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Dynamic Optimization

What is Dynamic Optimization?

Dynamic Optimization has 3 ingredients:

@ A performance index (cost function, objective function) depending on the states and
decisions.

In our case it is a summation (or integral) of contribution over a period of time of fixed or free
length (might be a part of the optimization).

@ Eventually some constraints

on the decisions or on the states.

@ Some dynamics.

Here (in this course) described by a state space model.

Lets have a look at some examples:
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Ex1: Optimal Pricing (simplified)

We are producing a product (brand A) and have to determine its price in order to maximize our
income.

There is a competitor product B and a problem.

If we are to modest we might have almost all the costumers but we will not earn that much.

If we are to greedy then the bulk majority of the costumers will bye the other brand B.
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Optimal Pricing - the performance index

We have to decide the price of the product u; ~ u (u being the production cost) in each interval.
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Let M be the size of the marked and let z; (0 < z; < 1) be the (A) share of the marked in the i'th
interval.

Objective: to make some money - i.e. to maximize

N-1
1
Mazx J where J = Z Mfz(uz —g) T; = —(.Ti + :l?i+1)
1=0 2

More precisely, z; is the marked share at the beginning of interval < and z; is the average share of
the marked in interval z.
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Optimal Pricing - the dynamics

Transition probability A->B Transition probability B->A

Dynamics: A—A B—A
DTU
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Recap Optimal Pricing

Dynamics:
Zit1 = (1 — p(ui))zi + q(us) (1 — x;) xo =
Objective:
N-1
Max J where J= Z Micl(uZ —g)
i=0

Notice: This is a discrete time model. No constraints. The length of the period (the horizon, N) is
fixed.
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Ifu; =u+5(u=06, N=10)weget J =8 (rounded to integer).
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Optimal pricing (given correct model): J = 27 (rounded to integer).
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Notice different axis for x.
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Free Dynamic Optimization

Dynamics (described by a state space model):
xzit1 = fi(zs,ui)  To =1z
Obijective (to optimize the index):
N—-1
L]:(b]\f(xN + Z Lz xuu’b
1=0

Here N and z, are fixed (given), J, ¢ and L are scalars. x; and f; are n-dimensional vector and
vector function and u; is a vector of decisions.

Notice: no constraints (except given by the dynamics).
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Ex2: Inventory control - A classical OR problem

N

Tit1l = T; +u; — S5 To = X

Dynamics:

Stock : T 0<z; <z
Production:  w; 0<u; <a

Sale: si 0 < s; < min(z;, w;)
Order: w;

Notice: constraints on decisions and states. Stochastics involved.
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Goals:

@ to earn some money

@ to avoid situation with no stock
@ to reduce stock charge

@ to obtain an even production.

Objective

—

index to be maximized):

=z

J = psi—cui—k:ci—hMax(wi—si,O)
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where p, ¢, k and h are constants (prices).
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Constrained Dynamic Optimization

Dynamics (described by a state space model):

Tit1 = fi(zi,ui) T =z

Objective (to optimize the index):

N—-1
L]:(b]\f(xN + Z Lz xuu’b
=0

Constraints:

g(xi,ui) <Gy
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Variations of the problem

Dynamic optimization with:
@ Terminal constraints (take the system from one place to another).
@ Constraints (on u; and z; within the horizon).
@ Continuous time problems
@ Open final time (Minimum time problems).
@ Stochastic elements (orders in the inventory problem).

2 examples.
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Minimum drag nose shape (Newton 1686)

Find the shape i.e. r(x) of a axial symmetric nose, such that the drag is minimized.

A ——
I

The decision u(x) is the slope of the profile:

or =—u=—tan(f) r0)=a
ox
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Minimum drag nose shape (Newton)

Find the shape i.e. r(x) of a axial symmetric nose, such that the drag is minimized.
D= q/ Cp(0)2nrdr
0

1 .
qg= -pV? (Dynamic pressure)

(-
ISR

Cp(0) = 2sin(0)? for >0

Flow
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Minimum drag nose shape (Newton)

’ (% Flow
(L/A v
Dynamic:
or

& = —u ro=a tan(a) =u

Cost function (drag coefficient, including a blunt nose):

! 3
_2q~l2+4/ " dx <1

Cy= - T
d qma? o 1+u?
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Minimum drag nose shape (Newton)
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Free Dynamic Optimization (C)

Find a function u; t € [0; T which takes the system system

& = fr(xe,ut)
from its initial state z, along trajectories such that the performance index

T
J = ¢rlzT] +/0 Li(zt,ut) dt

is minimized.
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Min. Time Orbit Transfer

Thrust direction program for minimum time transfer from Earth orbit to Jupiter orbit.

l EARTH ORBIT

6 5 -4 3 2 1 ‘0 1
xIro
2
v 1 uv
r=u W= — — — +asin(0) v =—— 4 acos(h)
rooor r
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Min. Time Orbit Transfer
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dt =l r r2
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Lecture slides for Static Optimization are found on Campustet in the folder Static Slides
Lecture slides for Drmamc Optimization:
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® Exerciee DOex] (koture 7) (pdf). Sobtions (padfy. o-filee (zp).
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Concluding remarks

@ have 42111 and your study nomber in the subject field when emailing us
@ Matlab available on Gbar download site
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