Q.
Where CLQ is closely related to the distance of the camera C; to the 3d point Q.

References

[1] R. I. Hartley and A. Zisserman. Multiple View Geometry — 2nd edition. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, 2003.

[2] K. Levenberg. A method for the solution of certain problems in least-squares. Quart. J. of Appl. Math., 12:164-168, 1944.

[3] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial
and Applied Mathematics, 11(2):431-441, 1963.

