
Introduction to the

Christmas Lunch problem

Thomas J. K. Stidsen

Overview

• The problem

• MIP formulation

• Solution representation

• Data files

• Program architecture

1

The Christmas Lunch Problem

The problem simple: Place people at tab-

les at which other people with the same

interests are.

2

Sets (indexes):

• Persons: p, pp = 1, ...,18

• Wishes: w = cars, ..., eating

• Tables: t = 1, ...,3

Parameters:

• A
p
w: 1 if person p has interest w

Decision variables:

• x
p
t : 1 if person p is seated at table t

• y
p,pp
w,t : 1 if person p and pp sit at the

same table t and share interest w

3

Model

Objective to maximize: No of shared in-

terests:
∑

p

∑

pp

∑

w

∑

t

y
p,pp
w,t

4

Constraints:

• Force seating of everybody:
∑

t

x
p
t = 1, ∀p

• Lower bound the number of number
of people at the table

∑

p
x

p
t ≥ b|p||t| c, ∀t

• Upper bound the number of number
of people at the table

∑

p
x

p
t ≤ d|p||t| e, ∀t

• Upper bound shared interests:

y
p,pp
w,t ≤ 1

2
(Ap

w ·xp
t +App

w ·xpp
t), ∀p, pp, w, t

5

Representation

• Important lesson: You need another

representation for meta-heuristics t-

han in MIP models !

• Two possible representations:

– Vector with one entry for each per-

son. The number is the table the

person is at

– A vector for each table (hence a

matrix).

6

Vector Representation

7

Matrix representation

8

Representation

• Representation is more an art that a

science ...

• A good representation is often mo-

re important that the right choice of

meta-heuristic !

• A good representation should support:

– Good correlation between neighbours

– Fast evaluation (delta evaluation)

– Good handling of infeasibility

– Ease of programming

9

Overall Architecture

SimulatedAnnealing.javaMainClass.java

LogFile.java DataObject.java

10

Program files:

• MainClass.java: Simple startup class

• metaheuristic.java: Main class where

things happen ...

• LogFile.java: Class for sampling infor-

mation

• DataObject.java: Class for reading pro-

blem related data and evaluating so-

lutions ...

11

The data file

110

11

10

10

1 2 2

1 3 1

1 4 2

....

107 110 0

108 109 0

108 110 0

109 110 1

12

Interpretation

• First line: No of persons

• Second line: No of tables

• Third line: Maximal no of persons at

table

• Fourth line: Minimal no of persons at

table

• Rest of lines: No. of common inte-

rests between Persons: First column

is no of one person, second column

is number of second person and third

number is the number of shared inte-

rests.

13

The job

• Place all persons at a table

• Maxmimize the number of common

interests

14

First questions for a problem

• What is a solution ?

• How can we evaluate a solution ?

• How can we
”
vary“ a solution ?

• Can a variation lead to infeasibility ?

15

What is a solution ?

All the information we need in order to be

able to precisely define a solution.

• A list of integer values, where the po-

sition is the person:

integer[] currentSolution

• Notice that it is easy to create infea-

sible solutions ...

16

How can we evaluate a solution ?

Given a solution:

integer[] currentSolution

:

• Loop over all tables

• Loop over all persons (p1)

• Loop over persons (p2) (from current

persons)

• If p1 and p2 are at the current table,

add the joined value

17

How can we
”
vary“ a solution ?

• Simple: Swap two integer values (dif-

ferent)

18

